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Abstract

Background: Advances in technology have led to the generation of massive amounts of complex and multifarious
biological data in areas ranging from genomics to structural biology. The volume and complexity of such data
leads to significant challenges in terms of its analysis, especially when one seeks to generate hypotheses or explore
the underlying biological processes. At the state-of-the-art, the application of automated algorithms followed by
perusal and analysis of the results by an expert continues to be the predominant paradigm for analyzing biological
data. This paradigm works well in many problem domains. However, it also is limiting, since domain experts are
forced to apply their instincts and expertise such as contextual reasoning, hypothesis formulation, and exploratory
analysis after the algorithm has produced its results. In many areas where the organization and interaction of the
biological processes is poorly understood and exploratory analysis is crucial, what is needed is to integrate domain
expertise during the data analysis process and use it to drive the analysis itself.

Results: In context of the aforementioned background, the results presented in this paper describe advancements
along two methodological directions. First, given the context of biological data, we utilize and extend a design
approach called experiential computing from multimedia information system design. This paradigm combines
information visualization and human-computer interaction with algorithms for exploratory analysis of large-scale
and complex data. In the proposed approach, emphasis is laid on: (1) allowing users to directly visualize, interact,
experience, and explore the data through interoperable visualization-based and algorithmic components,
(2) supporting unified query and presentation spaces to facilitate experimentation and exploration, (3) providing
external contextual information by assimilating relevant supplementary data, and (4) encouraging user-directed
information visualization, data exploration, and hypotheses formulation. Second, to illustrate the proposed design
paradigm and measure its efficacy, we describe two prototype web applications. The first, called XMAS (Experiential
Microarray Analysis System) is designed for analysis of time-series transcriptional data. The second system, called
PSPACE (Protein Space Explorer) is designed for holistic analysis of structural and structure-function relationships
using interactive low-dimensional maps of the protein structure space. Both these systems promote and facilitate
human-computer synergy, where cognitive elements such as domain knowledge, contextual reasoning, and
purpose-driven exploration, are integrated with a host of powerful algorithmic operations that support large-scale
data analysis, multifaceted data visualization, and multi-source information integration.

Conclusions: The proposed design philosophy, combines visualization, algorithmic components and cognitive
expertise into a seamless processing-analysis-exploration framework that facilitates sense-making, exploration, and
discovery. Using XMAS, we present case studies that analyze transcriptional data from two highly complex
domains: gene expression in the placenta during human pregnancy and reaction of marine organisms to
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heat stress. With PSPACE, we demonstrate how complex structure-function relationships can be explored.
These results demonstrate the novelty, advantages, and distinctions of the proposed paradigm. Furthermore,
the results also highlight how domain insights can be combined with algorithms to discover meaningful
knowledge and formulate evidence-based hypotheses during the data analysis process. Finally, user studies against
comparable systems indicate that both XMAS and PSPACE deliver results with better interpretability while placing
lower cognitive loads on the users. XMAS is available at: http://tintin.sfsu.edu:8080/xmas. PSPACE is available at:
http://pspace.info/.

Background
Advances in high-throughput techniques have led to an
exponential growth in the amount of information being
generated in life sciences. To understand and model the
underlying biology, scientists therefore have to often seek
out patterns in a sea of data. For such tasks, traditionally,
one of two types of approaches has been used: the first
involves statistical and algorithmic methods and the sec-
ond, visualization-based data analysis. The philosophies
underlying the aforementioned classes of techniques are
often conflicting; algorithmic methods are characterized
by attributes of automation and large-scale analysis. The
exclusive use of algorithms works when the patterns
being sought for are well understood and can be identi-
fied through precise step-by-step processing. On the
other hand, visualization-based methods take advantage
of cognitive strengths in pattern recognition and help in
exploratory analysis, hypotheses formulation, and sense-
making. In spite of their differences, it may be valuable to
take strengths of both approaches for creating novel dis-
covery paradigms and tools [1].
In this paper we describe the adaptation to biological

data analysis of a design approach called experiential com-
puting. Originating in the area of multimedia information
system design [2-6], experiential computing supports data
analysis by combining user expertise with information
visualization and algorithms in a tight loop. We also study
two biological data analysis systems based on this design
paradigm. The first of these, called XMAS, is directed
towards analysis of time-series expression data. The sec-
ond system, called PSPACE, is directed towards holistic
structure-function analysis of large groups of structures
through creating interactive maps of the protein structure
space. Each of these systems illustrate how design princi-
ples proposed by us can be translated for different types of
biological data. In the remaining part of this section, we
review the prior research directions in the above two bio-
logical areas and identify the distinctions and contribu-
tions of our research.

Microarray information visualization and analysis
We begin with the issue of exploratory analysis of
microarray data. In this context, a host of algorithmic
frameworks such as Bayesian belief networks, various

forms of unsupervised clustering, and machine learning
techniques have been proposed [7-9] and a number of
review papers that characterize the entire area are now
available (see for instance [8,10]). Many of these meth-
ods are significantly sophisticated both in terms of their
mathematical modeling as well as the underlying algo-
rithms. However, they function primarily as a “black
box” giving domain experts very limited control over
the analysis process. Consequently, within these meth-
ods, little support is made available for user-guided
exploration and hypotheses formulation. Given that the
end users are often domain specialists with years of
know-how, a purely algorithmic process may end up
underutilizing the available human knowledge, experi-
ence and contextual reasoning ability - all of which can
help explore alternatives unforeseen by the algorithm
designers.
A number of tools have been either explicitly designed

or can be adapted for visualization of microarray data.
In Clusterview [11], a heat-map was used to display the
gene expression pattern. Parallel-coordinate visualization
was employed in Timesearcher [12] and dendograms
were used as the primary visualization mode in HCE [13]
to present results from hierarchical clustering (other data
visualization modalities such as heat maps, parallel coor-
dinate displays, scatterplots, and histograms were also
supported). Since clustering is a common data mining
technique, several tools have been developed specifically
for visualizing clustering results, such as TreeMap [14],
Genesis [15], and TM4 [16]. In Time-series Explorer
[17], coordinated visualizations (e.g. scatter-plots) reflect-
ing changes in gene activity were used to explore the
data. In [14], the TreeMap paradigm was extended to
visualize and query microarray data using the Gene
Ontology (GO) framework. Numerous plug-ins have also
been developed for existing software systems such as the
BioConductor package for R [18], along with SAM [19]
and PAM [20] for Excel. Finally, software packages such
as ArrayTrack [21], Spotfire [22] and GeneSpring [23]
offer various computational and visualization tools for
microarray data analysis. Compared with algorithm-
oriented methods, visualization-based systems provide
intuitive representations of the results produced by a
specific algorithm and allow users to interact with the
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visualized results. However, these methods primarily
focus on visualizing the final results after an algorithm
has been applied and rarely support analysis by integrat-
ing the algorithms and user expertise in a closed loop.
Efforts that have attempted to integrate algorithms with
visualization include [24], where k-means gene-based
clustering and autoregression analysis were employed to
model regulatory interactions. Visualization was then
employed for finding unknown gene interactions. The
idea of combining statistical and visualization methods
was also utilized in the GeneVAnD system [25].

Visualization and analysis of maps of the protein
structure space
Mirroring the growth of transcriptional information, the
protein structure initiative and other related efforts,
have led to the availability of a large number of solved
structures. The presence of such, hitherto unavailable
amount of structural information can allow us to reason
about the very topology of structure space. Furthermore,
contextual and comparative analysis of proteins and
their structural neighbors may yield insight into struc-
ture-function relationships unavailable to isolated inves-
tigations or pairwise comparisons of protein structures
alone.
The theoretical foundations and algorithms for mapping

and analysis of collections of proteins to a low-dimensional
space involve either low dimensional projections of all-by-
all distance matrices of structures [26-28] or dimensionality
reduction of vector-space representation of proteins [29].
However, unlike the case of transcriptional data, there are
no dedicated software systems for visualization and analysis
of maps of protein structure space (hereafter abbreviated as
MPSS).

Experiential computing: integrating visualization,
algorithms, and the user
Supporting information processing, once it moves out of
the realm of precisely specifiable queries and enters the
exploratory domain requires facilitating the integration of
user-centric capabilities and powerful algorithms. Towards
this goal, in multimedia computing, the principles of
experiential computing were proposed to address the chal-
lenges of information exploration, assimilation, and retrie-
val in settings involving heterogeneous and multifarious
data [2-6]. Experiential computing argues for the design of
systems where users can apply their natural senses to
observe, interact with, and explore the data. We character-
ize experiential systems by the following properties: (1)
they are direct, in that they do not use complex metaphors
or commands either for presentation of the information or
for mediating interactions with it, (2) they support the
same query and presentation spaces so as to provide intui-
tive and direct user-data interactions, (3) they maintain

user state and context, (4) they present information inde-
pendent of (but not excluding) different data sources,
(5) they provide multiple semantic perspectives on the
data, both for presentation and interactions, and (6) they
seamlessly integrate powerful algorithmic analysis with
visualization and interaction.
Experiential computing shares many characteristics with

ideas proposed in visualization research, and consequently,
should be thought of as a paradigm that encapsulates
information visualization. The uniqueness of this paradigm
lies in the emphasis it places on facilitating human-
machine synergy by combining powerful algorithmic data
processing and analysis with interfaces that allow users to
leverage their perceptual abilities for exploration and
assimilation. This design principle is supported by the cog-
nitive fit theory [30], which suggests that users achieve
better task performance when they do not need to trans-
form the model through which information is presented
to a different mental model, in order to solve a task.
Furthermore, Perer and Shneiderman [31], have recently
argued the importance of incorporating (statistical) com-
puting in visualization for exploratory data analysis. While
the focus of this paper is on analysis of biological data, we
have also applied the experiential computing paradigm to
design information systems for storage and querying of
data from high-throughput drug screening [32-34].
In the following we describe the design principles of

experiential computing using two systems: XMAS
(eXperiential Microarray Analysis System) and PSPACE
(Protein Structure Space Explorer). Each of these sys-
tems represents advancements to the state of the art:
XMAS supports complex temporal pattern analysis data
through a combination of visualization and algorithms
while PSPACE is currently the only available system for
visualization and user-driven analysis of protein struc-
ture space maps. While these systems are crucial to our
narrative, our central goal is to use them as examples
that underline the principles of experiential computing
as a design paradigm for analysis of complex biological
information.

Methods and software implementations
Design principles and key design features of XMAS
The primary goal of XMAS is to promote exploration,
hypotheses formulation, and knowledge discovery by
integrating the user directly in an interactive and reflex-
ive visualization environment with powerful algorithmic
capabilities. An early version of XMAS was reported in
[35]. The latest version of XMAS has the following key
functional features:
1. A graphical user interface (GUI) that supports

direct point-and-click interactions with the data. The
GUI avoids the use of complex metaphors and com-
mands for visualization and interactions with the data.
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The GUI also minimizes the cognitive load on the user
by presenting user’s input queries with their correspond-
ing results in a unified query-visualization-interaction
space.
2. Persistence of user and data context since abrupt

context switching is known to degrade user performance
and experience.
3. A reflexive interaction environment, where data can

be observed from multiple, semantically correlated views.
Furthermore, changes in any view brought through purpo-
sive user manipulations are propagated, in real time, to the
other views. This allows users to intuitively perceive the
underlying relationships between the different semantic
views supported by the data.
4. Integration of external contextual information

through assimilation of a variety of supplementary data
sources such as pathway data from the Kyoto Encyclo-
paedia of Genes and Genomes (KEGG).
5. An integrated set of algorithmic operators including

operators for data clustering, trajectory-based analysis,
cross-data comparisons, and numerical and statistical
data analysis. These operators can be invoked by users
on-demand, based on their individual exploratory goals
and contexts, without adhering to a predefined proces-
sing workflow.
Most operators in XMAS are interoperable and can be

applied in a user-directed sequence. Thus, users can inter-
actively respond to the analysis outcomes and design their
own explorative paths to reason about the data. Next, we
describe the key components and the implementation
strategies of XMAS as follows: (1) the input data of
XMAS, (2) an overview of the XMAS user interface,
(3) operators for data preprocessing and integration, and
(4) operators for data analysis.

Input data for XMAS
XMAS accepts logically heterogeneous data types,
including time series microarray data, supplementary
data, and user-defined annotations. A time series micro-
array dataset is often composed of thousands of short
time series, each of which portrays the temporal trend
of expression level exhibited by a gene (or probe) during
the study. To increase the experiment reliability and
reduce the outlier effect, multiple samples are often
employed at each time point. A variety of supplementary
data is also accepted by XMAS. Examples of such data
include KEGG pathways [36] and probe annotations.
Additionally, XMAS also accepts user-defined annota-
tions to enrich data analysis. For example, a set of genes
can be annotated for further investigation.

The XMAS user interface
One of the key requirements of experiential computing
is a unified query and presentation space. The XMAS

interface pairs versatile and complementary data views
and visualizations with operators for analyzing and
exploring the data. In the following description, the
reader will observe that the key characteristics of the
XMAS user interface closely reflect the design principles
of experiential computing in that the interface is intui-
tive, reflexive, and contains a unified query-presentation
workspace. This minimizes context switching, which is
known to reduce the cognitive load on users [2].
Figure 1 shows the XMAS user interface, which

remains consistent throughout data analysis. The site-
level navigation links are listed horizontally at the top.
Beneath these links are two main visualization zones:
the primary zone on the left and the sidebar zone on
the right. The use of XMAS only requires clicking on
the interface to initiate different data operators or visua-
lizations. Users are granted full control in constructing
explorative paths that best suit their specific information
or sense-making needs. XMAS also maintains the state
and context in terms of both users and data context
during analysis. Such contextual information can be
saved and resumed (re-loaded) at the user’s command.
Finally, users can annotate genes considered to be
meaningful any time and use these annotations later.
Of the two main visualization zones in XMAS, the pri-

mary zone is used to display different views of the data.
These views are integrated with interoperable data analy-
sis operators. XMAS offers four main types of views as
shown in Figure 2. A user can switch among the first
three views using the three visualization operators
directly below the site-wide navigation links (Figure 1).
Detailed information of the underlying data in the pri-
mary zone can be obtained by a single click over the
visualized data of interest and will be shown through an
in-place window. Note that the comparative view
becomes valid when both a primary and a secondary
dataset are specified. This view shown in Figure 2(D) also
includes facilities of subtractive visualization of two data
sets, which displays the difference in the expression pro-
file for the same probe in both datasets. Additionally, a
“Secondary Dataset Visualization” option is also available,
allowing users to analyze separately the secondary dataset
loaded in XMAS. This allows a user to analyze both data-
sets separately thus allowing for a less crowded presenta-
tion space. The second important visualization zone,
called the sidebar zone contains a hover/drop navigation
bar, providing access to diverse data views and operators.
Figure 3 shows three main data views available in the
sidebar zone.

Operators in XMAS
XMAS supports different types of operators that can be
invoked by the user to perform a spectrum of tasks start-
ing from data loading and pre-processing to complex
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Figure 1 The XMAS user interface: a unified query and presentation space. Navigation options are listed horizontally at the top. The
primary visualization zone lies on the left and the sidebar zone on the right.

Figure 2 Visualization types in the primary presentation zone of the XMAS interface. (A) The trajectory visualization that groups probes
with similar discretized expression profiles, (B) The hybrid visualization that shows the expression profiles with the same discretized trajectory in
the same color; their mean expression profile is highlighted in bold; (C) The profile visualization that displays up to 1000 un-discretized
expression profiles, and (D) The comparative view of selected probes in two comparable datasets.
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data analysis. In the following, we describe each of these
classes
Operators for data loading, pre-processing and integration
Data loading operator: XMAS accepts both time series
microarray data (base-2 logarithmically transformed)
and supplementary data (e.g. probe annotations) in plain
text format. To load such data, a user simply selects the
folder and uses the load button to call the data loader.
Data preprocessing operators: Prior to visualization and

analysis, two parameterized preprocessing operators are
applied to the time-series microarray data: temporal aggre-
gation and trajectory discretization. The former operator
allows a user to “cut” each time series into segments of
specific length. It then represents each segment by the
aggregated mean or median expression level over all the
involved time points. Trajectory discretization transforms
gene expression levels to a set of discrete values using an
equi-width discretization with a user specified width value.
The result of this operator is a collection of discretized
time series or probe trajectories, each of which can be
loaded and visualized on-demand. All probes with expres-
sion levels falling into a specific bin at a given time point
form a trajectory node. Each node is connected to a single
parent node (from the previous time period) and one or
more child nodes (subsequent time period) as shown in
Figure 2. By clicking on a node, users can manipulate the
list of associated probes. The discretized trajectory

representation provides an overview of the entire dataset
and can often initiate serendipitous focal analyses. XMAS
also supports operations that switch between discretized
trajectories and non-discretized ones.
Data integration operators: These operators are fully

interoperable and can be categorized into the following
four types: (1) Probe-gene integrators: relate probes and
their expression profiles to gene data. (2) Probe-pathway
integrators: facilitate an awareness of individual probes
involved within multiple pathways, and multiple interact-
ing probes in a given pathway. (3) Probe-label integrators:
allow users to apply their domain knowledge and define
labels for certain probes. (4) Probe-trajectory integrators:
identify probes contained within a trajectory, and the
specific trajectory to which a probe belongs.
Operators for data analysis
Expression profile-based operators: These operators
enable users to discover similarities between probe-
based expression profiles by analyzing their discretized
trajectories. XMAS includes four such operators:
1. Trajectory shape-based analysis: this operator finds

similarly shaped trajectories regardless of the initial
expression level and clusters them together. Probes of the
same trajectory shape are essentially co-expressed at each
time point, there corresponding to one co-expression pat-
tern. An example of the application of this operator is
described in the case studies section.

Figure 3 Main data views in the sidebar zone of the XMAS interface. (A) Probe expression profiles sorted by volatility, (B) pathway
intersection graph, where blue represents the number of probes in the current context, yellow the number of probes in a given pathway and
orange the number of common probes, and (C) expression profile heat maps.
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2. k-means clustering: this operator puts probes of
similar non discretized trajectories into the same group
using the commonly used k-means clustering algorithm
[37]. The value of k is a user specified parameter and
the probe-probe similarity is measured by the Euclidian
distance between the two probes’ expression profiles.
3. Trajectory identity-based clustering: This operator

identifies the genes showing identical discretized probe
trajectories. Two trajectories are defined to be identical
if they have the same expression level at every time
point.
4. Trajectory shape-based filtering: These operators

identify trajectories that satisfy user-defined criteria such
as a specific expression characteristic, or involvement in
a specific pathway. Specific probes, labels and pathways
can also be selected and highlighted, isolated, or excluded
as part of the analysis. The interface for specifying the
desired trajectory allows the query to be visually specified
based on the change of expression at a time point relative
to the previous time point. This operator can also be
used to identify inverse relationships between trajectories
which can help in understanding gene co-regulating pat-
terns. The section on case studies illustrates the use of
this operator.
Cross-dataset comparison operators: Many microarray

experiments often require comparing the behavior of a
set of probes under different conditions to identify differ-
entially expressed probes (genes). Typically, one of the
conditions represents the control and the other the
experiment. XMAS offers two main methods for data
comparison: (1) A user designates one dataset as primary
and the other secondary. Once a focused probe set is
characterized, the user can load the counterpart in the
secondary dataset for comparison with the primary one;
or (2) a user calls the differentiation operator to compute
a differential dataset, in which the expression level at
each time point indicates the differences between a given
probe in the two datasets. This differentiated dataset can
then be analyzed to understand the comparative beha-
viors. Figure 2(D) illustrates the result of invoking this
comparison operator.
Operators for numerical and statistical analysis: To

assist in establishing the validity of observations, XMAS
provides a set of statistical and numeric operators.
These operators are also useful in cases where the com-
plexity of the data leads to difficulties in visualization or
when the data volume of the data complicates interac-
tive interactions. Specifically, XMAS includes four such
operators:
1. p-value based grouping evaluator: Given a back-

ground distribution, the lower the p-value, the more
unlikely that observing a set of probes associated with
each other (e.g., in the same cluster) is due to chance.
To illustrate computation of the p-value in XMAS,

consider a pathway annotation where N is the number
of probes under study and D is the number of probes in
a given pathway. Let n of the N probes be associated
with each other by a data operator and k out of these n
probes be in the given pathway. The p-value, denoted
by p in Eq.(1), of this association of n probes is defined
as:

p =

(
D
k

)(
N −D
n− k

)
(
N
n

) (1)

2. Precision and recall calculators: Given a set of
probes (or genes) identified through the application of
pathway-based trajectory filtering operators, precision
and recall are used to gauge the analytical power of
such operators by comparing the above set with the set
of probes (genes) known to be involved in a pathway.
3. Trajectory volatility: Let T= {e1, e2, ..., eN} represent

a discretized trajectory of N expression values ordered
by time. The volatility of this trajectory V(T) is calcu-
lated as shown in Eq.(2). The volatility can be an indica-
tion of interestingness. For example, differentially
expressed probes will generally have high volatility. It
can also be used to identify potentially erroneous probes
since their corresponding trajectories often exhibit
higher volatility.

V (T) =
∑

i=2...N
(|ei − ei−1|) (2)

4. Trajectory linear trend: Following the notation used
above, the linear trend of a trajectory L(T) is defined by
Eq.(3). Like volatility, linear trend can provide insights
into the relative interestingness of probes.

L (T) =
∑

i=2...N
(ei − ei−1) (3)

PSPACE: the protein structure space explorer
PSPACE is a web based software system for experiential
exploration of protein structure-function relationships
through low (two or three) dimensional maps of the
protein fold space, displayed as interactive scatter plots.
PSPACE allows for interactive visual data analysis and
user driven exploration of annotations from external
data sources (e.g. CATH [38] and SCOP [39]), which
may be mapped to attributes such as the color of points
in the MPSS. The software provides operators for pan-
ning, zooming, rotation, structure selection as well as
on-demand access to details, such as molecular struc-
ture, individual pairwise alignments and nearest-neigh-
bors analysis. Like in XMAS, the PSPACE interface is
reflective; brushing and linking operators interconnect
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different components of the visualization so that selec-
tion of a protein in one area is reflected in other visual
components, thus providing users with a consistent view
of the data set.
A complete MPSS would contain more than 83,000

structures. Current computational limitations make
interactive contextual analysis of the entire universe
impractical. Further, many solved structures have such
high degrees of sequence similarity that their inclusion
in such representations provides little comparative
value. Therefore, in PSPACE, the protein structure
space is represented through “reference sets” such as
PDBSelect25, a low redundancy sub-sampling of the
PDB containing high quality structures with less than
25% sequence identity. Such references attempt to con-
tain the extents of the known protein universe and thus
to serve as a useful “background” for contextual analysis
of particular structures.

The PSPACE data presentation and usage model
The indeterminate and contextual nature of structure
space relationships calls for exploratory data analysis
methods that leverage human perception for hypothesis
formulation and integrative reasoning. PSPACE seeks to
map complex and multifarious information sources to
intuitive, visual attributes in MPSS, and then permits users
to explore data according to their own (expert) sense of
what is interesting or informative. For example, PSPACE
interactively maps CATH and SCOP annotations to pro-
vide perspective on structure-function properties of a pro-
tein. Molecular structure views of individual structures
and pairwise alignments are also supported. Users of
PSPACE may:
• Map structures of interest within the context of

existing reference sets through upload of PDB files (for
novel structures) or lists of PDB IDs (for available
structures).
• Perform functional inference through analysis and

exploration of structural proximity of adjacent structures
annotated with protein properties (CATH and SCOP
annotations).
• Generate MPSS maps using different structural

alignment methods to provide alternate representations
of structure space (currently Dali, CE, and FATCAT are
supported).
• Analyze the nearest neighbors of any selected

structure.
• Determine spatial-structural metrics such as spatial

density and average relative distances between
structures.
• User-driven analysis of MPSS using interactive visua-

lizations. MPSS allow for broad and localized topological
analysis of structure-function patterns using interactively
mapped CATH and SCOP annotations to provide various

protein property views. Molecular structure views of indi-
vidual structures and pairwise alignments are also
supported.
Figure 4 depicts the components of the PSPACE user

interface, while Figure 5 shows a sample workflow indi-
cating how PSPACE may be applied to the analysis of
structures within the spatial context provided by the
MPSS. In Figure 5A, a particular chain is selected in a
region corresponding to the small protein class. Interest-
ingly, the small proteins appear to occur at the origin of
the MPSS, differentiating into other classes along the
axes (see Figure 4E). In Figure 5B, the class annotation
is replaced by more specific “fold” level of the SCOP
hierarchy, revealing protein fold families occupied by
the target protein’s structural neighbors. Figure 5C
shows the pairwise structure alignment between the tar-
get protein and a close neighbor from the metallothio-
nein fold. In Figure 5D, the MPSS has been annotated
by CATH architecture. It is also apparent that although
most of the visible chains are not found within CATH,
Pspace provides a framework for rapidly comparing
CATH and SCOP annotations for local MPSS regions
which is conducive to “bootstrapping” what information
is available into a coherent picture of the protein space
surrounding target chains.

Evaluation and results
In this section we present case studies involving the appli-
cations of XMAS on two different expression data sets
arising respectively from studies of the human placenta
during pregnancy and reaction of marine organisms to
heat stress. We also present three different examples of
how PSPACE can be used to generate hypotheses about
structure-function relationships. Finally, using XMAS and
PSPACE as specific realizations of the experiential design
paradigm, we present results from user studies that com-
pare the proposed paradigm with other software systems
for transcriptional and structural data visualization and
analysis. These studies are designed to measure both the
complexity and quality of user experiences as well as
the efficacy of each of the systems in attaining the goal of
the analysis.

Case study 1: Gene expression analysis at the human
maternal interface
The microarray dataset of this study captures the gene
expression at the human maternal interface over the
course of healthy pregnancy (Geo Accession Number
GSE5999) [40]. It includes 45000 expression profiles
(probes), representing around 39000 human gene tran-
scripts. Microarray experiments were carried out using
36 non-related placentas (or samples) between the 14th

and 40th weeks of pregnancy during 5 intervals: weeks
14-16 (6 samples), 18-19 (9 samples), 21 (6 samples),
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23-24 (6 samples), and 37-40 (9 samples). The first four
intervals correspond to the mid-gestation stage of preg-
nancy and the last one to the term stage. The complete
experimental protocol used to generate this data is
described in [40]. The following supplementary data
were integrated into XMAS to enrich the data analysis:
detailed probe annotations such as probe-gene corre-
spondence [41,42], Pathways from KEGG and Gen-
MAPP, and a list of differentially expressed genes
(DEGs) and human chromosome groupings [40].
We next describe how a biologist analyzed this dataset

using XMAS. The initial goal was to identify genes whose
expression level significantly reduce at term when the
placenta starts to shut down in preparation for delivery.

Having loaded the data to XMAS, the biologist selected
the median value of the involved samples to represent
each period and discretized the trajectories using a bin
width of 0.5. To identify genes showing a significant
reduction of expression level at term, the trajectory
shape-based operator was employed (Figure 6(A)). The
sidebar view (Figure 6(B)) presented an integrated visuali-
zation of the 26 specific probes of interest. The following
observations could be made about these probes: (1) they
had a relatively insignificant pathway involvement, (2) of
the 26 probes, 15 were labeled as DEGs; and (3) five of
the 26 probes originated on the 8th Chromosome, with a
p-value of 0.005. Based on this contextual information,
the biologist decided to look further into the five

Figure 4 PSPACE user interface. Screenshot of PSPACE user interface elements. (A) JMOL structure viewer allowing for 3D structural view of
any selected protein chain as well as visualization of aligned comparison between any two protein chains. (B) kNN view showing nearest
neighbor list with CATH and SCOP annotations for selected protein chain. (C) Data point view shows currently selected protein chains and
allows for search and selection through chain PDB IDs. (D) Protein chain detail view shows JMOL thumbnail images of currently selected protein
chains, previously selected structure and structure under the current mouse position. The classification tab of this interface allows for interactive
annotation of SCOP and CATH properties at each level of their respective classification hierarchies. The Compare Sets tab provides interface to
enable or disable visibility of protein chains for sets of user uploaded structures within the visualization. (E) Three dimensional, interactive
scatterplot view showing a FATCAT aligned PDB_SELECT25 reference set of 3,824 protein chains and annotated by SCOP class. This space can be
navigated through zoom, rotate, animated navigation to a selected structure, and magnification operators.
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chromosome-linked probes by clicking on the side bar
(Figure 6(C)) and observed that four of these probes were
identified as DEGs in literature [40]. The five probes
were next compared with the clustering results reported
in [40], and it was discovered that the four DEG-labeled
probes matched exactly with the highest scoring cluster
(Figure 6(D)). The balance of evidence thus indicated
that the dashed trajectory could represent a DEG. The
biologist therefore determined at this point that the non-
DEG probe might actually be differentially expressed and
decided to use this as a strong hypothesis and design
wet-lab investigations to verify it.
The reader may note that this study demonstrates cer-

tain important and desirable features of XMAS: the user
(a biologist with no computational background) could
integrate his domain expertise and choose a discovery
path that best suited his need without complex pro-
gramming or a steep learning curve. Further, the user
could not only verify results from previous studies but

also discovered a probe, which corresponded to a likely
DEG and was not recognized as such, in an earlier
investigation [43].

Case study 2: Cross-dataset analysis for the heat stress
experiment on porcelain crabs
This study analyzes the genetic response of porcelain
crabs reacting to heat stress over a period of 30 hours
(GEO Accession Number GSE7498) [44]. In the experi-
ment, crabs were placed in temperature controlled cool-
ers at 11°C (control group) or were thermally ramped
from 11°C to 30°C (heat stress group) over a 4 hour (h)
period. Following this, crabs were placed in a common
recovery aquarium at 11°C and sampled at 9 recovery
time points (number of individuals sampled at each time
point indicated in brackets): 0.5h (5), 1h (4), 2h (5), 4h
(3), 6h (4), 12h (5), 18h (5), 24h (5), and 30h (5). A total
of 13,824 probes were included on in-house microarray
chips. The complete experimental protocol is presented

Figure 5 Sample exploration workflow in PSPACE. The screenshots presented here show a progressive sequence of steps in a typical
workflow using interaction operators in PSPACE. The reference set used in this workflow is the same reference set shown in Figure 5. (A) The
FATCAT aligned and SCOP class hierarchy annotated reference set has a tetrahedron shape with mostly small proteins clustered at the apex of
the tetrahedron. Zooming in on the apex and annotating the view find clusters of small proteins and peptides. (B) Applying a filter operator to
select the SCOP fold hierarchy annotation, and a zoom operator to move closer to structures at the apex, we see that the clusters of small
proteins and peptides from the previous view are comprised of knottins, defensin -like and metallothionein chains. (C) Applying a selection
operator to two adjacent structures (1JfwA and 1z99A), followed by a JMOL comparison operator generates a JMOL view of the pairwise FATCAT
alignment of the two selected structures. (D) Applying the annotation filter operator and selecting CATH architecture shows that most of the
structures in this vicinity have not yet been classified by CATH, though for classified structures most appear to be of irregular, ribbon, and roll
CATH architectures.
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in [44]. The Porcelain Crab Array Database (PCAD) [45]
is directly linked to XMAS to provide an integrated data
view during analysis. The biological objective of this
study was to expose the genes that were impacted by the
heat stress right after the heat stress, i.e., at the first time
point (0.5h), especially the genes that were negatively
affected by the heat stress. We next described the main
steps a biologist took to identify such genes using XMAS
(Figure 7).
The user chose to preserve the original 9 time points

and used the median expression of all the involved sam-
ples to represent each time point. The bin size of 0.5
was used to discretize the data. Finally, the differentia-
tion operator was used to subtract the control data from
the stress data to facilitate cross-dataset comparison.
The data analysis was started by interacting with a node
corresponding to a negative differential at the 0.5h using
the visualization of discretized trajectories An in-place
window was activated, revealing that the node was asso-
ciated with 29 probes (Figure 7(A)). Next, these 29
probes were isolated using the isolation filter (Figure 7
(B)). Finally, the non-discretized trajectories of the 29
probes were obtained by calling the corresponding
operator (Figure 7(C)). The trajectories were found to

exhibit two principle patterns: one an increase in nega-
tive differential expression and the other pattern
remaining static at the 0.5h expression level. Since the
first pattern indicated that these genes were negatively
affected by the heat stress, the full list of genes exhibit-
ing this pattern was obtained by using the trajectory
shape-based filter (Figure 7(D)). Following this step,
detailed information was loaded for the visualized
probes (Figure 7(E)). Information from PCAD was used
at this point and it was established that many of the
probes were replicates for the same gene. Furthermore,
all the involved genes belonged to the ATP synthase
functional group. This finding was found to agree with
the results reported in [44].

Case study 3: Analysis of structure-function relationships
using PSPACE
We present three examples of protein annotation transfer
and function inference using PSPACE. These examples
demonstrate how PSPACE can be used to rapidly gener-
ate hypothesis about specific structure-function relation-
ships, and reveal that particular structural insights which
are dispersed across multiple data sources (e.g. Pfam,
SCOP, PDB) may be recognized immediately through the

Figure 6 Case study involving the human maternal interface dataset. (A) Using the shape-based operator to identify probes showing a
significant reduction of expression level at term; (B) the accompanying sidebar view; (C) the highest ranked cluster reported in [27]; and (D) the
probes identified at the end of the case study, one of which is previously unknown yet likely a DEG (differentially expressed gene).
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experiential interface and interactions of PSPACE. These
examples also illustrate how the experiential paradigm
facilitates the use of expert intuition to guide search and
analysis within the various protein data sources.
A relatively unambiguous example is given by the chain

3FH1.A, which has no known function, but occurs within
a dense MPSS cluster corresponding to the NTF-2-like
superfamily. While this information may be laboriously
gleaned from the metadata of the molecule, the relation
was immediately apparent within PSPACE (Figure 8A).
The k-nearest neighbors dialog for this chain showed
that the local region around 3FH1.A is enriched with
many structures of the SnoaL-like polyketide cyclase
family (not pictured). This assignment of 3FH1.A is sup-
ported by Pfam, which places 3FH1.A within a group of
SnoaL-like polyketide cyclases implicated in nogalamycin
biosynthesis (Pfam accession PF07366).
Another protein chain of unknown function, 3H92.A, is

found in a band of protein space inhabited largely by two
diverse superfamiles: the homeodomain-like and winged-
helix DNA binding domain folds (Figure 8B). Most of its
neighbors which are not members of these two groups are
nevertheless members of other folds with the common
function of nucleotide binding. Inspection of pairwise
alignments between 3H92.A and its neighbors revealed

that these structures align over a common core containing
an apparent nucleotide binding motif. While PDB meta-
data for this chain reveals no more than that it may bind
ATP, results from PSPACE were suggestive of a potential
role for 3H92.A as a component of a transcriptional regu-
lation complex.
The final example is 3LNO.A, a domain not listed by

CATH or SCOP and classified as having an unknown
function by both Pfam and GO. Its neighborhood in
PSPACE (Figure 8C) contains many redox-active pro-
teins as well as those involved in Fe-4S cluster assem-
bly. Glutamate oxidase, in particular, is found very
close to 3LNO.A, and several NifU C-terminal domain-
like chains, as well as nucleotide binding structures,
also occur in this vicinity. Inspections of individual
alignments show that the core of 3LNO.A is highly
similar to those from Fe-4S cluster assembly domains.
Taken together, these results suggest that 3LNO.A may
function as a module within a larger complex which
engages in assembly of specific Fe-4S cluster-contain-
ing proteins.

User studies
To examine the proposed design paradigm in terms of
cognitive impact as well as in comparative settings, we

Figure 7 Revealing probes exhibiting a negative expression differential shortly after heat shock treatment. Clockwise from bottom left:
(A) 29 probes were identified to have a negative expression differential at 0.5 hours, (B) an in-place window was used to isolate the 29 probes,
(C) the view of the 29 un-discretized trajectories, (D) the trajectory characteristic based operator was called to refine the probes, and (E) a view
of the resulting probes with supplementary data presented in the sidebar.
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conducted user studies of both applications. In these
studies, XMAS was compared with two other open
source non-experiential software systems for time series
microarray data analysis, STEM [46] and Time Series
Explorer [17] (TS-Explorer), while PSPACE was applied
to two sets of protein structure analysis tasks and com-
pared against either VisIT [47], a general visualization
program, or the website of the RCSB PDB [48].
STEM consists of an interactive, sortable, visual repre-

sentation of the output from its underlying clustering
technique. It facilitates cross-datasets cluster compari-
son, and supports the specification of probe subsets that
can be investigated within the context of the whole
dataset. However, unlike XMAS, STEM does not sup-
port unified query-presentation spaces, direct operators,
or a reflective interface. In TS-Explorer, coordinated
visualizations (a primary scatter plot alongside secondary
line charts) reflecting the activity of genes and changes
in gene activity are used as an interface to explore the
data. As in XMAS, users can directly interact with these

visualizations through a unified and reflective interface.
However, TS-Explorer supports limited analysis and is
geared for finding unsuspected patterns of temporal
activity.
The user study was designed to include both quantita-

tive and qualitative evaluations. Specifically, we used the
NASA Task Load Index (NASA-TLX) [49] to estimate
workload complexity across the systems. NASA-TLX
defines a mechanism to compute an overall workload
score based on weighted scores for six workload factors.
These six factors are: mental demand, physical demand,
temporal demand, effort, frustration, and performance.
The scores were mapped to an integer value between
zero and ten, with zero denoting the best score. Our
choice of TLX was prompted by the fact that the factors
considered by TLX are directly related to the cognitive
complexity of using complex systems like XMAS. More-
over, TLX has also been used by us to evaluate other
experiential systems [4,5] and this experience helped us
in appropriately designing and conducting the analysis.

Figure 8 Experiential function prediction using PSPACE. Screenshots of PSPACE user interface elements during experiential function
prediction. (A) Dense cluster of NTF-2-like chains surrounding 3FH1.A strongly suggests NTF-2-like designation. (B) Dispersed homeodomain and
“winged helix” clusters around 3H92.A. (C) The k-nearest neighbors dialog populated with the structural neighborhood of 3LNO.A. Redox-active
proteins in general and Fe-4S cluster assembly chains in particular are highly represented.
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XMAS
For XMAS, we designed seven information goal cate-
gories to mimic non-trivial pattern analysis tasks. These
included: (1) finding temporally relevant features (e.g.
identifying genes that increase or decrease their expres-
sion at specific time-points), (2) identifying genes that
exhibit a shared expression pattern, (3) analysis of cross-
data set features, (4) rapid validation of complex results,
(5) exploratory analysis, (6) finding genes that exhibit
periodicity in expression, and (7) identify genes that
exhibit specific yet non-trivial expression patterns (e.g.
genes showing stable expression in certain time periods,
and increased expression at a subsequent time period).
The categories were designed to provide cross-system

feature coverage and contained information analysis/
exploration tasks of varying difficulty. Each category con-
sisted of up to 6 instances of information goals. Ten
users with graduate level education were recruited and
each was assigned a set of five information goals using
Latin squares to avoid assignment bias. A brief tutorial
on all three systems was given to each participant before
they attempted their tasks. Mouse clicks, task completion
time and mouse pointer distance, were captured during
evaluation to assess access complexity or ease of use.
Each user was given a maximum of 4 minutes per task.
After participants finished attempting the assigned tasks,
they were asked to score the completeness and interpret-
ability of the results. In Figure 9, we present the compari-
son results quantified in terms of the NASA-TLX factor
scores, average time spent, and completeness and
interpretability.
As can be seen from Figure 9, XMAS outperformed

both STEM and TS-Explorer in terms of the overall TLX
scores. The significance of the TLX scores based on
ANOVA was F = 13.50 with p = 0.05. TS-Explorer was
found to have performed poorly across all scoring factors
with the exception of performance. Compared to XMAS,
users found STEM less mentally demanding, but more
frustrating and considered their performance worse within
STEM as compared to XMAS. In terms of average task
time also, STEM performed the best as tasks were gener-
ally completed with less interaction, less mouse movement
and in less time. However, the limited functionality of
STEM, led to poor user perception of the completeness
and interpretability of results obtained through it. XMAS
received relatively good scores across all factors, scoring
most poorly in the mental demand and effort factors. User
interviews conducted after the study indicated that due to
the novelty of its data presentation and interaction para-
digm, XMAS involved a steeper initial learning curve. This
observation is consistent with our experience in evaluating
other experiential systems [6]. However, in terms of com-
pleteness and interpretability, users rated XMAS signifi-
cantly better than both STEM and TS-Explorer.

PSPACE
A user study in conjunction NASA-TLX was used to
compare the subjective complexity of PSPACE with that
of alternate software packages. In order to account for
bias induced by increasing competency as experience is
gained, tasks were presented to participants in permuted
orders obtained from a balanced Latin square. All parti-
cipants had academic backgrounds in biology.
The tasks used for evaluating PSPACE are summarized

in Table 1. The first pair of tasks dealt with annotation
and exploration of MPSS to characterize protein fold
space in both global and local manners. For these tasks,
users were asked to describe the general layout and spa-
tial cohesion of either the primary protein classes (e.g.
the top of SCOP), or two highly populated superfamilies
(Immunoglobins and PH-domain superfamilies). As an
alternate to PSPACE, study participants used VisIT, a
desktop application which can be used for a large num-
ber of data-display operations (including interactive scat-
ter plots) [47]. The subsequent tasks compared analysis
modalities in terms of specific annotation tasks. The
third task required participants to place two structures
missing from either CATH or SCOP within their likely
groups at each level of the un-annotated hierarchy, while
the fourth had them assign potential functions to two
proteins with no known functions as listed in PDB or
other readily available sources. In addition to PSPACE,
participants employed the web site of the PDB itself,
which has been enhanced in recent years through inte-
gration with a large number of rich data sources, includ-
ing structure and publication meta-data, annotation
databases and pairwise structure alignments [48,50]. The
tasks thus compared analysis modalities based essentially
on either spatio-visual perception and exploration or tex-
tual analysis. Note that in practice such modalities are
likely to be employed in a complimentary fashion rather
than separately, as done in our study.
The population means (n = 7) of the TLX factor scores

are presented in Figure 10. It is immediately apparent
from the total height of the bars that PSPACE is generally
superior in terms of user experience as measured by
TLX. In particular, PSPACE was found to produce higher
confidence results than alternatives, while requiring sig-
nificantly less time and overall effort and inducing less
frustration. The difference between PSPACE and VisIT is
especially dramatic. Given that VisIT is a local applica-
tion dedicated solely to visualization, these differences
can be likely explained in terms of the domain-specific
features included in PSPACE. For example, the large
number of protein classification terms found at the lower
levels of CATH and SCOP require that the color table
for annotation of the MPSS be judiciously constructed
to emphasize highly populated groups at the expense of
the many singletons, lest important groups be assigned
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indistinguishable colors. PSPACE does this by relating
the gap between discrete color levels to the population of
a group; on the other hand a user of VisIT must make
manual adjustments to the color codes for every classifi-
cation term. Furthermore, loading and displaying MPSS
with VisIT requires significantly more time and effort
than in PSPACE.
The gap between TLX scores of PSPACE and PDB is

smaller than that between corresponding scores of
PSPACE and VisIT. This is because PSPACE and PDB
provide complementary information. For the tasks dealing
with “unknown annotations”, PSPACE was considered
consistently better than PDB in terms of effort, frustration,
performance and physical demand. This observation is

especially interesting given that most study participants
already had significant experience using PDB. These data
suggest that the experiential paradigm underlying PSPACE
more effectively harnesses a user’s cognitive capacity for
pattern recognition than the iterative and primarily textual
data presentation mode embodied by PDB. Furthermore,
the experiential use of MPSS in PSPACE provides users
with an immediate experience of inter-protein relation-
ships at multiple scales, augmented by nearest neighbors
search within a space capable of representing even
“twilight-zone” structural similarity with high accuracy.
This contrasts sharply with the “flat” representation found
in PDB, where a user must read entries and inspect large
numbers of high-scoring pairwise alignment partners in

Figure 9 Results from the user study involving XMAS, STEM and TS-Explorer. (A) The weighted scores based on the six TLX factors,
charted in the order of XMAS, STEM and TS-Explorer; (B) overall TLX scores; (C) average time taken to successfully conduct a task; and (D)
completeness and interpretability of the three systems. Lower TLX scores indicate better performance.

Table 1 Summary of tasks for TLX evaluation of PSPACE.

Task Alternate Time
Allocated

Task Description

Charting Protein
Classes

VisIT 10 min Users inspect MPSS and need to determine the rough locations of protein classes at the top of
CATH and SCOP hierarchies

Charting Protein
Superfamiles

VisIT 10 min As above, for two selected protein superfamiles:
(Immunoglobins and PH-domain)

Structure Classification RCSB PDB 15 min Users are presented with two unclassified proteins and have to assign them likely classifications
(PDB IDs 2cry.A, 2hvv.A)

Function Prediction RCSB PDB 15 min Users are presented with two proteins of unknown function and have to assign them likely
functions (PDB IDs 3fh1.A, 3lno.A)
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order to obtain a sense of a protein’s structural neighbor-
hood. Furthermore, pairwise alignment distributions of
individual chains are often not adept at conveying distant
relationships.

Discussion
The research presented in this paper seeks to address criti-
cal design challenges for developing systems whose goal
lies in facilitating analysis and sense-making with biologi-
cal data. The design paradigm of experiential computing,
which we espouse as a solution, seeks to combine ideas
from information visualization, algorithmic data proces-
sing, and interactive data analysis. Our premise is that
computers are inherently strong at large scale processing,
data storage and data integration, but lack the human
skills of contextual reasoning, hypotheses formulation, and
sense making. Experiential computing seeks to combine
the strengths of expert users with that of powerful visuali-
zation and algorithmic techniques.
Two concrete implementations (XMAS and PSPACE)

of the experiential computing paradigm are described in
this paper. In addition to providing practical software
solutions for data analysis in their respective domains,

these two systems highlight how the design principles of
experiential computing can be translated to build real-
world software. Using these systems as representatives,
we have conducted quantitative evaluations of the pro-
posed design paradigm and compared it to alternate stra-
tegies that currently exist. These evaluations were
designed to assess both the efficacies of the participant
systems (paradigms) as well as their usability. The results
obtained by us demonstrate the proposed design para-
digm to have important advantages. It is our hope that
the design challenges, principles, and solutions described
in this paper will facilitate the development of other sys-
tems that take advantage of human-computer synergy to
address complex data exploration and sense-making
tasks arising in life sciences.
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