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Abstract

Background: High-content screening (HCS) has become a powerful tool for drug discovery. However, the
discovery of drugs targeting neurons is still hampered by the inability to accurately identify and quantify the
phenotypic changes of multiple neurons in a single image (named multi-neuron image) of a high-content screen.
Therefore, it is desirable to develop an automated image analysis method for analyzing multi-neuron images.

Results: We propose an automated analysis method with novel descriptors of neuromorphology features for
analyzing HCS-based multi-neuron images, called HCS-neurons. To observe multiple phenotypic changes of
neurons, we propose two kinds of descriptors which are neuron feature descriptor (NFD) of 13 neuromorphology
features, e.g., neurite length, and generic feature descriptors (GFDs), e.g., Haralick texture. HCS-neurons can 1)
automatically extract all quantitative phenotype features in both NFD and GFDs, 2) identify statistically significant
phenotypic changes upon drug treatments using ANOVA and regression analysis, and 3) generate an accurate
classifier to group neurons treated by different drug concentrations using support vector machine and an
intelligent feature selection method. To evaluate HCS-neurons, we treated P19 neurons with nocodazole (a
microtubule depolymerizing drug which has been shown to impair neurite development) at six concentrations
ranging from 0 to 1000 ng/mL. The experimental results show that all the 13 features of NFD have statistically
significant difference with respect to changes in various levels of nocodazole drug concentrations (NDC) and the
phenotypic changes of neurites were consistent to the known effect of nocodazole in promoting neurite
retraction. Three identified features, total neurite length, average neurite length, and average neurite area were
able to achieve an independent test accuracy of 90.28% for the six-dosage classification problem. This NFD module
and neuron image datasets are provided as a freely downloadable MatLab project at http://iclab.life.nctu.edu.tw/
HCS-Neurons.

Conclusions: Few automatic methods focus on analyzing multi-neuron images collected from HCS used in drug
discovery. We provided an automatic HCS-based method for generating accurate classifiers to classify neurons based
on their phenotypic changes upon drug treatments. The proposed HCS-neurons method is helpful in identifying and
classifying chemical or biological molecules that alter the morphology of a group of neurons in HCS.
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Background
To investigate the organization of neurons in various
brain tissues including their activity and function, scien-
tists typically examine neural images to classify distinct
neuron morphologies [1]. In high-content screening
(HCS), automated image analysis has become necessary
to identify interesting samples and extract quantitative
information by microscopy [2]. For rare phenotypes that
are nonetheless recognizable by eyes, a researcher can
generate a classifier to recognize cells with the phenotype
of interest [2]. Recently, HCS-based methods have been
used to quantify neuronal phenotypic changes which cor-
relate to multiple treatments or drugs as illustrated in
Table 1. Previously, the single-neuron neuromorphology
was considered difficult because of tightly packed posi-
tioning and huge spanning arbors of neurons [1], [3].
However, the variation of neuronal morphology to a
treatment effect should be considered as a global pheno-
typic change affecting a large number of neurons rather
than only one specific neuron. The image containing
multiple neurons is named a multi-neuron image. Thus,
the multi-neuron based HCS plays a crucial role for drug
treatment analysis [3-10]. In this study [8], the appropri-
ate medication for Huntington’s disease was identified.
Table 1 lists the functions of major methodologies pub-

lished since 2010. The neurite-related features such as
neurite length are most frequently used for quantifying the
neuromorphology changes in specific cell culture. The
soma-related features such as soma area are at rank 2, and
the branch-related features such as branch complexity are
at rank 3. The quantification analysis for single-neuron
phenotypic changes is successfully demonstrated in the

studies [11-17]. In additional, classification analysis was
implemented in the studies [14,16,17] and regression ana-
lysis is also proposed in the work [17]. For analyzing HCS-
based multi-neuron images [3-10], automatic feature
extraction is considered as an essential technique. The
classification analysis was only applied in [10] apart from
neuron feature descriptor (NFD), the generic feature
descriptor (GFD) was verified to provide a promissing
result [10]. Surprisingly, the regression analysis is out of
attention in multi-neuron-image-based HCS.
In this study, we develop an automated analysis method

with novel descriptors of neuromorphology features for
analyzing HCS-based multi-neuron images, called HCS-
neurons. At first, we extend our previous work [3] to
propose a neuron feature descriptor which consists of 13
features and is able to effectively quantify neuronal mor-
phology changes. To make a comprehensive study on the
collective phenotypic changes, we propose a generic
feature descriptor consisting of several promising image
features by utilizing pixel intensity, image moment, and
texture information. The HCS-neurons method achieves
the automatic feature extraction using an extended version
of NeurphologyJ [3], feature analysis using ANOVA analy-
sis and regression analysis, feature selection using an opti-
mization approach based on an inheritable bi-objective
combinatorial genetic algorithm (IBCGA) [18], classifier
design based on support vector machine (SVM) [19] with
the selected features.
To evaluate HCS-neurons, we treated P19 neurons with

nocodazole (a known microtubule depolymerizing drug)
at six concentrations ranging from 0 to 1000 ng/mL. The
multi-neuron images treated using 6 different nocodazole

Table 1 Methodologies for drug analysis of HCS neuron images since 2010

Reference
(year)

Automatic feature
extrction

Multineuron
supporting

Classification
analysis

Regression
analysis

Type of
features1

Features extraction
software

[11] (2010) No No No No snb Free

[4] (2010) Yes Yes No No snbc Commercial

[5] (2010) Yes Yes No No sn Unavailable

[12] (2010) Yes No No No n Free

[13] (2010) No No No No nb Free

[6] (2011) Yes Yes No No snbc Free

[7] (2011) Yes Yes No No snc Free

[3] (2011) Yes Yes No No snc Free

[8] (2011) Yes Yes No No sn Unavailable

[14] (2011) No No Yes No snb Unavailable

[15] (2012) Yes No No No sn Unavailable

[9] (2012) Yes Yes No No snbc Unavailable

[16] (2012) No No Yes Yes snb Free

[17] (2013) No No Yes No snbc Free

[10] (2013) Yes Yes Yes No i Free

HCS-Neurons Yes Yes Yes Yes snbci Free
1Type of features: s = Soma-related, n = Neurite-related, b = Branching-related, c = Number of neuron, i = Generic image descriptor
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drug concentrations (NDC) were selected as our bench-
mark because nocodazole has a well-known ability to
directly affect neurite morphology [20-23]. The identified
phenotypic changes of neurites were consistent with the
known effect of nocodazole in promoting neurite retrac-
tion. Three identified features, total neurite length, average
neurite length, and average neurite area can achieve an
independent accuracy as high as 90.28% for the six-dosage
classification problem.

Methods
The proposed HCS-neurons method using the quantifi-
cation and classification strategies for HCS of multiple
neuron phenotypic changes response to 6 dosages of
NDC is described. The multi-neuron images are prepro-
cessed in the same way as reported in the previous work
[3]. The binary images are generated for establishing the
NFD and GFDs datasets. Additional gray-scaled images
are necessary for some GFD features. We perform stan-
dard statistical analyses using ANOVA and regression for
the NFD features which can directly show easily interpre-
table changes in neuronal morphology. To identify the
descriptors which correlated to phenotypic changes upon
NDC variations, the SVM-based classification analysis
was used to evaluate both datasets. Finally, the IBCGA
method was applied to select a small set of features by
optimizing SVM prediction performance.

Dataset
Nocodazole is a known microtubule depolymerizing
drug which can lead to impaired neurite development.
The image acquisition procedure used here is the same
as described in [3]. For self-completeness, the procedure
is concisely described below. Embryonic carcinoma P19
cells were maintained at 37°C in 5% CO2 in minimum
essential medium supplemented with 2 mM glutamine,
1 mM sodium pyruvate, and 10% (v/v) fetal bovine
serum. The drug experiment was performed on 96-well
plates. Each well on the plate was pre-spotted with
800 ng of proneural gene (Ascl1) expressing plasmid
and 0.4 μL of Lipofectamine 2000 in a total of 50 μL
serum-free minimum essential medium. After 20 minutes,
16 000 P19 cells in differentiation medium (minimum
essential medium supplemented with 2 mM glutamine,
1 mM pyruvate, 5% fetal bovine serum) were added to
each well and maintain in a 37°C, 5% CO2 incubator.
72 hours post-transfection, P19 cell cultures were treated
with DMSO (control) and various concentrations of noco-
dazole (10, 50, 100, 200, and 1000 nM). After 24 hours of
incubation, drug-treated cells were fixed with 3.6% formal-
dehyde in PBS. Fluorescence images were acquired with
an Olympus IX-71 inverted microscope equipped with a
CoolLED fluorescent light source (400 nm and 490 nm
wavelength modules) and a Hamamatsu ORCA-R2 camera

(6.45 μm × 6.45 μm pixel dimensions). Chroma BFP-A-
Basic and Olympus U-MWIBA3 filter sets were used to
image DAPI and DyLight488 fluorophores, respectively.
Olympus Plan Apochromat objective lenses (10x 0.4 N.A.
or 60x 1.35 N.A.) were used to collect the images.
A total of 216 images called Noco216 were analyzed to

examine the morphological adaptation of neuron cells to
the amount of drug. Images were divided into 6 classes
(each class had 36 images) based on the dosage of noco-
dazole applied. These 216 images were all multi-neuron
images since they contained hundreds of neurons. Both
ANOVA analysis and regression analysis are based on
NFD extracted from images in this dataset. To define the
classification problem, we implemented a stratified ran-
dom sampling to separate 2/3 of the image dataset as a
training set called Noco144 and 1/3 of image dataset as a
testing set called Noco72. The summary of these datasets
is listed in Table 2. Typical neuron images from each
class (i.e. each different nocodazole concentration) are
shown in Figure 1. It is readily observable that neuronal
morphology exhibited dramatic difference at different
dosage of nocodazole.

Neuron Feature Descriptor (NFD)
The standard multi-neuron image descriptors from Neur-
phologyJ [3] were used which include somaCount,
somaArea, neuriteLength, neuriteArea, attachmentPoint#
and endingPoint#. The features somaCount and somaArea
are the numbers of soma and summation of all soma area
in a multi-neuron image, respectively. The features neuri-
teLength and neuriteArea represent the total length of all
neurites combined together and summation of the entire
area covered by all somata in an image, respectively. The
feature attachmentPoint# describes the total number of all
neurite attachment point where neurites connect to a
soma appeared in an image. The feature endPoint#
describes the total number of all neurite end point
appeared in an image. In addition, we developed an addi-
tional further called branchPoint# which is determined by
using a 3x3 mask consisting of all possible 3x3 branch pat-
terns. Each 1-pixel-wide neurite was automatically
matched to one of these patterns to characterize the
branch points.
Features measuring the cumulative value of all cells (e.g.

total length of all neurites), are sensitive to cell counts, e.g.
a reduced cell density will change the phenotypic readout

Table 2 Summary of all datasets in this research
separated by six-dosage of Nocodazole concentration

Concentration (ng/mL) 0 10 50 100 200 1000 Total

Original 36 36 36 36 36 36 216

Noco144 24 24 24 24 24 24 144

Noco72 12 12 12 12 12 12 72
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even when cells are not treated with drugs. Therefore, the
second part of NFD includes Avg_somaArea, Avg_neurite-
Length, Avg_neuriteArea, Avg_attachmentPoint#, Avg_-
endingPoint#, and Avg_branchPoint# which were
computed by dividing all of the standard features (except
somaCount) by somaCount. The standard descriptors
describe global changes of multiple-neuron neuromor-
phology patterns whereas the normalized values approxi-
mate a local descriptor for each single neuron in the
multi-neuron image. Summaries of the analyzed descrip-
tors are listed in Table 3.

Generic Feature Descriptor (GFD)
The Generic feature descriptor (GFD) consists of several
well-known image descriptors which have been used to
classify images in many applications and is included in
HCS bioimage tools [24-27]. A summary of these features
including references and parameters is given in Table 4.
However, these descriptors are not popular in the research
of neural image analysis (see Table 1) and have never been
proposed as tools to investigate neuronal phenotypic
changes. Part of the reason may be due to difficulty of
implementation. For example, contour-based descriptors

such as the fourier transform and bending energy [28]
require the development of neuronal contours which is a
difficult task due to the intersection of spanning arbors of
neurons. These contours then require additional single-
neuron segmentation to process the multi-neuron images.
Thus, in this study, we focused on methods that could
easily be implemented without the prerequisite of the seg-
mentation process and readily describe characteristic of
multiple-neuron neuromorphology.
Effective shape descriptors based on orthogonal polyno-

mial moments include Zernike Moment [29], Legendre
Moment [30] and Tchebichef Moment [31] which are
extracted with respect to 2nd, 4th, 8th and 16th moment
orders. In additional to moment based descriptors, the
Generic Fourier method [32] which is another shape
descriptor based on the Fourier transform of polar coordi-
nates has also been implemented. All shape-based GFDs
are calculated using binary images generated from the pre-
processing procedure of NeurphologyJ.
Additional outstanding texture-based descriptors con-

sisting of Haralick, Gabor and Daubechies are also
designed. The Haralick descriptor is based on a spatial
relationship evaluated from a gray level co-occurrence

Figure 1 Examples of neuron images with increasing Nocodazole concentrations [0,10,50,100,200,1000] (ng/mL) in order.
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matrix (GLCM) of gray-scaled images [33]. In [34] Gabor
and Daubechies successfully used this feature to predict
protein location. The Gabor descriptor uses a mean and
standard deviation of gray-scaled image convoluted by
the Gabor filter [34]. Daubechies is an averaged energy
value calculated from the 10 levels of wavelet decomposi-
tion of gray-scaled image using the Daubechies4 wavelet
function [34].

Statistical analysis - ANOVA and regression
The six sets of 36 multi-neuron images generated using
different nocodazole drug concentrations were statisti-
cally analyzed using 1-way ANOVA and regression ana-
lyses to determine whether there were any statistically
significant differences amongst different drug levels for
each of the thirteen tested features. The statistical analy-
sis is performed using the SAS/STAT software, Version
4.3 (4.3.0.12251) of the SAS System for Windows.
Each of the 13 features was tested for normality and

equal variances (homoscedasticity) using the Bartlett’s
test in SAS/STAT. Those features which were found to

satisfy the assumptions of the standard 1-way ANOVA
were then analyzed with a post-hoc test using the Tukey
honestly significant difference (HSD) test. Those features
that were found to be heteroscedastic with significant
differences between the within group variances were
tested in SAS with the Welch’s variance-weighted
ANOVA before then being further analyzed with the
Tukey HSD post-hoc test.
Those features which were found to have significant

variation between groups were then further tested with
regression analyses. For each of these features, linear
and quadratic regression models were tested to deter-
mine the best fit for the changing Nocodazole concen-
tration relationship. The linear model was chosen if
there was no significant improvement with the addition
of the quadratic term [35] otherwise the quadratic
regression model was chosen. Briefly, the amount of
between group variations not explained by the linear
model is compared to the increase in explained variation
found using the quadratic model. If this increase is more
than 5% of the total not explained remaining variations

Table 3 Description of the neuron feature descriptor extended from NeurphologyJ [3]

Feature Name Description Extension

somaCount The total number of somata. No

somaArea The total area of somata in pixel. No

neuriteLength The total length of all neurites in pixel. No

neuriteArea The total area of neurites in pixel. No

attachmentPoint# The total number of attachment points. No

endingPoint# The total number of ending points. No

branchPoint# The total number of branching points. Yes

Avg_somaArea Avg_somaArea = somaArea/somaCount. Yes

Avg_neuriteLength Avg_neuriteLength = neuriteLength/somaCount. Yes

Avg_neutiteArea Avg_neutiteArea = neuriteArea/somaCount. Yes

Avg_attachmentPoint# Avg_attachmentPoint# = attachmentPoint#/somaCount. Yes

Avg_endingPoint# Avg_endingPoint# = endingPoint#/somaCount. Yes

Avg_branchPoint# Avg_branchPoint# = branchPoint#/somaCount. Yes

Table 4 Description of generic feature descriptors and their related references

Descriptor
Name

Number of
Features

Type of
Feature

Parameter Setup Reference

Zernike
Moment

4,9,25,81 B/W 2nd, 4th, 8th ,16th moment orders. [29]

Legendre
Moment

9,25,81,289 B/W 2nd, 4th, 8th ,16th moment orders. [30]

Tchebichef
Moment

9,25,81,289 B/W 2nd, 4th, 8th ,16th moment orders. [31]

Generic
Fourier

60 B/W 5 angles and 12 frequencies. [32]

Haralick
Texture

180 Gray-Scaled 18 Haralick texture measurements from 8-bins gray-levels coocurence matrix (GLCM)
created from 1 to 5 pixel distances with 0, 45, 90, 135 angles.

[33,45]

Gabor 60 Gray-Scaled 6 levels of orientation and 5 levels of scaling. [34]

Daubechies4 30 Gray-Scaled 10 level wavelet decomposition [34]

NeurphologyJ 13 B/W Contrast = 13, Soma intensity = 288, Neurite width = 5 and Particle cleanup = 15 [3]
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then the quadratic model provides a significantly
improved fit to the data. In all cases the total between
group variation explained by the optimal regression
model was then compared to the total between group
variation from the ANOVA. If the regression model
explained greater than 90% of the total variation, we
considered it a successful model.

Inheritable bi-objective genetic algorithm
The bi-objective 0/1 combinatorial optimization problem
for feature selection has two objectives: minimizing the
number of selected informative features and maximizing
classification accuracy. The inheritable bi-objective combi-
natorial genetic algorithm (IBCGA) is an efficient feature
selection method based an intelligent genetic algorithm
(IGA) [36]. To efficiently solve the combinatorial optimi-
zation problem C(n,m) where n is number of candidate
features, IGA uses an intelligent crossover operation based
on orthogonal experiment designed to efficiently explore
the possible solution of the combinatorial problem.
IBCGA can efficiently explore the possible solutions to
C(n, r±1) by inheriting a good solution to C(n, r) [18].
This inheritable mechanism also allows to economically
choose the feature set for improving predication accuracy.
The IBCGA encodes features in the descriptors as bin-

ary genes for feature selection and encodes parameters
of support vector machine (SVM) in using the IGA
chromosome. The IGA chromosome consists of n fea-
tures bits (n is feature number) and two 4-bit IGA-
genes to tune the parameters C and g of SVM. One fea-
ture is included in the SVM classifier if the encoded
value for the gene is equal to 1. For tuning the SVM
parameters, the 16 encoded values of g and C are
belonging to {2-7, 2-6, ..., 27, 28}.
The IBCGA procedure can be briefly summarized as

follows [18]:

Step1) Randomly generate an initial population of
individuals using r = Rstart. (Initialization)
Step2) Evaluate the fitness values of all individuals
using the fitness function which is the 10-fold cross-
validation (10-CV) classification accuracy of using
SVM. (Evaluation)
Step3) Form a mating pool using tournament selec-
tion. (Selection)
Step4) Perform orthogonal array crossover on the
selected parents. (Crossover)
Step5) Apply the swap mutation operator to the ran-
domly selected genes in the new population and
increase the number of generations. (Mutation)
Step6) Stop if the number of generations is equal to
20; otherwise go to Step 2). (Termination)
Step7) If r > Rend, randomly change one bit in the
binary IGA-genes for each individual from 0 to 1;

decrease the number r by one, go to step2); other-
wise stop the algorithm. (Inheritance)

In this study, the size of the candidate feature set
selected by the IBCGA was ranged from Rstart = 13 to
Rend = 1 corresponding to number of features in NFD.
Eventually, the best solution in terms of 10-CV classifi-
cation accuracy is selected as a final solution.

Performance evaluation of multi-neuron image descriptor
We hypothesize that the phenotypic changes in multiple
neuron systems can be observed in two general ways con-
sisting of neural dependent and neural independent
mechanisms via NFD and GFDs, respectively. The classifi-
cation approach is familiarly applied as an important tool
for characterizing each phenotypic change of a single neu-
ron [37-39]. Thus, the suitable multi-neuron image
descriptor that is highly correlated to the variation of 6
dosages of NDC must be efficient to use as a training set
for constructing the classifier for multi-neuron image
input. The performance comparison between NFD and
GFDs is evaluated by the prediction accuracy of indepen-
dent test. Moreover, the discrimination power of utilizing
single morphology and multiple morphologies as the clas-
sifiers are also examined. We used SVM which is a well-
known efficient classification method for our multi-neuron
image classification because of its successful use in numer-
ous image classification studies [40-44]. The wide spread
usage of the LibSVM tool also encouraged us to utilize
it in all of our experiments [19]. An SVM with a radial
basis function kernel was used to create the classifier using
Noco144 as a training set. A grid search technique
was then used to select for the proper values of the SVM
parameters while maximizing the classification accuracy
of 10-CV. Then, the Noco72 data set was used as an inde-
pendent test set to assess the generated classifier
performance.

Results
Images preprocessing
Our original raw images were gray-scaled taken using
fluorescence microscopy. We applied a preprocessing
technique in the same way as reported previously in
NeurphologyJ [3]. The four input parameters consisting
of contrast, soma intensity, neurite width and particle
cleanup value were set to 13, 288, 5 and 15, respectively.
Examples of the original images from the six classes are
shown in Figure 1.
After background removal and isolated object elimina-

tion, the resulting gray-scaled images of class 1 represent-
ing the wild type are displayed in full size (Figure 2a) and
5x zoom (Figure 2c). The binary image is obtained by
NeurophologyJ and displayed in full size (Figure 2b) and
5x zoom (Figure 2d). The binary images illustrate the
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complexity of the analysis due to multiple intersections of
neurites from different neurons. These images also show
the key point of our software design. We focused on ana-
lyzing all neurons and their neurites in the entire image
instead of spending a huge amount of time on analyzing
individual neurons one by one.

Multi-neuron images feature extraction
The crucial NFD features consisting of NeurphologyJ
features and branchPoint# extracted from all images are
illustrated using the box plots shown in Figure 3. From
Figure 3, all the distributions of neurite-related features
comprising neuriteLength (Figure 3c), neuriteArea
(Figure 3d), endPoint (Figure 3f) and branchPoint
(Figure 3g) have similar trends as the concentration of
nocodazole increased. Notably, neuriteLength and neuri-
teArea exhibited the identical trend, this suggest the
thickness of the neurite (which equals neuriteArea
divided by neuriteLength) was not affected by increasing
concentration of nocodazole. In contrast, the distribu-
tions of soma-related features comprising somaCount
(Figure 3a), somaArea (Figure 3b) and attachmentPoint
(Figure 3e) stay almost constant throughout various
nocodazole concentrations. Pearson’s correlation analysis
between various NFD features and nocodazole concen-
tration (NDC) are shown in Figure 4. This result shows
that most of the NFD especially neurite-related features
have an inverse relation to increasing NDC. Remarkably,
the soma area related features tend to have a correlated
relationship with NDC. These results provide some
insight into the relationships between neuronal mor-
phology and nocodazole concentration. However, to
obtain the quantitative relationship between them,
stronger statistical tools such as ANOVA and regression
analysis are required and described below. For GFDs,
only classification analysis is conducted.

ANOVA analysis of NDC affect to NFD
Each of the 13 features was tested for normality and equal
variances (homoscedasticity) using the Bartlett’s test in
SAS/STAT. Of the 13 features, only somaCount and
somaArea were found that they do not have significant
difference within group variances or depart from normal-
ity. These two features were therefore tested with the stan-
dard homoscedastic ANOVA analysis to detect the
presence of significant differences between the group
means and were then post-hoc tested using the Tukey
honestly significant difference (HSD) test with SAS/STAT.
The other 11 features were found to have significant dif-

ferences between the within group variances and therefore
were tested in SAS with the Welch’s variance-weighted
ANOVA before being tested with a post-hoc test using the
Tukey HSD test. The mean values of each nocodazole
concentration for each of the 13 features are shown in

Table 5 with the differences between the group means
shown by way of the standard superscript letters designat-
ing means which do not differ at the 95% significance
level. The second column of Table 5 displays the ANOVA
significance R2 values which for 215 total degrees of free-
dom is significant if R2 > 11.2%. In particular, the soma
count which was used to normalize six of the other fea-
tures exhibited a significant increase in the group means
for the 50 ng/mL concentration over the untreated soma
count. This feature then showed significant decreases in
the soma count for further increasing nocodazole concen-
trations up to 1000 ng/mL. The soma area values had a
similar appearing quadratic relationship for increasing
concentrations of nocodazole with an initial increase in
area values for concentrations up to 50 ng/mL and then a
significant decrease for the 1000 ng/mL concentration
back to untreated levels. Only these two soma features
and the attachment point number feature exhibited
obvious quadratic relationships, whereas the other 10 fea-
tures generally seemed to uniformly increase or decrease
with increasing nocodazole concentrations.
For nine of these features, the means significantly

decreased with increasing nocodazole concentrations.
Eight of these features were pairs of the normal and
average features: neurite length, neurite area, ending
point number and branch point number. The last one
feature with monotonically decreasing average values
was the average attachment point number. The reduc-
tion in neurite length correlates nicely with the known
effect of nocodazole in causing neurite retraction [23].
The decreasing amount of branch points and end points
with increasing nocodazole concentration also indicate a
nocodazole-dependent degradation in neurite complex-
ity. The reduction in average neurite area with increas-
ing nocodazole concentration also shows the further
effect of neurite retraction on the morphological proper-
ties of neurites.
The last feature showed an increase in average soma

area while the nocodazole concentration was increasing.
After several images were manually inspected, we found
that HCS-Neurons presumed that these somata are
regarded as a single soma. The scenario reveals that the
somata from several neurons tend to cluster together at
high nocodazole concentration.

Regression analysis of NDC affect to NFD
In the ANOVA analyses described above, significant dif-
ferences were found for each of the 13 features with the
observed patterns showing generally linear changes with
respect to NDC with a few obvious cases showing a
quadratic relationship. Therefore we chose the linear
and quadratic regression models to find the optimal
relationships between increasing nocodazole concentra-
tions and each feature.
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To assess the quality of each model we determined
the R2 values for the amount of between group varia-
tions explained by the two regression models. As is well
known, the R2 values for quadratic regression will
always be higher than those for linear regression models,
so we tested whether the improvement in the quadratic
model R2 value was significantly above that of the linear
model [35]. Table 6 summarizes these quantities for
each of the 13 features with the first column showing
the total between group variations for each feature

(these R2 values are also shown in Table 5 but they are
duplicated here for ease of interpretation). The next two
columns display the R2 values for the linear and quadra-
tic regression models respectively. The fourth column in
Table 6 shows how much of the overall between group
variation is accounted for by the optimal regression
model. The optimal regression models explain over 95%
up to 99.7% for every feature except Soma area which
only had 72.7% of the between group variation explained
by the quadratic model. This column shows that the

Figure 2 Example of preprocessed neuron images. (a) background removed gray-scaled image (full), (b) black and white image (full), (c)
background removed gray-scaled image (zoom), and (d) black and white image (zoom).
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optimal regression models for increasing NDC values
are very well described by simple linear and quadratic
models. For the soma area we did try fitting the data to
a third order polynomial which yielded an R2 value of

61.5% and accounted for 98.7 of the between group var-
iation. The shape of the third order polynomial looked
very quadratic with a local minimum near zero and a
sharp maximum near NDC values around 170 ng/mL.

Figure 3 Box plot displaying relationship between Nocodazole concentration and some neuron features. (a) somaCount, (b) somaArea,
(c) neuriteLength, (d) neuriteArea, (e) attachmentPoint#, (f) endPoint# and (g) branchPoint#.

Figure 4 Pearson’s correlation between the numerical value of each neuron feature and nocodazole concentration.
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The final column in Table 6 shows the regression equa-
tion for the optimal linear or quadratic model which is
also shown in bold in the appropriate regression model
R2 column.
Regression analysis of nocodazole drug concentrations on
soma count
Since a very strong effect was found for nocodazole
drug concentration on somaCount, and that the value of
somaCount showed a strong quadratic relationship with
increasing NDC up to 50 ng/mL and then decreased
with further NDC increases the fact that the optimal

quadratic regression model explained 95.1% of the
between group variation was not unexpected. The
results of this regression analysis are shown in Figure 5
where the best fit line is shown in black and the 95%
confidence intervals of the mean values are shown as
dotted lines. This regression analysis found that R2 =
62.7% of the variation for this feature was described by
the line Y = (-35.3 ± 2.2)X2 + (80.4 ± 6.9)X + (219.3 ±
5.0) where Y is the somaCount value and × is the Log
(NDC) value. In terms of the total variation described
by this best fit line, (62.7/65.9) = 95.1% of all between

Table 5 Anova analysis of the effect of nocodazole concentration on the neuron feature descriptor

Feature
Name

ANOVA
R2 (%)

Nocodazole concentration (ng/mL) Scale
(pixels)

0 10 50 100 200 1000

somaCount 65.9 224A 249B 255B 251B 221A 137 x1

somaArea 62.3 568A 716B 867C 970D 949CD 591A x102

neurite Length 94.4 808 598 385 251 156 89 x102

neuriteArea 95.3 203 164 119 80 49 27 x103

attachmentPoint# 69.5 126AB 138BC 140C 136BC 115A 64 x10

endingPoint# 82.5 440 345 270A 255A 216 147 x10

branchPoint# 91.0 493 336 209 152 109 75 x102

Avg_somaArea 76.8 250 287 340 388 431A 432A x1

Avg_neurite Length 88.0 372 244 151 100 71A 65A x1

Avg_neurite Area 91.3 924 666 470 317 222A 198A x1

Avg_attachment Point# 58.4 562A 554AB 546AB 542B 520 468 x10-2

Avg_ending Point# 68.6 203 141 106A 102A 98A 108A x10-1

Avg_branch Point# 85.1 227 137 82 60A 50A 55A x10-1

Values with the same superscript letter are not different at the 5% experiment-wise level. Values with no superscript are different from all other values for that
feature. The R2 ANOVA value is the fraction of variation that occurs between groups versus the total variation for that feature. For 216 data measurements values
of R2 over 11.2% show a significant difference between group means.

Table 6 Regression analysis of the effect of Nocodazole concentration on the neuron feature descriptor

Feature Name ANOVA
R2 (%)

Linear
Regression
R2 (%)

Quadratic Regression
R2 (%)

Variance explained
(%)

Regression Equation

somaCount 65.9 18.6 62.7 95.1 - 35.3x2 + 80.4x + 219.3

somaArea 62.3 7.3 45.3 72.7 13400x2 + 45000x + 5200

neurite Length 94.4 91.5 91.7 96.9 - 26100x + 81800

neuriteArea 95.3 91.2 91.6 95.6 - 63500x + 213000

attachment Point# 69.5 26.6 66.7 95.9 - 212x2 + 449x + 1230

endingPoint# 82.5 82.3 82.3 99.7 - 976x + 4420

branchPoint# 91.0 88.1 89.7 96.8 203x2 + 2080x + 5030

Avg_soma Area 76.8 70.4 70.4 91.6 69.4x + 238

Avg_neurite Length 88.0 82.8 86.1 97.8 22.4x2 - 177x + 381

Avg_neurite Area 91.3 87.3 88.3 95.6 29.7x2 - 352x + 946

Avg_attachment Point# 58.4 42.3 56.9 97.4 - 0.167x2 + 0.207x + 5.60

Avg_ending Point# 68.6 54.2 68.0 99.1 1.77x2 - 8.62x + 20.5

Avg_branch Point# 85.1 75.7 84.0 98.7 2.10x2 - 12.4x + 23.1

The R2 ANOVA column shows the total amount of between group variation for each feature. The next two columns show how much of the total variation is
explained by a linear model or a quadratic model. If the quadratic model explains more than 5% of the remaining between group variation over the linear
model that model is chosen otherwise the quadratic model doesn’t improve the fit significantly enough to justify the additional complexity. Essentially, if using
the quadratic model increases the R2 fit by more than 0.5% over the linear model we choose that one [35] The variance explained column shows the total
percentage of the between group variation explained by the chosen model. The final column shows the equation for the best fit model for each feature.
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group variation is accounted for by this quadratic
regression line. The somaCount residuals were also
found to not vary significantly from a normal distribu-
tion (p = 0.085). The feature somaCount satisfied all of
the assumptions of both 1-way ANOVA and regression
and was very well described by the quadratic depen-
dence model on Log(NDC). These results are summar-
ized in Table 6 which also shows the quadratic model
R2 value, the quadratic equation and the percent of
between group variation explained by the optimal quad-
ratic model.

Classification analysis
Performance comparison of each individual NFD feature
We separately applied each of the 13 specified features to
evaluate the SVM prediction results from Noco72 by
using Noco144 as a training data set. The optimal values
of C and g were then determined using a grid search.
From the summary results listed in Table 7, neurite-
Length and neuriteArea were found to be the most dis-
tinct features among six classes in this neuromorphology
classification achieving identical 81.94% test accuracies
with 86.80% and 84.72% training accuracies respectively.
These results were followed by Avg_neuriteLength which
had a 76.39% test accuracy and 77.08% training accuracy
and Avg_neuriteArea which had a 73.61% test accuracy
and 79.86% training accuracy. The feature branchPoint#
was the last feature which scored dramatically above the
rest of the features with a 72.22% test accuracy and
77.09% training accuracy.

Every soma-related feature showed a lack of discriminat-
ing power in this research. These results can be inter-
preted as showing that the nocodazole drug concentration
affected both of the length and area of the neurites thereby
achieving the highest accuracies. Figure 4 shows the
Pearson’s correlation value between each feature and the
nocodazole drug concentrations. Most of the neurite-
based features showed strong inverse relationship with
nocodazole concentration, indicating that nocodazole
exhibited strong negative effect on neurite development.
According to the phenotypic changes of soma clustering,
the increasing of nocodazole concentration also affected

Figure 5 The quadratic relationship between somaCount and the logarithm of nocodazole concentration. The variation described by this
regression accounts for 95.1% of all of the between group variation for somaCount.

Table 7 Classification performance of each feature in the
neuron feature descriptor

Feature Name 10-CV Accuracy Test Accuracy

somaCount 43.06% 37.50%

somaArea 38.19% 34.72%

neuriteLength 86.80% 81.94%

neuriteArea 84.72% 81.94%

attachmentPoint# 40.97% 30.56%

endingPoint# 63.89% 52.78%

branchPoint# 77.09% 72.22%

Avg_somaArea 58.33% 47.22%

Avg_neuriteLength 77.08% 76.39%

Avg_neutiteArea 79.86% 73.61%

Avg_attachmentPoint# 44.44% 37.50%

Avg_endingPoint# 42.36% 40.28%

Avg_branchPoint# 68.75% 56.94%
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the average soma size since the feature Avg_somaArea had
a correlation value of 0.86. We noted that this feature is
also referred to as the averaged total area of adjacent
somata described in previous section.
Performance comparison between NFD and GFD
The SVM analysis was used to run the descriptor assess-
ment in the same way as described in the previous section.
As shown in Table 8, our proposed multiple neuron
descriptors and the Haralick texture descriptor gave the
best predictive results. Both descriptors achieved 86.11%
test accuracies. The second was the Gabor filter descriptor
which achieved 81.94% test accuracies and the third was
the Daubechies4 achieving 75.00% test accuracy. Remark-
ably, all GFDs using gray-scaled outperform the GFDs
using binary information. For the group of GFDs using
only the B/W images, the Zernike descriptor did the best
achieving 70.83% test accuracies.
Although our descriptor, the moment-based descriptors

and the Generic Fourier descriptor utilize the same binary
information to compute image features, the moment
based descriptors and Generic Fourier descriptor cannot
obtain high prediction accuracy because they were
designed to handle shape information of single objects. In
contrast, our dataset does not contain explicit shape infor-
mation due to the many neurons distributed in each of the
single images. Thus, all texture-based descriptors outper-
form the more restrictive explicit shape descriptors.
The Haralick descriptor is able to capture global infor-

mation from each image including a measure of random-
ness, contrast and variance. This global approach is quite
different from our multiple neuron based approach, but
it does characterize global properties of the entire system
which is a similar approach to our method and which
enables it to achieve a high classification performance
similar to our results. Furthermore, these efficient results
of GFDs using gray-scaled information demonstrated the
presence of intensity changes multi-neuron images
according to NDC variations.

This result states that Haralick descriptor and NFD
provide the same classification performance correspond-
ing to phenotypic changes of neuron by varies NDC.
However, the numbers of features in these two descrip-
tors are hugely different, 180 and 13, respectively.
Therefore, in conclusion, NFD is the best descriptor for
phenotypic change of neuron due to its high classifica-
tion performance and minimal number of features.
Optimal NFD features selected by IBCGA
According to the best choice in this HCS is NFD,
IBCGA is applied to find the optimal solution to clas-
sify NDC using this descriptor. The 10-CV accuracy
was evaluated using the IBCGA procedure to find sui-
table features and SVM parameters. This IBCGA pro-
cedure was executed 30 times to cope with the
robustness problem of GA and produce 30 solutions.
Figure 6 shows the number of times for each feature
selected in the 30 independent runs. The features neur-
iteArea, Avg_neuriteArea and Avg_neuriteLength were
selected with the largest number of times. The feature
neuriteLength was not selected possibly due to redun-
dant information with neuriteArea as mentioned in the
previous section. This means either NeuriteArea or
NeuriteLength can be substituted by each other. The
solution with the highest prediction accuracy also con-
tains these 3 features. Thus, the best SVM classifier is
constructed by these 3 features with the SVM para-
meters, C = 2 and gamma = 16.
This feature set was able to achieve accuracies of

90.28% and 91.67% for the test and training sets, respec-
tively. The averaged performances for all of the solutions
chosen by the IBCGA algorithm were 89.31% and 91.30%
for the test and training sets, respectively. This result
shows that the performance of the proposed multi-neu-
ron image descriptor is stable with respect to the choice
of feature set. To further evaluate the quality of our
results, we constructed a confusion matrix from our pre-
diction results which is shown in Figure 7. Interestingly,
all of the locations where the prediction results were
incorrect were located in the classes that were immedi-
ately adjacent to the correct class. This makes sense since
our class definitions are based on increasing drug
concentrations.

Multiple neuron phenotypic changes response to NDC
The phenotypic transition of multi-neuron images
detected by HCS-neurons is categorized into neuronal
morphology alteration and pixel intensity alteration. In
this section, the NFD describing neuronal morphology is
in focus according to its optimal performance. We used
the IBCGA method to separate out neuron-related fea-
tures having the highest NDC discrimination power. The
neuron morphology features identified by IBCGA were
neuriteArea, Avg_neuriteLength and Avg_neuriteArea.

Table 8 Classification performance comparisons between
the neuron feature descriptor and generic feature
descriptors

Feature Name 10-CV
Accuracy

Testing
Accuracy

Zernike Moment 72.92% 70.83%

Legendre Moment 69.44% 62.50%

Tchebichef Moment 72.29% 62.50%

Generic Fourier 72.22% 55.55%

Haralick Texture 84.03% 86.11%

Gabor 78.47% 81.94%

Daubechies4 75.70% 75.00%

NeurphologyJ [3] 85.42% 80.56%

NFD (extended from NeurphologyJ [3]) 84.72% 86.11%
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The individual classification performances of these fea-
tures were found to be more than 70%. From our regres-
sion analysis, we found significant decreases with
increasing NDC levels for these 3 features. In particular,

each of these features showed strongly decreasing values
as NDC increased with reduced effect near the lower and
upper NDC values. Although all three features showed
essentially linear decreases with increasing log(NDC)

Figure 6 Number of times of each feature was chosen by the IBCGA algorithm in 30 independent runs.

Figure 7 Confusion matrix for the prediction results from the IBCGA features.
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values the strongest affects were for NDC values in the
50-200 ng/mL range.
In the previous section, the high correlation between

Avg_somaArea and NDC was mentioned to have a sim-
ple linear relationship. The average soma area linearly
increased with increased log(NDC) values while the
average neurite area strongly decreased. While the
inverse correlation between neurite length (or neurite
area) and NDC is consistent with nocodazole’s effect on
inducing neurite retraction, the linear correlation
between soma area and NDC has not been reported
before. These data indicated that in addition to inducing
neurite retraction, nocodazole might promote soma
clustering at high concentration. It will be of great inter-
est to examine this additional effect of nocodazole using
other neurons.
For GFD morphology alteration, we found the strong

evidence for intense differentiation according to NDC.
However, detailed analysis to extract all of the interpreta-
ble information from these features can still be expanded.
We plan to further explore the relationships between GFD
and neuron development. In conclusion, there are many
strong results from the statistical analysis and classification
analysis for the interpretation of multi-neuron images.
Therefore, the combination of these two approaches pro-
vides a powerful set of tools to generate useful information
for neuroscientists to understand neuron modification
response to drug treatment.

Conclusions
In this paper we propose a complete high-content screen-
ing analysis method HCS-neuron for multiple neuron phy-
notypic modification response to different nocodazole
concentration. Our extended version of multi-neuron
image descriptor achieved prediction accuracies of 86.11%.
We then used the IBCGA method to find the optimal
feature set which resulted in an increase in prediction
accuracy to 90.28%. The optimal set of features for this
problem was found to be neuriteArea (Neurite Area),
Avg_neuriteArea (Average Neurite Area) and Avg_neuri-
teLength (Average Neurite Length). Our quantification
analysis also found that there were statistically significant
changes in these descriptors which vary in exactly the way
nocodazole is known to affect neurite growth. The inten-
sity alteration also demonstrated by the high discrimina-
tion power of texture based generic descriptor i.e Haralick
(86.11%), Gabor Filter (81.94%) and Daubechies4 wavelet
decomposition (75%). However, the detail analysis is still
hard to interpret at present.
The proposed HCS-neuron can extend HCS with single-

neuron images to that with multi-neuron images and help
improve the statistical significance of such results and
leverage the strengths of high-throughput analysis to the
understanding of neuron research. The proposed HCS-

neurons is helpful to identify substances such as small
compounds or RNAi molecules that can alter the morpho-
logical phenotype of an entire population of neurons using
HCS. In addition to accomplishing this, our program and
datasets are all available for download. Interestingly, we
discovered a previously unknown effect of nocodazole on
soma clustering. These results demonstrate effectiveness
of the proposed quantitative analysis on the morpgological
features from images containing multiple neurons.
The MatLab module of neurite feature descriptor

(NFD) and image datasets are available at http://iclab.
life.nctu.edu.tw/HCS-Neurons/.
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