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Abstract

Background: Since the advent of microarray technology, numerous methods have been devised to infer gene
regulatory relationships from gene expression data. Many approaches that infer entire regulatory networks. This
produces results that are rich in information and yet so complex that they are often of limited usefulness for
researchers. One alternative unit of regulatory interactions is a linear path between genes. Linear paths are more
comprehensible than networks and still contain important information. Such paths can be extracted from inferred
regulatory networks or inferred directly. Since criteria for inferring networks generally differs from criteria for
inferring paths, indirect and direct inference of paths may achieve different results.

Results: This paper explores a strategy to infer linear pathways by converting the path inference problem into a
shortest-path problem. The edge weights used are the negative log-transformed probabilities of directness derived
from the posterior joint distributions of pairwise mutual information between gene expression levels. Directness is
inferred using the data processing inequality. The method was designed with two goals. One is to achieve better
accuracy in path inference than extraction of paths from inferred networks. The other is to facilitate priorization of
interactions for laboratory validation. A method is proposed for achieving this by ranking paths according to the
joint probability of directness of each path’s edges. The algorithm is evaluated using simulated expression data and
is compared to extraction of shortest paths from networks inferred by two alternative methods, ARACNe and a
minimum spanning tree algorithm.

Conclusions: Direct path inference appears to achieve accuracy competitive with that obtained by extracting
paths from networks inferred by the other methods. Preliminary exploration of the use of joint edge probabilities
to rank paths is largely inconclusive. Suggestions for a better framework for such comparisons are discussed.

Background
Gene microarrays and RNA-seq both measure the
simultaneous expression (i.e. amount of RNA transcript)
of hundreds or thousands of genes. The relationship
between genes’ expression levels across multiple samples
can be used to infer regulatory relationships. Inferring
these relationships computationally can focus research
and save time and expense.
Early approaches for inferring gene regulatory networks

(GRNs) do not distinguish between direct regulatory

interactions, such as the relationship between a transcrip-
tion factor and a gene it promotes, and indirect relation-
ships, such as co-regulation and co-expression. One such
approach is inference of a minimum spanning tree (MST).
MST algorithms identify the set of edges that connects all
the nodes in a graph with minimum total weight. Figure 1
shows an example minimum spanning tree. While the
edges MST algorithms include are among the strongest,
they omit any edges not needed to span the graph. Net-
work inference tools based on MSTs include Airnet [1]
and Module Miner [2].
Newer methods go beyond inferring “relevance net-

works” to inferring direct relationships. Two information
theory-based methods, ARACNe [3] and CLR [4] were
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among the first to distinguish direct interactions, such as
those between genes and their transcription factors, from
indirect ones, such as co-regulation and co-expression.
This has also been done using maximum relevance-mini-
mum redundancy feature selection [5], static and dynamic
Bayesian networks [6,7], tree ensemble methods [8], and
pathway-consistency algorithms using conditional depen-
dencies [9].
Inferred GRNs resemble a chaotic “hairball” of nodes

and edges. In this complex form, their rich information
may not be very accessible. Inferring a simpler unit–the
most likely chain of regulatory interactions that con-
nects two genes of interest–may have advantages. A lin-
ear path may be surrounded by interactions that are
also of interest, but it could capture the most important
set of interactions in a comprehensible way. The path
could be viewed in its network context by taking its
union with other paths. If the path inference method
can provide some means of sorting paths according to
their likelihood of accuracy, this could be used to priori-
tize laboratory validation of interactions between genes
of interest.
The probability of a path being composed of direct

edges is the joint probability of directness of its compo-
nent edges. The method presented in this paper exploits
this fact to convert the pathway inference problem into
a shortest-path problem, deriving the weight for each
edge in the graph from its the estimated probability of
directness. The weights are transformed such that find-
ing the shortest path between two genes maximizes the
product of the probabilities of its edges. The resulting
path probabilities could theoretically be used to rank
paths according to their likelihood.
The computational alternative to inferring paths

directly is extracting paths from inferred networks.

However, some network inference criteria may be maxi-
mized by omitting edges that would be needed in paths.
And network inference may not lead to a systematic
way of ranking extracted paths. With this in mind, two
methods were chosen for comparison that offer interest-
ing contrasts to the shortest-path method. One is an
implementation of the ARACNe algorithm. The other is
a basic MST method.

Mutual information and the data processing inequality
Relationships between genes’ expression levels can be
quantified using a measure of dependency, such as Pear-
son’s correlation, Spearman’s correlation, Euclidean dis-
tance, or mutual information.
Butte and Kohane [10] first used mutual information

(MI) to infer relevance networks. It has since become
the dominant dependency measure in GRN inference.
Unlike Pearson’s correlation, MI captures non-linear
dependence and makes no assumption about the form
of the joint distribution. The MI of two random vari-
ables X and Y is defined as:

I (X;Y) =
∫∫

p
(
x, y

)
log

(
p
(
x, y

)
p (x) p

(
y
)
)
dxdy

where p(x) and p(y) are the marginal probability distri-
butions of x and y, and p(x,y) is the joint probability dis-
tribution. The actual MI of two random variables is an
unknown parameter. Many methods have been pro-
posed for estimating MI (see Walters-Williams and Li
[11] for one review and comparison). Without strong
distributional assumptions, no method has been shown
to be optimal.
Simple thresholding of MI estimates does not isolate

direct relationships. However, directness can be inferred by
comparison of MI values. One approach is based on the
data processing inequality (DPI), whose use for GRN infer-
ence was pioneered by Basso et al.[3] in connection with
the ARACNe algorithm. Take a trio of genes A, B, and C,
where A influences C only through B (see Figure 2).
The DPI states that the information of the indirect

relationship will be the least of the three. That is,

I (A;C) ≤ min (I (A;B) , I (B;C)) .

The inequality can be taken to be strict in the context of
biological processes. It can be shown that, if true MI values
could be used rather than estimates, pruning edges based
on the DPI would perfectly reproduce an acyclic graph.
Inference of directness based on the DPI is used in the

shortest-path method as well, with the difference that a
probability of directness is estimated for each edge, rather
than a simple imputation of directness or indirectness.
More details can be found in the Methods section.

Figure 1 A minimum spanning tree.
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Results
In the network inference literature, as with other binary
classification problems, performance is often measured
by sensitivity (synonymous with recall) and specificity.
These can be calculated from the number of true posi-
tives, false positives, true negatives, and false negatives.

sensitivity =
tp

tp + fn
specificity =

tn
tn + fn

Precision is related to specificity but is more appropri-
ate in the context of paths, since the number of true
negatives (edges that were not included in the true
path) dwarfs the number of edges in the path.

precision =
tp

tp + tp

For this reason, precision and recall were chosen as
measures of performance. Results are reported from
paths longer than a single edge. This allows for compar-
ison with the node-derived measures, which would be
meaningless for paths of a single edge.
Most of the datasets used are from the DREAM3 in

silico network inference challenge and were generated by
the GeneNetWeaver package from 10 experimentally
determined GRNs. There are 5 each (2 from E. coli and 3
from S. cerevisiae) of 10 and 50 genes. The other data set
of 50 genes, from the R package Minet [12], was generated
from a S. cerevisiae network by the SynTReN package.
The network topology of the datasets differ. One charac-
teristic expected to be of particular importance was the
cyclicity of the network, here measured as the fraction of
back edges encountered in a depth-first search.
Absolute and relative performance varies across datasets.

Figure 3 shows edge-wise recall when plotted against

cyclicity across all datasets. Edge-wise precision was nearly
identical to edge-wise recall. Node-wise recall and preci-
sion resemble their edge-wise counterparts but are gener-
ally higher, and the difference is greater for precision than
for recall.
Figures 4, 5, 6, 7 show the comparative performance

of the different algorithms as the length of the true path
increases. The results are from the Minet dataset. Edge-
wise recall and node-wise recall both decrease as path
length increases. Node-wise recall tends to be about
twice as high as edge-wise recall. Edge-wise precision
increases very slightly with path length. Node-wise pre-
cision also increases with path length, and the increase
is greater than for edge-wise precision.
As mentioned earlier, an additional goal of the direct

path inference method is the ability to rank pathways
according to their likelihood. If the derived probabilities
of each edge’s directness are accurate and independent,
one would expect a strong relationship between the
joint probability of the edges and the path’s precision
and recall. One of the simplest relationships that could
exist between path probability and performance is a lin-
ear correlation. Figure 8 shows the correlation between
path probability and the average of precision and recall
as cyclicity increases. The correlation was weak and
inconsistent. It appears to approach zero as cyclicity
increases, and is most often negative.

Improvements to other methods
The bootstrapping technique used to derive edge probabil-
ities in the shortest-path method could also be used to
increase the robustness of the mutual information esti-
mates used by the other methods. The mean or median of
the estimates from the bootstraps could be taken in place
of the original estimate, reducing the effect of outliers. At
the same time, this could result in some loss of sensitivity
relative to using the full original dataset. It appears that
both ARACNe and the minimum spanning tree algorithm
tend to perform better using the mean of bootstrap esti-
mates. The gains in robustness appear to outweigh the
loss in sensitivity in most cases.
The negative log transformation used on edge probabil-

ities in the shortest-path method could also be applied in
connection with other methods that similarly seek to
maximize some objective function using a minimization
algorithm. For the MST method used in this paper,
mutual information values are scaled by the maximum
value and subtracted from one. Airnet uses a similar
transformation, differing in that, since it uses Pearson’s
correlation, the values are already bounded between zero
and one and do not need to be scaled by the maximum
value. Using the negative log transformation for the MST
achieved performance at least as good as that achieved
using the subtract-from-one transformation, and negative

Figure 2 DPI triplet comparison.
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Figure 3 Edge-wise recall by cyclicity.

Figure 4 Edge-wise recall by true path length.
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Figure 5 Edge-wise precision by true path length.

Figure 6 Node-wise recall by true path length.
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log transformation may be more mathematically appro-
priate in some cases.

Discussion
The fact that node-wise performance (particularly preci-
sion) tends to exceed edge-wise performance, along with
the tendency to find paths that are shorter than the true
paths, could indicate skipping between correct nodes. This
may occur in cycles, where a key assumption of the DPI
does not hold–namely, that nodes are not related through
multiple channels. If the sum of multiple relationships
between two genes is strong enough, the algorithm may
infer a direct connection with the node at the other end of
the cycle. Figure 9 shows a four-node cycle where skipping
would occur. In this case, true edges A-B and C-D would
be pruned, and a direct interaction would be incorrectly
inferred between A and D.
The inference of longer paths may be less sensitive to

estimation errors than the inference of shorter paths. If a
true edge in a path appears weak, strong edges in the path
could compensate. However, detecting this effect would
require better controls and a wider selection of networks
than used in this study. While some of the results appear
to confirm the hypothesis that inference of longer paths is
more accurate, they should be interpreted with caution.

The slight increase in edge-wise precision as true path
length increases could reflect the fact that there are more
ways of including correct edges in longer paths. The
greater increase in node-wise precision with path length
would be consistent with the hypothesis of shortcut errors;
however, there are more ways to get correct nodes than
correct edges for any maximum path length k (by a factor
of (k-1)!), and random paths generated for comparison
exhibit a similar upward trend.
The counterintuitive result that path probability is

negatively correlated with precision and recall may relate
to the kind of errors that occur. On average, inferred
paths are shorter than the true paths. Each erroneous
shorter path is chosen because it has higher joint prob-
ability than the correct path, whether due to incorrect
calculation of edge probabilities or dependence between
edge probabilities. When the most probable path
between two nodes involves no shortcuts, it may tend to
be longer and have lower probability. However, the cor-
relation was weak and inconsistent, and could be an arti-
fact of the way performance metrics were derived. In
addition, nonlinear relationships could exist that would
not be reflected by the correlation coefficient. Further
investigation is needed to determine what relationships
exist and how they could be used to rank paths.

Figure 7 Node-wise precision by true path length.
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Conclusions
The performance of the shortest-path method appears
comparable to the other two methods. However, the
metrics used may not be optimal. Conditioning on true
path length complicates generalizations about perfor-
mance trends. Also, inferred paths are compared to the
most direct path through the graph, ignoring valid but less
direct paths. The measure of cyclicity used here (propor-
tion of back edges) does not directly indicate the size and
number of cycles. And the shortest-path method optimizes
for finding the entire correct path, while the test metrics
are based on finding any part of it. This may affect con-
trasts with MST algorithms, for example, which achieve
low recall and high precision at the network level. MSTs
are likely to do well in partial credit comparisons and
poorly on all-or-nothing metrics.
Any method using MI is sensitive to the quality of MI

estimation, which is difficult with the relatively small
number of samples common in microarray data. The
direct path inference method relies on estimation of the
posterior distribution of MI, an even more difficult pro-
blem. Bayesian estimation could perform better with
small sample sizes, and may enable incorporation of
data about known regulatory interactions in a statisti-
cally sound way as priors.
Improvements could be made to the inference of direct-

ness in cycles. The type of skipping hypothesized here

should occur most when the ratio of the number of paths
between the end genes of the cycle and the length of the
paths is high. However, relationships mislabeled by skip-
ping are important ones despite being indirect.
There is at least one valid objection to the assumption

of independent edge probabilities: they are based on tri-
plet comparisons, and any two adjacent edges are jointly
involved in one triplet comparison. The decisive com-
parison in classifying an edge as indirect will result in
dependence between the edges in that triplet, particu-
larly between edges whose MI values are closest. From a
biological standpoint, expression levels of many genes
are not independent (their dependency is what the MI
describes), and the dependency between two genes may
be related to the expression level of another gene (e.g. a
co-activator or co-repressor), but it’s unclear how
dependence between the dependencies of genes would
arise in a high enough proportion of regulatory scenar-
ios to significantly affect this method’s performance.
The code for this project can be found at http://dna.cs.

byu.edu/shortest/, along with extensions enabling genera-
tion and use of larger datasets from GeneNetWeaver,
comparison to the official implementation of ARACNe
and its kernel MI estimator, and examination of the inde-
pendence assumption through comparison of the empiri-
cal joint distribution of edges’ probabilities of directness
with the multiplicative joint distribution.

Figure 8 Correlation of performance and path probability.
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Methods
Path Inference
A path exists if each of its edges represents a direct reg-
ulatory relationship. The problem can be framed as find-
ing the path that is most likely, given the data, to be
composed entirely of direct edges. Let RT represent the
set of all possible paths from r to t, and let ep be the set
of edges in path p. Assuming the DPI holds, the edge
between nodes A and B is direct if and only if it is not
the least edge in any triplet comparison with any other
node C. This condition will be abbreviated as DPI(AB):

DPI (AB) :⇔ ∀C : I(A,B) ≥ min (I (A,C) , I (B,C))

Thus, the path is to be found with maximum prob-
ability of every edge being direct. In other words,

argmaxp∈RTP(∀AB ∈ ep : DPI(AB)) (1)

This requires finding the posterior joint probability of
MI values. It can be approximated by bootstrapping. For
each bootstrap round of MI estimation, each edge’s
directness according to the DPI is recorded. Its prob-
ability of directness is taken to be the proportion of
bootstraps in which it is considered direct.
The probability of a path is the joint probability of its

edges. The number of possible paths in a complete graph
of n nodes is exponential, and the number of paths under

some length threshold k (e.g. a limit of biological plausibil-
ity) is O(n(k-1)). Computing probabilities for all paths is
infeasible for large graphs. However, if edges’ being direct
are independent events, the joint probability of edges in a
path is equal to the product of edge probabilities. Then
(1) can be expressed as

argmax
∏
AB∈ep

P(DPI(AB)) (2)

Since the logarithm is a monotonic increasing trans-
formation, order is preserved when (2) is expressed as

argmax log

⎛
⎝ ∏

AB∈ep
P(DPI(AB))

⎞
⎠ = argmax

∑
AB∈ep

log(P(DPI(AB))) (3)

Which in turn is equivalent to

argmin
∑
AB∈ep

− log(P(DPI(AB))) (4)

This reduces pathway inference to a shortest-path pro-
blem, using as edge weights the negative log of the prob-
ability that each edge is direct. Since the transformed edge
weights are positive, Dijkstra’s algorithm can be used to
find the shortest path between a given root node and all
other nodes in a graph. Using priority queues, Dijkstra’s
algorithm is of O(E + nlog(n)) complexity, where E is the

Figure 9 Four-node cycle in which skipping could occur.

Jensen et al. BMC Bioinformatics 2013, 14(Suppl 13):S5
http://www.biomedcentral.com/1471-2105/14/S13/S5

Page 8 of 9



number of edges and n is the number of nodes. Dijkstra’s
algorithm was used previously by Gebert et al. [13] in a
differential equation framework to explore regulatory net-
work connectivity and identify influential genes.
For the baseline random paths set, one random path was

generated for each combination of root and target nodes,
of a random length no greater than that of the longest
true path in the true network.
The ARACNe method referred to in this paper is an

independent implementation of the algorithm described in
Margolin et al. [14]. The ARACNe algorithm applies a sig-
nificance threshold (derived by a permutation test) to MI
estimates and prunes edges according to the DPI with a
tolerance margin. For path inference, it performed best
with a stringent tolerance margin and a permissive signifi-
cance threshold.
The MST network inference method applied Prim’s

algorithm to pairwise transformed MI. In order for the
minimum spanning criterion to optimize the strength of
included edges, each MI value was transformed by scaling
by the maximum value in the dataset and then subtracting
from one. Airnet applies a similar transformation using
Pearson’s correlation.
For both the ARACNe and MST methods, Dijkstra’s

algorithm was used to extract shortest paths from the
inferred network, with each edge in the network having
unit weight.
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