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Abstract

posterior.

Gene duplication is considered to be a major driving force in evolution that enables the genome of a species to
acquire new functions. A reconciliation - a mapping of gene tree vertices to the edges or vertices of a species tree -
explains where gene duplications have occurred on the species tree. In this study, we sample reconciliations from a
posterior over reconciliations, gene trees, edge lengths and other parameters, given a species tree and gene
sequences. We employ a Bayesian analysis tool, based on the probabilistic model DLRS that integrates gene
duplication, gene loss and sequence evolution under a relaxed molecular clock for substitution rates, to obtain this

By applying these methods, we perform a genome-wide analysis of a nine species dataset, OPTIC, and conclude
that for many gene families, the most parsimonious reconciliation (MPR) - a reconciliation that minimizes the
number of duplications - is far from the correct explanation of the evolutionary history. For the given dataset, we
observe that approximately 19% of the sampled reconciliations are different from MPR. This is in clear contrast with
previous estimates, based on simpler models and less realistic assumptions, according to which 98% of the
reconciliations can be expected to be identical to MPR. We also generate heatmaps showing where in the species
trees duplications have been most frequent during the evolution of these species.

Introduction

Phylogenetics - traditionally a field primarily concerned
with inferring tree-like evolution of species - has
recently been superseded by phylogenomics - which also
includes the evolution of genomes and their functional
elements, in particular the genes, in relation to the spe-
cies evolution. This genomics evolution is for many
areas of biology, e.g., molecular biology, the final goal,
to which the species evolution then is a means. In parti-
cular, evolution of genes across species is a result of
evolutionary processes such as gene duplication and
loss, which in eukaryotes have been shown to be major
driving forces in gene evolution.
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Goodman et al [1] pioneered the field by introducing
the notion of a reconciliation of the evolutionary history
of a gene family, represented by a gene tree, with that of
the corresponding species, represented by a species tree.
In general, a reconciliation is a mapping of the gene tree
vertices onto the species tree. Each internal vertex of the
gene tree is either mapped to (1) a species tree vertex,
which implies that the gene tree vertex represents a spe-
ciation or (2) a species tree edge, which implies that the
gene tree vertex represents a duplication. Goodman et
al. used a parsimony approach and gave an algorithm
that finds the most parsimonious reconciliation (MPR),
i.e., the unique mapping that explains the difference
between the gene and species trees using a minimum
number of duplications [1].

Arvestad et al. [2] introduced the first probabilistic
model for gene evolution, which explains how a gene
family evolves inside a species tree by undergoing
operations such as gene duplications and gene losses.
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Later Arvestad et al. [3] proposed an integrated model
of gene duplication, gene loss, and sequence evolution,
under a molecular clock for estimating the posterior
distribution over gene trees. A Markov Chain Monte
Carlo (MCMC) based approach was used to get the
posterior distribution over gene trees, given sequence
data for a gene family and the corresponding species
tree. Akerborg et al. [4] improved the model by introdu-
cing a relaxed molecular clock for sequence evolution
integrated with gene duplication and gene loss. This fra-
mework efficiently computes the posterior over gene
trees. Nevertheless, they do not suggest how to obtain
reconciliations from the posterior distribution over gene
trees. Rasmussen et al. [5] recently introduced another
probabilistic approach to reconstruct gene trees inside
the species tree. The method uses a hill-climbing-based
approach, but it only considers MPR while computing
the likelihood of a gene tree. They supported this
assumption by a simulation study, where they simulated
reconciled gene trees for the species tree using indepen-
dently estimated duplication and loss rates [6], and
found that 98% of all generated reconciliations were
identical to MPR. Doyon et al. [7] reported similar
results, and concluded that the most likely reconcilia-
tion is either identical to MPR or very close to MPR. In
a recent study, Doyon et al. [8] using a simple birth-
death process and realistic but averaged gene duplica-
tion/loss rates, found that a very small subset of all
reconciliations needs to be explored in order to approx-
imate the posterior probability of the most likely recon-
ciliations. Akerborg et al. [4], on the other hand argued
that MPR provides an incorrect explanation of the evo-
lutionary history of gene families that have a higher
duplication rate.

Recently, genomes of different species have been pub-
lished with increasingly better coverage. For instance,
Heger et al. [9] published the Orthologous and Paralo-
gous Transcripts in Clades (OPTIC) database, which pro-
vides sets of gene prediction, gene families, and orthology
assignments for clades of amniotes, vertebrates, flies,
nematodes and yeasts. In this study, we extend the fra-
mework by Akerborg et al. [4], for computing the poster-
ior over gene trees, by proposing algorithms for sampling
reconciliations as well as computing the most likely
reconciliations on the vertebrates clade of OPTIC data-
set. This allows us to perform a genome-wide study on
the OPTIC dataset, in which posteriors over gene trees
and reconciliations are estimated. We augment the spe-
cies tree by adding a heatmap for each edge, illustrating
how frequently duplications occur on the edge, among
the gene families. We also compare the reconciliations
we obtain with the most parsimonious and conclude that
MPR leads to an incorrect reconciliation in 19% of
all reconciliations. Finally, we propose algorithms for
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sampling and computing the most likely realizations (a
finer reconciliation, that maps vertices of the gene tree to
specific time points on the species tree).

Methods

In this section, we review the DLRS model and some
algorithmic results from [4]. We then continue to show
how the latter can be extended so that reconciliation
and so-called discretized realizations can be sampled
from the posterior distribution, as well as maximum
aposteriori (MAP) reconciliations and realizations can
be computed. Finally, we describe how the difference
between two reconciliations can be quantified.

The DLRS model and notation

The DLRS model, proposed by Akerborg et. al. in [4], is
based on three submodels: a duplication & loss model
(DL), a substitution rate model (R), and a sequence evo-
lution model (S) (see Figure 1). The duplication & loss
submodel captures the evolution of a gene tree inside a
species tree with given divergence times. For a tree T,
we use V (1), E(T), and L(T) to denote the set of ver-
tices, edges, and leaves of a tree 7, respectively. Along
an edge e € E(S) of the species tree, gene duplications
and losses are modeled by a linear birth-death process.
The duplication & loss process has two rates that are
used, in the natural way, as rates for the birth-death
process. A relaxed molecular clock is assumed for the
substitution rate submodel. The gene tree edges have
substitution rates, which are independently and identi-
cally I'-distributed and parameterized by a mean and a
variance. The sequence evolution submodel, can be any
standard sequence evolution model, e.g., JTT, which is
the case of this study.

We use planted binary gene and species trees, i.e., the
trees can be obtained by adding a new vertex, a so-
called planted root, to a rooted binary tree and making
the planted root and the root adjacent. Moreover, let
0 = (A, u, m, v, M) be the parameters of the model,
where A is the gene duplication rate, 4 the gene loss
rate, m the mean and v the variance of the distribution
for sequence evolution rates across gene tree edges, and,
finally, M the parameters of the sequence evolution
model. Let T be a rooted tree and u € V (T). The sub-
tree of T rooted at u, T, is the minimal subtree of T
containing all descendants of #, including u. The subtree
of T planted at u, denoted T” is defined to be the sub-
tree rooted at u, T,, together with the edge from u to
its parent.

MCMC estimation of DLRS posterior over gene trees

We now describe the MCMC based framework
employed in [4], which uses the Metropolis-Hastings
algorithm for inference of the posterior over gene trees
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(A) Duplication Loss Model (DL)

A

Initial lineage Duplication

Speciation Loss

Process finished

(B) Substitution Rates (R)

Clock relaxation

Figure 1 The three submodels of DLRS are shown. (A) Evolution of a gene lineage inside a species tree edge is modeled by a birth-death
process. A gene lineage may come across a duplication event (represented by a green vertex), or a speciation event (represented by a black
vertex). Every time a gene lineage passes through a speciation event, it splits into two independent gene lineages. A gene lineage may also be
lost (represented by a red cross). After pruning all lost lineages, the final gene tree is obtained. (B) A relaxed molecular clock is employed to
achieve branch lengths. (C) Finally, a standard sequence evolution model generates sequences over the gene tree with branch lengths.

(C) Sequence Evolution (S)

ACTA...GA

AGTA...GT

and rate parameters, and we also show how it can be
extended to facilitate sampling of reconciliations from
the posterior distribution. A state of the MCMC chain
is a triple (G, /, ) where the components are: a gene
tree G with lengths /, and the parameters of the DLRS
model 8. We use P (-) to denote a probability and p(-) to
denote a probability density. Let (G, /, 6) be the current
state and let (G, [, &) be the proposed state in an itera-
tion of the MCMC algorithm. The acceptance probabil-
ity of the proposed state (G, I', &) is determined by the
ratio of the two probability densities p(G, [, 0|D, S) and
p(G, I, @|D, S), where D is gene sequence data and S is
the species tree. Since each such can be express using
Bayes equality, e.g.,

P(DIG, Dp(G,116,5)p )

p(G16|D,S) = P(DIS)

’

the denominators cancel and we obtain

p(G,1,6|D,S) _ PDIG, Dp(G,116,5)p6)
p(G,1I,0D,S) P(DI|G,I)p(G,116,S)p(6)
Here the numerator and denominator have the same

structure, so it is sufficient to describe how to compute
the former. First, the factor P (D|G, /) can be computed

using the dynamic programming (DP) algorithm pro-
posed by Felsenstein [10]. Second, the prior p(f) is cho-
sen so that it can be easily computed. Finally, the main
technical contribution of [4] is a DP algorithm for com-
puting the remaining factor p(G, /|6, S), and we continue
by outlining that approach.

Let us first define some key concepts. Let S’ be a dis-
cretized species tree where edges of the species tree S
have been augmented with additional discretization ver-
tices such that all the augmented vertices are equidistant
within an edge, see supplementary Figure 2 in additional
file 1.

Furthermore, we define a reconciliation to be a map-
ping of vertices of a gene tree V (G) to the vertices and
edges of the species tree, i.e., V (S) U E(S). A discretized
realization, or d-realization, o, is a mapping of vertices
of a gene tree G to the vertices of the discretized species
tree S

A realization never maps a vertex and its parent to
same vertex x € V (§’). We consider sound reconcilia-
tions and realizations, e.g., they never map a vertex of
the gene tree u closer to the root than the position to
which it maps its parental vertex, and ensures G is
properly embedded within S. Moreover, let o(u) be the
function defined as follows (i) for a leaf u € L(G), o(u)
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is the species tree leaf in which the gene that u repre-
sents can be found and (ii) for any internal vertex u of
G, o(u) is the least common ancestor of L(G,) in S.

Extending the posterior to d-realizations or
reconciliations

In order to extend the MCMC sampling from the pos-
terior over gene trees with lengths and parameters, i.e.,
p(G, I, 9|D, S) to sampling also over d-realizations, i.e.,
p(G, I, o, 0|D, S), it is sufficient to be able to sample
from p(c|G, I, 6, S). This conclusion follows from

p(G,1,,0D,S) =p (|G, 1,0,D,8)p(G,1,0|D,S) =p(«|G,1,0,5)p(G,1,0|D,S).

The analogous statement is true for a reconciliation, ¥,
that is, if we can sample from the reconciliation poster-
ior distribution p(YG, [, 6, S), then we can also sample
from the full posterior p(G, [, y 6|D, S).

In practice, sampling from the posterior extended with
d-realizations, p(G, [, o, 0|D, S), is perfomed by first
running the DLRS posterior MCMC so that k samples
(Gy, L1, 61), ..., (Gg I, 6;) are obtained and, then for
each i € [k], sample ¢; from p(e;|G; [, 0; S). The sam-
ples from p(G, [, o, 6|D, S) are, finally, (G, l1, a4, 61), ...,
(G b ot Or).

There is a unique reconciliation associated with each
realization and the posterior probability of a reconcilia-
tion is approximated by the sum of the posterior prob-
abilities of the d-realizations associated with it. Thus, we
can sample a reconciliation, from the posterior distribu-
tion over those, by sampling a d-realization, from the
posterior over those, and then outputting the associated
reconciliation, which easily can be computed. So by fol-
lowing the above described procedure and then, for
each i € [k], computing the reconciliation 7; associated
with ¢, we obtain k samples (Gy, l1, 1, 1), - (G Lo Yo
0x) from the posterior distribution over reconciliations
and other parameters.

The generation probability and d-realization sampling

In [4], a DP algorithm for computing the factor p(G, |6, S)
was described (Figure 2). The DP makes use of a table,
s(x, ¥, u), defined as the probability that when a single
gene lineage starts to evolve at the vertex x € V (§’), the
tree G” is generated together with the edge lengths / and,
moreover, the event corresponding to u occurs at ye V(S).
Let v and w be children of & in G, and let %, y, z be vertices
of V (§). Let p(r) be the probability that an edge of G
has rate r. Also, let £(x, y) be the time between vertices
x, y € V(S). The following recursions describe how the
table s can be computed:

1. If u € L(G) and x = o(u), s(x, x, u) = 1.
2. Ifx e V(S) and x # o(u), s(x, %, u) = 0.
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3. Ifxe V(S)\L(S) and x = o(u),

Z s(x,y,v) Z s(x,y,W) /

yeDyL(x) y€Dg(x)

s(x, x,u)

where D;(x) and Dg(x) are the descendants of left
and right child of x in §’, respectively.

4. If x € V (S) and z is a child of x such that
o (L(Gy)) € L(S,)and z is an ancestor of y,

_ (e, u)/t(xy))
s (%, x,u) = pu (x,2) & (x,2) s(zyu),
" Pt ) fefer)
where ¢(x,z) is the probability that a gene lineage
starting at x does not reach any leaf I € L(S,)\L(S.).
However, if y = z, the expression reduces to the fol-
lowing,

s(xy, ) = pu (% y)e (x, 7)o (p(w), ) /t(x, v))s (v v, u)

5.1fxe VSV (S),

s(x,x,u) =2\ ( Z s(x,y,v)) ( Z s(x,y,W)) /
yeD)\{x} yeD)\{x}

where D(x) is the set of descendants of x.
6. If x e V(8)\V (S) and z is the child of x in the
discretized species tree S,

p (L(p ), u) ft (x.y))

p (L(p (), u) t (2, y))s (2 y.u).

s(xy,u) =pu (x,2)

However, if y = z, the expression reduces to the fol-
lowing,

sy, u) = pu (%) (1o (), w)/t(x, y))s (v, v, u) -

In any reconciliation or d-realization, the planted root
of G is mapped to the planted root of S. The probability
that the gene tree G is generated is the probability that
when a single lineage starts at the root of S, the root of
G occurs somewhere below the planted root of S and
then the process continues and generates G. Hence,

PG 10,8 = > s(pyr),

yeD(p)

where p is the planted root of S, D(p) its descendants,
and r is the root of G. Consequently, the probability
that r is mapped to y € V (§) by a d-realization sampled
from all d-realizations according to the posterior prob-
ability distribution under observed G and /, is
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s(z,z,u) = ( Z s(x,y,v))( Z s(z,y,w))

vED L (x)

yEDg(x)
s(o(u),o(u),u) =1

(A)

i s(z,z,u) =0

_ pUpQu),u)/tix,y)
p(p(u),u)/t(z,y))

pl(p(u),u)/t(x,y))
pl(p(u),u)/t(z,y))

sCe,y,u) =pn(r,z)e(x,z) s(z,y,u). sy, y,u) =pn(x,z) s(z,y,u)

=

(E)

(F) #

s(x,x,u) =22 ( Z s(x,y, v)) ( Z s(x,y, n'))
yeD(x)\{x) yeD(x)\jx}

Figure 2 Recursion to compute p(G, /|6, S). Shows six possible scenarios of a gene tree evolving inside the species tree and how they relate
to dynamic programming calculations. (A) A gene tree lineage starts and reaches y, where y is a leaf of an extant species. (B) An internal vertex
of a gene tree cannot be mapped to a speciation vertex other than the least common ancestor of its children in species tree. (C) An internal
vertex of a gene tree may be placed on a speciation node (the least common ancestor of its children in the species tree). (D) A gene subtree
rooted at v, starts from x (a speciation vertex), duplicates at y and yields the subtree below. (E) A gene subtree rooted at u is placed at some
discretization point on an edge of species tree. (F) A gene lineage starts from a discretization point on an edge of species tree, and yields the
gene subtree rooted at u.

posterior probabilities of the d-realizations associated
with it. Thus, we can sample a reconciliation from the
posterior distribution, over those, by sampling a d-reali-
zation, from the posterior over those, and then output-
ting the associated reconciliation.

sovr) _ spwr)
PGCIO.S) s (par)

Similarly, if we know that a d-realization maps a vertex
ue V(G)toavertexx e V(S), then the probability that
a child v of u is mapped to y by a realization sampled

from all such d-realizations, according to the posterior ~€omputing the MAP d-realization

probability distribution under observed G and /, is

s (xy,u)
D zen@ S %2, 1) .

This clearly provides an algorithm for sampling d-rea-
lizations according the posterior probability distribution
under observed G and /.

Again, there is a unique reconciliation associated with
each realization, and the posterior probability of a
reconciliation is approximated by the sum of the

We now give recursions that imply a DP algorithm for
computing the MAP reconciliation. The following recur-
sions describe how m can be computed, and as appar-
ent, they are very similar to those above for s:

1. If u e L(G) and x = o(u), m(x, x, u) = 1.
2. Ifxe V(S) and x = o(u), m(x, x, u) = 0.
3. Ifx e V(S)\L(S) and x = o(u),

m(x, x, 1) = ( max m(x,y,v)) ( max m(x,y,w)),

yeDy(x) y€Dr(x)
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where D;(x) and Dp(x) are the descendants of left
and right child of x in §’, respectively.

4. If x € V (S) and z is a child of x such that
o (L(Gy)) € L(S,) and z is an ancestor of y,

o (l (p(u),u) ft (x,y))
p(L(p @, u)ft(z7))

where ¢(x,z) is the probability that a gene lineage
starting at x does not reach any leaf I € L(S,)\L(S,).
However, if y = z, the expression reduces to the fol-
lowing,

m (x, ¥, u) =pn (x,2) € (x,2) m (z, )2 u) ,

m (x,y,u) = pu (x,¥) e (x,7) p (1(p W), u) /£ (x,y)) m (y,y, ).

5.Ifx e V(S)\V(S),

max m@%@>(

m(x, x,u) = ZA(
yeD(x)\{x}

yeDN (. w)> '

where D(x) is the set of descendants of x.
6. If x € V(§)\V (S) and z is the child of x in the
discretized species tree S,

p(L(p @, u)ft(xy))

p (Lo, u)ft(zy) (z . u).

m(x,y,u) = pn (x,2)

However, if y = z, the expression reduces to the fol-
lowing,

m (x,y, 1) = pu (5 7)o (1(p(), w)/e(x, ) m(y, y, u).

We now get an expression for the probability of the
MAP d-realizations, very similar to that of p(G, /|6, S),

p(G, 1L alf,S) m(p,y,7)
max = max .
o p (G, l|91 S) yeD(p) p (G, l|91 S)

When computing the probability of the MAP d-
realizations, we can use the standard technique of back-
pointers, i.e., keep track of the subsolution that gives the
maximum value, and after the computation of m, trace the
backpointers in order to find a MAP d-realization.

Posterior probability of a given reconciliation

We now give recursions for computing the posterior
probability of a given reconciliation ¥, i.e., p(G, I, 116, S).
The reconciliation is a mapping from V (G) to V (S) U E
(S). Let R be the function from V (S) U E(S) to V (S)
defined by (i) for x € V (S), R(x) = x and (ii) for (x, y) €
E(S), R(x, y) is the set of internal vertices on the unique
path between x and y in S’

1. If u e L(G) and x = Au), s(x, x, u) = 1.
2. Ifxe V(S) and x = A u), s(x, x, u) = 0.
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3. Ifx e V(S)\L(S) and x = Au),

5 (X, %, 1) = ( Z s(x, v)) ( Z s(x, w)) ,
veDL(x)NR(y (v)) y€DRr(x)NR(y (w))

where D;(x) and Dg(x) are the descendants of left
and right child of x in §’, respectively.

4. If x € V (S) and z is a child of x such that
o (L(Gy)) € L(S;) and z is an ancestor of y,

p (L(p ), u) [t (x,7))

p(1(p ), u) Jt (= y))s (z.7.u),

s(xy,u) =pn (x2) & (x,2)

where ¢(x,z) is the probability that a gene lineage
starting at x does not reach any leaf I € L(S;)\L(S.).
However, if y = z, the expression reduces to the fol-
lowing,

s(x,y,u) = pu (x, y)e(x ) (Up(u), u)/t(x, y))s(y, v, u).-

5.Ifxe V(S)\V(S),

s(x,x,u) =2X ( Z s(x,y, U)) ( Z s(x,y, w)) /
YED(x)NR(y ())\(x) yeD(x)(x)NR(A(w))

where D(x) is the set of descendants of x.
6. If x e V(8)\V (S) and z is the child of x in the
discretized species tree S,

p (L(p ), u)/t(x,))

p(L(p ., u)jt(zy)) (zy,u).

s (xy, u) =pu (x,2)

However, if y = z, the expression reduces to the fol-
lowing,

s(x y,u) = pu (e Y)p(Up(u), w)/t(x, y))s(y, v, u)-

Finally,

PG LYIeS= Y

yeD(P)NR(y (1))

s(py,1),

where p is the planted root of S, D(p) its descen-
dants, and r is the root of G.

Comparing reconciliations

We are interested in quantifying the difference between
two reconciliations y and ¥ of G and S, in particular
between a reconciliation we have sampled from the pos-
terior and the MPR. To this end, we introduce two dis-
tance measures. First, however, an atomary distance
between objects in V (S) U E(S) is defined, so that for
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any vertex u € V (G), the distance between y(u) and
Y (u) is well-defined. We can then compute the two
reconciliation distance measures, namely (i) the maxi-
mum atomary distance over vertices of G, and (ii) the
average atomary distance over vertices of G (Figure 3).

Assume that a, b € V (S) U E(S). Let [ be the length of
the minimum length path of S that contains both 4 and b,
and letd(a, b) =1+ 1 - |{a, b} n V (S)|/2 - |{a, b} n E(S)|.
So, for instance, if a is a vertex and b is the edge to the
parent of 4, then d(a, b)) =1+1-1/2-1=05,and ifa =
(x, ps (x)) (where ps (-) denotes the parent function
in S) and b = (ps (x), ps (ps (x)), then d(a, b) =2 +1 -1 -
1 = 1. We are now ready to define our distances between
reconciliations: the max distance is

distancepax(y, y') = maxuev(cyd(y (u), y'(u)),

and the average distance is

Yuevic) 4 (v ),y W)

distanceas (v, v') = ="\ o\ L@ |

Data
See Supplementary Material & methods (additional file 1).

Results

We applied our methods to the vertebrates clade of the
OPTIC dataset, [9], consisting of the following nine ver-
tebrate species: Tetraodon nigroviridis (pufferfish),
Monodelphis domestica (gray short-tailed opossum),
Canis familiaris (dog), Mus musculus (house mouse),
Homo sapiens (human), Ornithorhynchus anatinus
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(platypus), Taeniopygia guttata (zebra finch), Gallus gal-
lus (red junglefowl), and Anolis carolinensis (carolina
anole). After basic filtering, 13812 gene families were
selected for analysis, see supplementary Material and
methods in additional file 1.

For each gene family, using the MCMC-based analysis
tool PrIME-DLRS [4][11], a posterior distribution was
obtained over gene trees, edge lengths and other para-
meters, given gene sequences and the species tree. The
expected number of duplications under the posterior dis-
tribution, given the gene families and the species tree,
was then estimated by sampling d-realizations and
recording the number of duplications occurring at any
specific discretization vertex. The number of duplications
for all discretization vertices of the species tree were then
normalized to 11 levels and each level was assigned a
specific color. So, the colored heatmap illustrates how
frequent duplications have been across the species tree.
We also investigated enrichment of functional categories
among the gene families with higher expected number of
duplications over an edge. Finally, the appropriateness of
MPR was investigated, by estimating the expected aver-
age and maximum distance, respectively, to MPR over
reconciliations sampled from the posterior; a few families
for which MPR was found to be unsuitable were analyzed
further.

Heatmaps

Heatmaps of the number of the duplications for the
posterior distribution over realizations were generated,
and provide a visualization of the duplication patterns
across the edges of the species tree, Figure 4A.

0.5

two reconciliations that differ in the placement of two vertices.

Figure 3 Computing distance between two reconciliations. lllustrates the computation of maximum distance and average distance between

Distance,,, =1
Ly Distance,,, = (1+0.5 +0+0)/4
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Figure 4 Heatmaps of duplications across the discretized edges of the species tree. (A) The heatmap is generated after normalizing the

duplications across the tree using eleven different colors. (B) The heatmap is generated after normalizing the duplications across the tree
without including the common ancestral edge. (C) The heatmap is generated by normalizing the duplications for each edge of the species tree.
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The highest number of duplications were observed at
the common ancestral edge of all the species. This
could be interpreted as support of the 2R hypothesis
proposed by Ohno [12], which suggests that the gen-
ome of early vertebrates underwent two whole genome
duplications. An alternative explanation could be that
incorrect gene trees in the posterior distributions give
rise to duplication that reconciliations tend to place
close to the planted root. In order to test the latter, we
performed a Maximum aposteriori (MAP) analysis
based on only gene families with MAP gene trees hav-
ing posterior probability grather than or equal to 0.5.
Heatmaps based on this data, supplementary Figure 1
(supplementary results in additional file 1), showed the
same trend.

The common ancestral edge of all the species except
Puffer Fish had the second highest number of duplica-
tions among all the edges of the species tree as shown in
Figure 4A. In order to study the more recent lineages
more closely, we normalized the duplications across the
species tree without the discretization points of common
ancestral edge, see Figure 4B. As the figure shows, the
common ancestral edge of Human, Dog, and Mouse as
well as the edge leading to Zebra Finch have comparatively
higher frequencies of duplications. The higher frequencies
of duplication on the edge leading to Boreoeutheria

(ancestral edge of Human, Dog and Mouse) was also
reported recently by Boussau et al [13].

We decided to explore the families that contribute to
these duplications. Tools for performing enrichment
analysis allows analysis of extant but not ancestral spe-
cies and, moreover, when studying duplicating genes,
choosing representative genes in extant species is com-
plicated by the fact that the number of representatives
can be varied. We, therefore, decided to work with gene
families, rather than genes, and implemented this by
using a single representative gene for each family. We
selected the representative gene for an edge if its gene
family were found to be likely to duplicate at least once
on the edge. This set of genes was then annotated using
the Functional Annotation Clustering (DAVID) [14,15]
tool given the background of all the representative genes
of the gene families of the dataset. For the common
ancestral edge of Human, Dog, and Mouse, the follow-
ing clusters had a Benjamini-Hochberg false discovery
rate less than or equal to 0.01: ATP Binding, Chromo-
some Segregation/Mitosis, ATPase activity coupled to
movement of substances, Drug Metabolism, Helicase
Activity, Mitotic Sister Chromatid Segregation, Fatty
Acid Metabolism/Tryptophan Metabolism and Death-
like Domain. Using the same criteria for the ancestral
edge of Zebra Finch, gave the following clusters: Transit
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Peptide, Mitochondrion, ATP Binding, Flavoprotein and
Nucleotide Phosphatebinding region.

In order to know how the frequency of duplications
vary across each edge of the species tree, the heatmap
was also normalized across edges (see Figure 4C). In
most cases, there is a unimodal behavior of an indivi-
dual edge. This may be explained by the relatively low
number of discretization vertices and also that the signal
in the sequence data may not be strong enough to
reveal a more complex trend. For individual gene
families, however, more complex trends are exhibited.

Distance from MPR
We computed two distances, i.e., the average distance
and maximum distance from MPR, over the posterior
distribution. The distribution of average distance
between the sampled reconciliations and the MPR is
shown in the Figure 5. The MPRs dominates the distri-
bution of sampled reconciliations with approximately
81% of all sampled reconciliations. We computed the
expected distance for posterior reconciliations of indivi-
dual gene families to MPR, in order to identify gene
families with a clear signal for early duplications, i.e.,
early in the sense of being inferred as significantly ear-
lier than according to MPR.

The expected distance of a family was estimated as the
expected average distance to MPR over reconciliations
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sampled from the posterior. The results showed that a
number of gene families have a higher expected distance
from the MPR, which means that MPR does not explain
the true evolutionary history well in those cases. About
13% of all families had expected maximum distance
equal to or greater than 0.5. The distribution of the
expected maximum distance and the expected average
distance of the gene families from the MPR are shown
in Figure 6.

We selected four gene families for further analysis. They
had a clear signal for early duplications and at least one
gene from every species of the dataset. One of the four
selected gene families was Short chain dehydrogenase. It
has a clear signal in favor of non-MPR reconciliations as
shown in Figure 7. Most of the reconciliations sampled for
this family had average distances between 0.5 and 0.6,
comprising around 74% of all sampled reconciliations. For
this gene family, not a single reconciliation sampled was
identical to the MPR. This gene family is annotated as
steroid hormone biosynthesis.

Conclusion

We have presented methods for sampling and computing
MAP reconciliations as well as d-realizations. Using these
methods and the OPTIC dataset, we have provided the
first biologically realistic estimate of the appropriateness
of MPR. It was found that one can expect approximately
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Figure 5 Average distance from MPR across gene families. X-axis represents average distance of a reconciliation from the MPR. Y-axis
represents the percentage of count of reconciliations having a certain average distance from the MPR
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Figure 6 Expected distances from the MPR for the 13812 analyzed gene families. (A) Distribution of the expected maximum distance to
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Figure 7 Average distance from MPR for the gene family Short chain dehydrogenase. (A) Distribution of the average distance to MPR over
10000 sampled reconciliations. (B) The pie chart shows the shares of reconciliations having a certain average distance from the MPR. The labels
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19% of reconciliations to be different from MPR. Also,
13% of gene families can be expected to have a maximum
distance of greater than or equal to 0.5 to the MPR.
Among other reasons, this is interesting because some
gene tree reconstuction algorithms evaluate gene trees
using only MPR. We have also shown how, based on our
methods, heatmaps can be constructed that illustrates
how frequent duplications are across the species tree and
that for vertebrates such a strategy identifies two recent
edges as having hosted frequent duplications. Finally,
enrichment analysis can identify functional classes
among gene families that are duplicated on a specific spe-
cies tree edge.
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