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Abstract

relationships with important clinical outcomes.

identified in previous studies.

approaches.

Background: In order to better understand cancer as a complex disease with multiple genetic and epigenetic
factors, it is vital to model the fundamental biological relationships among these alterations as well as their

Methods: We develop an integrative network-based Bayesian analysis (INET) approach that allows us to jointly
analyze multi-platform high-dimensional genomic data in a computationally efficient manner. The iNET approach is
formulated as an objective Bayesian model selection problem for Gaussian graphical models to model joint
dependencies among platform-specific features using known biological mechanisms. Using both simulated
datasets and a glioblastoma (GBM) study from The Cancer Genome Atlas (TCGA), we illustrate the iNET approach
via integrating three data types, microRNA, gene expression (mMRNA), and patient survival time.

Results: We show that the iNET approach has greater power in identifying cancer-related microRNAs than non-
integrative approaches based on realistic simulated datasets. In the TCGA GBM study, we found many mRNA-
microRNA pairs and microRNAs that are associated with patient survival time, with some of these associations

Conclusions: The iNET discovers relationships consistent with the underlying biological mechanisms among these
variables, as well as identifying important biomarkers that are potentially relevant to patient survival. In addition, we
identified some microRNAs that can potentially affect patient survival which are missed by non-integrative

Background

As the technologies for screening different types of
alterations on the whole genome have been applied to
oncology studies, it has been shown that cancer is a
complex disease that contains many different types of
genetic and epigenetic alterations, and focusing on any
single type alteration will only provide an incomplete
view of the cancer genome [1,2]. In order to obtain a
global perspective of the cancer genome, it is essential
to interrogate all types of genomic, epigenomic, tran-
scriptomic and proteomic alterations in the cancer gen-
ome. Motivated by this rationale, The Cancer Genome
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Atlas (TCGA), which is a worldwide research program
launched in 2006, collects data measured multiple types
of cancer genomic alterations on the same set of sam-
ples for more than 20 types of cancer (http://cancergen-
ome.nih.gov, [3]). For example, in TCGA glioblastoma
multiforme (GBM) study we consider here, there are
over 500 tumor samples with DNA copy number, muta-
tion, methylation, and gene expression information
available for downstream analysis.

One major goal of integration studies that combine
multiple molecular platforms is to improve the under-
standing of complex networks of biological processes
underlying cancer and subsequently, to discover how
the networks affect patient clinical outcome (e.g., patho-
logical complete response, progression free survival
time). For example, gene networks can be reconstructed
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by integrating gene expression and genetic data [4], pro-
tein signaling pathways can be reconstructed using
reverse-phase protein arrays [5], and microRNA regu-
lated networks can be inferred by integrating microRNA
and the gene expression information from their target
genes’s expression [6].

As shown in Figure 1, the underlying biological process
among different molecular features can be described as
follows. The molecular features measured at the transcrip-
tional level (e.g., messenger RNA expression) affect clinical
outcomes more directly than the molecular features mea-
sured at the DNA level (e.g., copy number, methylation,
and mutation status); and the molecular features related to
post-translational modification (e.g. protein expression)
affect clinical outcome more directly than the mRNA
expression. For example, molecular features measured at
the DNA level affect clinical outcome by regulating
mRNA expression [7-9]. Similarly, microRNAs are post-
transcriptional regulators that bind to complementary
sequences on target mRNAs, usually resulting in transla-
tional repression or target degradation, which then influ-
ence clinical outcome [10].

In this article, we exemplify our methodology and focus
on studying the underlying biological process among
microRNA, mRNA expression, and patient-specific clinical
outcomes in glioblastoma. Analyzing the relationships
among other multiple molecular platforms can be done
analogously (see Conclusion and Discussion). There are
approximately 2000 annotated human microRNAs to date
and this number is still increasing. The underlying biologi-
cal relationships among microRNA and mRNA are very
complicated. It has been shown that a microRNA can reg-
ulate the mRNA expression of any gene regardless of its

Page 2 of 12

locus, and each microRNA can have multiple target genes.
The regulatory relationship between a microRNA and a
gene only depends on their inherent features (e.g., micro-
RNA sequence and structure). Currently, there are four
popular algorithms - miRanda [11], TargetScan [12], PITA
[13] and PicTar [14], which use the microRNA sequence
and structure information to predict their target genes.
However, these algorithms do not consider the effects of
microRNA and gene expression on clinical outcomes.

In the following article, we first introduce an integrative
network-based analysis (iNET) approach to study the rela-
tionships among features from multi-platform genomics
data. In particular, we study different association networks
for microRNA, mRNA expression, and patient clinical
outcome. We then propose an objective Bayesian model
selection approach to select these networks via Bayes
factors. We generate numerical examples to show the
advantage of the iNET approach compared to non-inte-
grative approaches and to demonstrate the power gains of
the iNET approach in true model selection. We apply the
iNET approach to a GBM study from TCGA, and identify
candidate microRNAs with potential effects on patient
survival, several of which have been implicated in previous
studies. In the end, we provide our conclusions and
discussions.

Integrative network-based analysis (iNET)

Unlike previous approaches that integrate multiple
features from different genomic alterations, we take a
“feature-specific” approach to model the underlying biolo-
gical mechanisms. We illustrate our methodology using
two platforms, with extension to multiple platforms done
in an analogous manner. Let one triplet represent a
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Figure 1 Associations among different molecular platforms and with clinical outcome. Solid (dashed) arrow: features from one platform
are influenced directly (indirectly) by the products from the other platform.
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combination of the expression levels for one gene/probe,
one microRNA, and the associated patient-specific clinical
outcome, which is denoted by {G,M,C}. Hence, for a given
triplet there are 2% = 8 possible combinations that reflect
the relationships as specified below and illustrated in
Figure 2:

« Null model: microRNA, gene expression and clinical
outcome are independent of each other.

» Three-way model: Both gene expression and micro-
RNA expression affect clinical outcome and moreover,
the microRNA and gene expression are dependent, con-
ditioning on clinical outcome.

« Independent model: Gene expression and microRNA
expression affect clinical outcome independently. How-
ever, microRNA and gene expressions are independent,
conditioning on clinical outcome.

+ Causal model: microRNA expression is correlated
with gene expression, which then is correlated with the
clinical outcome. MicroRNA expression is not indepen-
dent of clinical outcome, conditioning on gene expres-
sion. This relationship is consistent with the underlying
biological mechanisms that microRNA regulates gene
expression, which then affects clinical outcome.
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+ Inverse model: Gene expression is correlated with
microRNA expression, which then is correlated with the
clinical outcome. Gene expression is independent of
clinical outcome, conditioning on microRNA expression.
The relationship in this model is the inverse of the rela-
tionship in the causal model.

+ Gene model: Only gene expression is related to clini-
cal outcome.

+ microRNA model: Only microRNA expression is
correlated to clinical outcome.

o Zero-effect model: Neither gene expression nor
microRNA expression is correlated with patient out-
come. There is only correlation between gene expression
and microRNA expression.

Out of the 8 possible graphical models, the three-way
model, the independent model and the causal model
reflect different underlying biological processes that are
of particular interest to biomedical researchers. For exam-
ple, the associations between microRNAs and clinical
outcomes have been reported by other researchers [15,16],
and the associations between microRNAs and their target
gene expression have also been reported in [17]. The null
model, inverse model, gene model, microRNA model and

Null model
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microRNA model

nodes means these two nodes are dependent given the third node.
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Figure 2 Eight possible graphical models for each {microRNA, gene expression, clinical outcome} triplet. An edge between any two
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zero effect model also reflect meaningful biological pro-
cesses but are relatively less interesting from a scientific
standpoint. The goal is to survey which genes and micro-
RNAs follow the three-way model, independent model,
and causal model, respectively. To achieve this goal, we
borrow the traditional approaches for studying undirected
networks, Gaussian graphical models (GGM, [6,18,19]), to
study the dependency structure in each triplet. However,
there are substantial differences between studying tradi-
tional gene networks and our study: 1) Goals: gene net-
work studies aim to determine the relationship of a large
number of features from one molecular platform/assay in
a single graph, while our study focuses on investigating
the relationships among one feature from each platform
for multiple platforms. 2) Scale: only one high-dimensional
graph needs to be estimated for network studies, while
numerous (on the order of thousands) low-dimensional
graphs need to be estimated for our study. 3) Inference:
the interest of network studies is to estimate the strength
of the edges in the one large scale network, while the
interest of our study is to determine the dependency struc-
ture among multiple molecular platforms. For example,
both Stingo et al. [6] and our study are about integrating
microRNA and mRNA expressions. In Stingo et al. study
[6], 23 mouse microRNAs and 1297 potential target
genes were analyzed in one graphical model. They were
interested in the estimations of a large regulatory net-
work for all these features under two different treatment
conditions. In contrast, our study is focused on investi-
gating the dependency structure of each “microRNA-
gene-clinical outcome” triplet. We investigate all the
possible combinations to obtain the microRNAs and
genes with the relationships consistent with the real
biological process.

In essence, to explore the biological relationships
among different platforms, we cast the iNET approach as
a model selection/comparison problem in GGMs. We
use a Bayesian approach to calculate metrics that are
most supported by the observed data to evaluate these
different models. Specifically, we use an objective model
selection procedure based on Bayes factors (e.g., see [20])
for two main reasons. Firstly, based on this approach, the
Bayes factor has a closed-form expression which saves us
significant computational time and cost in the analysis of
such high-dimensional datasets. Secondly, this approach
utilizes an automatic objective Bayesian prior for model
selection; thus it eliminates the biases caused by choosing
too strong or too vague priors. We now explain this pro-
cedure in detail below.

iNET algorithm
The GGM [21] is a class of models for multivariate
Normal distributions. In general, let x = (x1,...,x,) be a
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p-dimensional Normal random vector with mean g and
covariance matrix X. In our application, p = 3 corresponds
to the {gene,microRNA,clinical outcome} triplet detailed
in the previous section. For simplicity, we assume
throughout that 4 = 0 (i.e.,, the data is centered).
Let © = ! denote the inverse covariance, also known as
the concentration matrix with elements ®@i. Then the par-
tial correlation between x; and x; given all the other vari-
ables is pjj = —wjj/ \/wijwjj. Thus w;j = 0 if and only if x;
and x; are conditionally independent given all other
variables.

The GGM can be represented by an undirected graph G
= (V, E), where V is a set of vertices representing the vari-
ables and E is a set of undirected edges indicating the rela-
tionships among the variables. The graph represents the
model by drawing an edge between vertices i and j when
wjj # 0. Complete graphs are defined as graphs having (i, /)
[ E for every i, j| V. A graph C is called a clique if it is a
maximal complete subgraph. A graph S is called a separa-
tor if it is the overlap of two cliques. We denote the sets of
cliques and separators of a graph by C and S, respectively
(for details see [22]). For example, in Figure 2, the cliques
for the independent model are {C, M} and {C, G}, and the
separator is {C}.

There are various approaches to perform model selec-
tion in the GGMs. For example, Whittaker proposed the
traditional stepwise forward-selection or backward dele-
tion approach for small sized GGMs [23]. Bayesian shrink-
age approaches for large scale gene networks are described
in [24-26]. Here, we follow a Bayesian approach to solve
this problem for two reasons: 1) the proposed Bayesian
approach provides us an automatic objective prior for the
model selection, 2) the resultant Bayes factors from the
proposed Bayesian approach have a closed form, hence
the algorithm is computational efficient.

Suppose we observe n samples (xy, . . ., x,) of
p-dimensional vectors from an unknown decomposable
graph G, where each #; ~ N (0, X), with unknown covar-
iance matrix X. Let X be the n x p matrix of observed
data. The posterior distribution of the graph G given X
can be expressed as,

7 (G| X) n(G)/n(XIZ,G) 7(Z|G)dz, (1)

where 7(G) is the prior probability of the graph G,
and 77(Z|G) is the prior for X given G.

One major problem in model selections is that the inte-
gral in equation (1) is very sensitive to different choices of
the prior, and depends on sample size [22,27]. Hence, in
model selection, it is critical to choose an appropriate 7z(X|
G) that should at least have the two properties: a) 7(X|G)
should be a conjugate prior for practical reasons (e.g.,
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computation efficiency); b) both improper priors and
vague proper priors cannot be used since they may con-
found graph selections.

A conjugate prior was first proposed as n(2|G) ~ HIWg
(o, 1) for a decomposable graph G [27], where HIW
denotes a hyper-inverse Wishart distribution [28] and the
scale matrix 7 I is proportional to the identity matrix. The
scale parameter 7 needs to be carefully chosen to be close
to the real scale of the data for this group of priors. A small
scale will result in lack of discrimination among graphs we
compare, and a large scale will overpower the likelihood.

An alternative construction of this prior,
7(Z|G) ~ HIW¢(gn, gX'X), was suggested in [29], where
g is between 0 and 1. This prior is referred to as HIW
g-prior, similar to Zellner’s g-prior in linear regression
[30]. It is shown that this prior corresponds to the
implied fractional prior for selecting a graph using frac-
tional Bayes factors [29] .

The fractional Bayes factor was motivated by the partial
Bayes factor, which uses a part of samples to train the
noninformative priors as proper priors, and the remaining
data is employed to perform model comparisons [31]. It is
usually applied when prior information is weak. The para-
meter g in the HIW g-prior can be viewed as the fraction
of the likelihood used for training the noninformative
prior. However, if we interpret HIW g-prior as the frac-
tional Bayes factors, we cannot impose a hyper prior on g
because g is no longer a model parameter. Instead, it
represents the fractional power of the likelihood which is
used for training the noninformative prior. Intuitively, we
want to save as much of the data as possible to choose
between models. Hence, we simply choose g = 1/n, equiva-
lent to letting the training sample size to equal 1. In sum-
mary, there are several advantages to using this HIW g-
prior: a) The conjugate property of the prior produces
closed-form Bayes factors; thus the selection of thousands
of models becomes feasible; b) compared to using the con-
ventional prior (whose results depend largely on the arbi-
trary choice of a constant), using HIW g-prior (which
corresponds to the implied fractional prior for (X|G)),
automatically provides us an objective Bayesian approach
for the model selection; c) the Bayes factors based on the
HIW g-prior is information consistent [29].

Bayes factor calculation: Let G, denote the null graph
having no edges, and let G4 denote the graph to be
compared with the null. The Bayes factor for comparing
these two models is

n
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n}:l |2iji‘2
1
P 1 v
I, 12,12
1y’ cl 1y 18I
Teee13%%1 2 Toes 131 2

18 il
1y 1y
[Tses 1,XXj1 2 Tleee 1,XiXj1 2

BF(Go : Ga) =K

()

Page 5 of 12

where C and S are the cliques and separators of G4 and
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[Tses Tisi ("5 ™) Teee Tia ('S

For the eight possible graphical models shown in Fig-
ure 2, let Gy denote the null model and G; to G, denote
the seven network models, respectively. The algorithm
for the iNET approach can be described as follows:

Step 1: We obtain the Bayes factor values for compar-
ing the seven models with the null model by applying
Equation (2) to each triplet.

Step 2: We sort BF (G; : Gy) to BF (G, : Gp) in a
decreasing order; denote the sorted Bayes factors as BF;)
to BF (7 and their corresponding graphs as G to G

Step 3: If BF(1)/BF () is greater than 3 (this cutoff is
determined according to the scale for interpretation of
Bayes factors [32]), we conclude that this triplet sup-
ports the model G(;y. Otherwise, we conclude that there
is not enough evidence to suggest a specific model.

Step 4: Given the selected model, we calculate the maxi-
mum likelihood estimates for the strength of the edges
(the conditional correlations). For the three-way model,
causal model, inverse model, and zero-effect model, if the
strength of the edge between G and M is positive for a tri-
plet, we filter out this triplet since it contradicts with the
biological fact that the microRNAs are typically negatively
associated with mRNAs.

Simulation studies

We examine the performance of the iNET algorithm in
model selection in two simulation studies. First, we assess
the benefits of integrative analysis using the iNET
approach against non-integrative approaches. Second, we
investigate the statistical power of the iNET approach to
select the true underlying graphical models. In both cases,
we focus on the four models that are of particular interest
to biomedical researchers - the three-way, independent,
casual, and microRNA model. We aim to mimic the appli-
cation dataset - the TCGA GBM data (see the Application
section) as much as possible to keep our simulations rea-
listic. Hence, for all the simulated datasets, we fix the sam-
ple sizes at 280, which equals the total number of patients
we have in the TCGA GBM dataset. Moreover, we set the
conditional correlations among the microRNA, gene
expression and clinical outcome similar to the range of the
correlations observed in the TCGA GBM data.

Comparison to non-integrative approaches

We first show the benefits of data integration using the
iNET approach over non-integrative approaches. We
focus on the causal model, which is the most common
relationship among the microRNA, gene expression and
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clinical outcome triplet. In the causal model, we vary the
conditional correlation between clinical outcome and gene
expression in the range - {0.2, 0.3, 0.4}, which is similar to
the range of the conditional correlation between the clini-
cal outcome and gene expression observed in the applica-
tion dataset. For each of the three cases, the absolute value
of the conditional correlation between gene expression
and microRNA expression ranges continuously from 0 to
0.8. We generate 1000 datasets for each combination of
correlations of gene expression-clinical outcome and gene
expression-microRNA expression.

We apply two approaches to the simulated datasets.
The first approach is a non-integrative (nonINT)
approach using only the microRNA expression and
patient clinical outcome. In this approach, the Pearson’s
correlation is calculated between the microRNA expres-
sion and patient clinical outcome. The p-value from test-
ing whether the correlation equals zero is recorded for
each dataset. If the p-value is less than 0.05, we count it
as a success. The second approach is the iNET approach
described above and the power is calculated as the pro-
portion (out of all datasets) when the true (i.e. causal)
model gets selected. The simulation results are summar-
ized in Figure 3. The shaded area is the the range of con-
ditional correlation observed in the application dataset.

In Figure 3, the power of the iNET approach is sub-
stantially greater than the power of the nonINT approach
when the conditional correlation of microRNA-gene
expression is less than 0.4. As the conditional correlation
of microRNA-gene expression increases, the power of
the nonINT approach increases and become comparable
with the power of the iNET approach. However, within
the range of conditional consolations observed in the
application dataset, the iNET approach still has greater
power in identifying the correct graphical model. In sum-
mary, the iNET has greater power in identifying cancer-
related microRNAs if the dependency structures for
microRNAs, their target genes, and patient clinical out-
come follow the causal model than approaches that
ignore this information.

Model selection

We evaluate the model selection consistency of the iNET
approach in different scenarios. For each of the models
considered - three-way, independent, causal, and micro-
RNA model, we assume three different cases for the con-
ditional correlations, i.e., the strength of the edges in the
GGM. In the three-way model, we assume the conditional
correlations for microRNA-gene expressions, gene expres-
sion-clinical outcome, and microRNA expression-clinical
outcome are equal with values 0.2, 0.3, and 0.4. When the
conditional correlations are greater than 0.4, the percen-
tage of the true model selected by the iNET increased to
100. For each case, we generate 1000 datasets and apply
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our iNET algorithm. The model selection results are cate-
gorized into three groups - a) the correct graphical model
is chosen, b) the incorrect model is chosen (i.e. other
seven possible graphical models are chosen), and ¢) Unde-
cided i.e. the BF cannot decide which model is selected
since the difference between the largest BF and the second
largest BF is not large enough to support the graphical
model with the largest BF. We record the percentage that
the correct model gets selected, the percentage that the
incorrect models get selected, and the percentage of no
model get selected. The result is shown in Figure 4, panel
A. Similar to the the three-way model, we assume three
conditional correlation cases for the independent model,
causal model, and microRNA model. The results are
shown in Figure 4, panels B, C, and D, respectively.

Figure 4 shows that the percentage of identifying the
correct model increases as the strength of conditional
correlations increase. When the conditional correlations
are as low as 0.2, the iNET approach still has power
that is around 0.5. Moreover, the iNET approach has a
relatively low percentage of choosing an incorrect gra-
phical model. For example, when the conditional corre-
lations are 0.2, the iNET approach has only about 10%
of times of selecting a wrong model.

Additionally, we calculate the maximum likelihood esti-
mation for the conditional correlations for the cases that
the correct model is obtained. We see that in Table 1 the
mean estimation for the conditional correlation are very
close to the true value. The small standard error in
the model indicates that the estimations have good
consistency.

In summary, from these two simulation studies, we con-
clude that the iNET approach can help us better under-
stand the underlying relationship for multiple molecular
features. By integrating the additional gene expression
information, we gain substantial power in identifying can-
cer-related microRNAs. Also, we show that the iNET
approach is powerful in identifying the underlying true
model and in model estimation.

TCGA glioblastoma data analysis

GBM is the most common and most aggressive malignant
primary brain tumor in humans and was the first cancer
type investigated by TCGA. The yearly incidence is 3 to 5
newly diagnosed cases per 100, 000 population. Most
cases of GBM develop rapidly with a clinical history of
only a few days or weeks. The overall median survival time
for patients treated with the current standard chemora-
diotherapy is approximately 15 months. The etiology of
glioblastoma remains largely unknown, but epidemiology
studies have shown that the risk factors for GBM include
sex, age and ethnicity [33]. The TCGA GBM study
includes over 500 GBM patient samples with their DNA
copy number, mutation, methylation and gene expression
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information. All datasets analyzed here are publicly avail-
able and can be downloaded from the TCGA website.
Analyzing different platforms one by one with the clinical
outcome can identify the pathobiological features and
molecular biomarkers in GBM. The clinical outcome we
are interested in is the patient survival time after diagnosis
with GBM. A ten-microRNA list was shown to play an
important role in predicting GBM patient survival time
[34]. The datasets used in our analysis include patient clin-
ical features, gene expression profile and microRNA
expression profile for GBM patients.

Dataset overview

We first give an overview of the basic characteristics of
these datasets and the pre-processing procedures
conducted.

Clinical characteristics: There were 454 patients with
clinical information (e.g., age at diagnosis and sex).
Column 1 in Table 2 gives a brief summary of all the clini-
cal characteristics of GBM patients. The overall survival
time after diagnosis with GBM is the variable of most clin-
ical interest. To apply the GGM procedure, we need to
perform the following preliminary transformation:

+ To obtain an estimated survival time for each patient,
we first fit a Cox model using the only significant clinical
feature in predicting patient overall survival, patient age,
as the explanatory variable. Subsequently compute the
Breslow estimator of the baseline hazard function.

+ For each censored patient i, calculate the
E[max(T%, T%*)], where T is the observed overall sur-
vival time and T{* is the estimated overall survival time.
These values are imputed as the actual overall survival
times as if these patients were not censored.

« Log-transformation is performed for all observed sur-
vival times and imputed values.

microRNA dataset: The level 3 normalized micro-
RNA data were obtained by the UNC H-miRNA 8 x
15K array. The expression levels of 534 microRNAs
were recorded for each patient in the microRNA data-
set. All 534 microRNAs were considered in our model.

mRNA dataset: The gene expression data were
obtained by using the Affymetrix Human Genome U133A
chip and used the pre-processed level 2 mRNA expression
data for analysis. There were 280 patient samples with all
three types of information available which we use for our
network-based analysis (see Table 2). We first normalized
the mRNA data globally using the BrainArray CDF and
RMA normalization method. After normalization, there
were 12,126 measurements for each patient, and each
measurement only corresponds to one gene. Since low
expressing genes are subject to much greater random
measurement error, genes with uniformly low expression
were discarded according to the following steps.

« Divide the 280 patients into a short survival group and
a long survival group using 2 years as the cutoff point
(clinically meaningful in GBM). The mean expression level
for each gene was calculated for the two groups,
respectively.

+ A gene is considered under-expressed if the mean
normalized expressions for both groups are less than 5.

There are 7785 genes left after this screening step. Next,
we selected the top 1000 genes most relevant to patient
survival time after adjustment for patient age. This was
done by fitting 7785 Cox models with age and each gene
expression as predictors.

In summary, the data we used in the network analyses
included 280 patients with their overall survival time, 534
microRNA expressions and 1000 gene expressions, result-
ing in 534 x 1000 triplets. We are interested in identifying
which of the eight graphical models in Figure 2 can best
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enough to support the graphical model with the largest Bayes factor.

Figure 4 The percentages of different models selected for different underlying models. M: microRNA, G: gene expression, C: clinical
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D: microRNA model

(Conditional correlations of M-G and G-C
are zero)

100 +
80 -
60 -
40 -
20 -
0
0.2 0.3 0.4

Conditional correlation of M-C

Percentage

represent the relationship among the microRNA, gene,
and patient survival time in each triplet.

Analysis results

We categorize all the triplets into eight groups according to
the best fitting model indicated by their Bayes factors. The
blue bars of Figure 5 summarize the number of triplets in

each group. The maximum likelihood estimates are com-
puted for the strength of the edges (the conditional correla-
tions) for each triplet given the best graphical model that
its Bayes factor indicates. If the strength of the edge
between G and M is positive for a triplet, we filter out this
triplet since it contradicts with the biological fact that
microRNAs normally repress the expression of their target
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Table 1 Evaluation of the model estimation by the iNET
approach

Model Parameters True Mean Estimated
value estimation error

Three-way model

Case | G-C/M-C/M- 0.2 0.23 0.04
G

Case Il G-C/M-C/M- 03 0.31 0.05
G

Case Il G-CO/M-C/M- 04 040 0.05
G

Independent model

Case | G-C/M-C 0.2 022 0.04

Case Il G-C/M-C 03 031 0.05

Case ll G-CO/M-C 04 043 0.04

Causal

model

Case | G-C/M-G 0.2 0.23 0.04

Case |l G-C/M-G 03 0.31 0.05

Case ll G-CO/M-G 04 041 0.04

microRNA model

Case | M-C 02 022 0.04

Case |l M-C 03 030 0.04

Case Ill M-C 04 039 0.05

M: microRNA; G: gene expression; C: clinical outcome.

genes. Triplets that pass this filter for each graphical model
are depicted by the red bars in Figure 5.

In Table 3, we summarize the number of unique micro-
RNAs in the triplets supporting the three-way model,
independent model, causal model, and microRNA model
respectively. For example, there are 42 different micro-
RNAs in the triplets supporting the three-way model. Out
of the 42 microRNAs, three mircoRNAs, hsa-mir-148a,
hsa-mir-221, and hsa-mir-222, are from the ten-micro-
RNA list previously derived by [34] that can predict survi-
val in GBM. Table 3 shows that the number is small (14)
for the microRNAs involved in the group of triplets with
Bayes factor supporting the independent model and the
microRNA model. This indicates that although microRNA
can directly affect patient survival without modulating
gene expression, it is a relatively rare situation.

We also plot the graphical model estimation for the 8
triplets with the greatest Bayes factor for the three-way

Table 2 Patients’ clinical characteristics
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model, the independent model, the causal model and
microRNA model compared to the null model, respec-
tively (see panels A - D of Figure 6. Many microRNAs
from the ten-microRNA list are shown in these graphs.
For example, Panel A of Figure 6 shows that hsa-mir-148a
negatively affects patient survival through modulating dif-
ferent genes such as ZEB1 and WAC. In addition, it also
indirectly affects patient survival negatively, which means
that a higher expression of hsa-mir-148a suggests a shorter
survival time. This result is in agreement with the conclu-
sion in [34], who identified hsa-mir-148a as a risky micro-
RNA with a hazard ratio equal to 1.21. Similarly to [34],
we also identified that the hsa-mir-221 and hsa-mir-222
are risky microRNAs. These microRNAs negatively influ-
ence patient survival through modulating the expression
of their target genes; they also directly affect patient survi-
val negatively. In Panel B of Figure 6, genes and micro-
RNAs affect patient survival independently. Analogous to
findings in [34], hsa-mir-148a and hsa-mir-31 are risky
microRNAs. Panel C of Figure 6 shows the microRNAs
and genes consistent with the fundamental biological
mechanisms. Since the microRNAs in this figure are not
directly related to survival, many of them can be missed if
the analysis is performed using only microRNA data [34].
In this group of microRNAs, hsa-mir-29a, hsa-mir-34b,
hsa-mir-146b, hsa-mir-22, and hsa-mir-29b are risky
microRNAs; while hsa-mir-181d, hsa-mir-454-3p, and
hsa-mir-9 are protective microRNAs. Panel D of Figure 6
shows that hsa-mir-148a modulates patient survival nega-
tively; while genes that are not regulated by hsa-mir-148a
are not related to survival.

We employ the iNET approach as an alternative method
to identify target genes for microRNAs. For the group of
triplets with Bayes factors supporting the three-way model,
the casual model, and the zero effect model, we can set the
gene as one of the target genes of the microRNA in the tri-
plet. We compare the targets of the 437 microRNAs deter-
mined by this approach with the targets of microRNAs in
the microRNA.org database released in August 2010
(http://www.microrna.org/microrna/getDownloads.do).
Target predictions on the website are based on mirSVR
[35], which is a development of the miRanda algorithm.
Out of the 437 microRNAs, 222 microRNAs coincide
with target predictions in the database. We calculate the

Characteristics

Entire patient set

Patient set for the iNET analysis

No. of patients 454
No. of events 349
Age (median) 58
Age (p-value from Cox model)
Age (HR from Cox model)

<0.0001
1.033

280
248
57
<0.0001
1.031

Patient set for GGM analysis: Reduced sample size consisting samples having data for microRNA, mRNA, and clinical outcome
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Figure 5 Number of triplets in each group categorized by the network type selected via Bayes factors.

¥ Number of All Triplets

® Number of
Biologically
meaningful Triplets

percentage of overlap between our target prediction and
the target prediction by mirSVR method. The mean overlap
percentage is 56%.

Conclusion and discussion

In this article, we propose a network-based integrative
analysis of multi-platform genomic data using micro-
RNA, gene expression and patient survival time in a
TCGA GBM data. We used an objective Bayesian model
selection approach to select association networks that
are most supported by the data. We found that the net-
works that were well represented (most supported data)
are consistent with known biological mechanisms. Speci-
fically, among the models involving microRNA, the
number of triplets in the group supporting the causal
model was the highest (Figure 5) and is consistent with
the fundamental biological relationship that microRNA
modulates gene expression, which in turn affects patient
survival. Further, by integrating microRNA and gene
expression information, we have a better understanding

of the mechanism underlying the association between
these molecular features. In addition, we identified some
microRNAs that can potentially affect patient survival
which are missed by analyses which do not consider this
additional axis of information. Finally, we have devel-
oped freely available R-code to implement this method
and is available for download under the “Software” link
at the following website: http://odin.mdacc.tmc.edu/
~vbaladan/.

In this article we focused on association (undirected)
networks for integrating across platforms as opposed to
directed (causal) graphs. Directed graphical models, such
as Bayesian networks and directed acyclic graphs (DAGs),
have explicit causal modeling goals that require further
modeling assumptions. Our models infer network topolo-
gies that assume a steady-state network; however, some of
the gene-microRNA-clinical outcome networks may be
dependent on causal relations between the nodes, which
would require us to model data longitudinally to infer the
complete dynamics of the network. In addition, when the

Table 3 Number of microRNAs supporting the four graphical models

Model No. of microRNAs Prognostic microRNAs

Three-way 42 hsa-mir-148a, hsa-mir-221, hsa-mir-222

Independent 14 has-mir-221, hsa-mir-148a, hsa-mir-222, hsa-mir-146b, hsa-mir-31

Causal 437 hsa-mir-17-5p, hsa-mir-20a, hsa-mir-106a, hsa-mir-193a, hsa-mir-146b, hsa-mir-200b
microRNA 14 hsa-mir-31, has-mir-148a, hsa-mir-221, hsa-mir-146b, hsa-mir-222

The prognostic microRNAs are obtained from [34].
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A: Triplets supporting the
three-way model

hsa-mir-148a ZEB1

hsa-mir-148a

WAC

hsa-mir-33

hsa-mir-222

ZEBI1 hsa-mir-9*

hsa-mir-221 GPR124
WAC hsa-mir-221

C: Triplets supporting the
causal model

hsa-mir-29a BAT1

hsa-mir-34b

BAT1

hsa-mir-29b
hsa-mir-146b

FAH

BAT1

hsa-mir-9
hsa-mir-181d

hsa-mir-22
TMBIMI1 hsa-mir-454-3p

of an edge: the strength of the association.
A

Figure 6 Triplets with greatest Bayes factor supporting the three-way model (Panel A), independent model (Panel B), causal model (Panel
C), and microRNA model (Panel D) compared to the Null Model Red edge: positive association; blue edge: negative association; the width

B: Triplets supporting the
independent model

hsa-mir-148a POLRI1d
TOMILI1

hsa-mir-31

H2AFY2
hsa-mir-565

TMEM22 hsa-mir-31

hsa-mir-31 WAC

hsa-mir-31

hsa-mir-148a

GNGI12 hsa-mir-148a

D: Triplets supporting the
microRNA model

hsa-mir-148a EIF 31
.
CEPTI1
®

hsa-mir-148a

[ ]
hsa-mir-148a NECAB3

ZK§CAN3 hsa-mir-148a

hsa-mir-148a LOC72950

8
SNRP e hsa-mir-148
F i 14K
hsa-mir: 148.a ARPC2

EPB41LS5 hsa-mir-148a

number of platforms used for integrative analysis is more
than 2, the number of possible biological relationships
increases geometrically. For example, when the number of
platforms is 4 (or 5), the number of possible biological
relationships is 2= 16 (or 25 = 32), and so on. However,
only a small subset of these relationships are biologically
meaningful and interpretable. In these cases, we need to

use the biological knowledge as a priori information to
reduce the relationships (hence models), and then use our
framework for selection of networks from this candidate
space. We leave these tasks for future consideration.
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