
RESEARCH Open Access

Gene regulatory networks inference using a
multi-GPU exhaustive search algorithm
Fabrizio F Borelli*, Raphael Y de Camargo*, David C Martins Jr*, Luiz CS Rozante*

From Second IEEE International Conference on Computational Advances in Bio and Medical Sciences
(ICCABS 2012)
Las Vegas, NV, USA. 23-25 February 2012

Abstract

Background: Gene regulatory networks (GRN) inference is an important bioinformatics problem in which the gene
interactions need to be deduced from gene expression data, such as microarray data. Feature selection methods
can be applied to this problem. A feature selection technique is composed by two parts: a search algorithm and a
criterion function. Among the search algorithms already proposed, there is the exhaustive search where the best
feature subset is returned, although its computational complexity is unfeasible in almost all situations. The
objective of this work is the development of a low cost parallel solution based on GPU architectures for exhaustive
search with a viable cost-benefit. We use CUDA™, a general purpose parallel programming platform that allows
the usage of NVIDIA® GPUs to solve complex problems in an efficient way.

Results: We developed a parallel algorithm for GRN inference based on multiple GPU cards and obtained
encouraging speedups (order of hundreds), when assuming that each target gene has two multivariate predictors.
Also, experiments using single and multiple GPUs were performed, indicating that the speedup grows almost
linearly with the number of GPUs.

Conclusion: In this work, we present a proof of principle, showing that it is possible to parallelize the exhaustive
search algorithm in GPUs with encouraging results. Although our focus in this paper is on the GRN inference
problem, the exhaustive search technique based on GPU developed here can be applied (with minor adaptations)
to other combinatorial problems.

Background
The cell is a complex system where its activity is con-
trolled by gene regulatory networks [1]. The mRNA
concentration produced by each gene indirectly reflects
its expression level. These concentrations can be an
indication of the biological state of the cell, since they
represent the proteins synthesized by ribosomes [2].
Thus, the biological processes studies can be based on
the analysis of mRNA concentrations (expression levels)
of the genes. DNA microarrays [3], SAGE (Serial Analy-
sis of Gene Expression) [4] and RNA-Seq [5] are among

the most common techniques to measure the expression
level of thousands of genes at the same time.
A vast amount of transcriptome data has been pro-

vided by these large scale techniques, whose analysis
requires efficient computational tools. In this context,
the inference of gene regulatory networks (GRNs) aim
to obtain the interactions among genes from gene
expression data. Due to its relevance, several methods
for GRN inference have been proposed, including Baye-
sian networks based [6,7], relevance networks [8], ARA-
CNE (Algorithm for the Reconstruction of Accurate
Cellular NEtworks) [9] CLR (Context Likelihood of Relat-
edness) [10], and SFFS-MCE (Sequential Floating For-
ward Selection - Mean Conditional Entropy) [11-13].
For reviews on this topic, the reader can be referred to
[14-19].

* Correspondence: fabrizio.borelli@ufabc.edu.br; raphael.camargo@ufabc.edu.
br; david.martins@ufabc.edu.br; luiz.rozante@ufabc.edu.br
Center for Mathematics, Computing and Cognition, Federal University of
ABC, Av. do Estados, 5001, Santo André -SP, Brazil

Borelli et al. BMC Bioinformatics 2013, 14(Suppl 18):S5
http://www.biomedcentral.com/1471-2105/14/S18/S5

© 2013 Borelli et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:fabrizio.borelli@ufabc.edu.br
mailto:raphael.camargo@ufabc.edu.br
mailto:raphael.camargo@ufabc.edu.br
mailto:david.martins@ufabc.edu.br
mailto:luiz.rozante@ufabc.edu.br
http://creativecommons.org/licenses/by/2.0

Although many GRN inference methods are available,
there are still challenges to overcome, such as noisy
data, computational complexity and the curse of dimen-
sionality (number of variables much larger than the
number of available samples). Solutions based on high-
performance computing are interesting when the objec-
tive is to infer GRNs with thousands of genes, although
traditional platforms are expensive and difficult to
maintain.
In this context, GPU (Graphics Processing Unit) for

general purpose computing (GPGPU) is an emergent
technology which allows to perform high-performance
computing with relatively low cost [20,21]. CUDA
(Compute Unified Device Architecture) is a programming
platform which provides a parallel programming model
allowing the NVIDIA GPU architectures to perform effi-
cient general purpose computing.
The employment of GPUs to address the GRN infer-

ence problem is very recent though. Shi et al. proposed
a parallelization scheme for GRN inference based on
information-theoretic framework which involves
matrices multiplication, optimizing the benefit obtained
by applying GPU [22]. This method results in an
approximation considering only pairwise relationships
between genes, without taking into account the multi-
variate predictiveness nature of certain predictor genes
with respect to the target genes. Here we present a
GPU-based parallel exhaustive search algorithm, with
mean conditional entropy as criterion function, for
GRNs inference with two multivariate gene predictors
per target gene. The gene network inference approach
of the proposed algorithm is based on probabilistic gene
networks [11], which displayed interesting results in
obtaining the best predictor pairs for the considered tar-
get genes, given a data set with ternary values (-1,0,+1).
We obtained speedups (six-core CPU was taken as
reference) of 190 for ternary data samples and 260 for
binary data samples when using 4 GPUs in networks
with 8192 genes and almost linear increases in the
speedup versus the number of GPUs. Consequently,
using our algorithm, the exaustive search of predictor
genes in GRNs can be performed in a reasonable
amount of time.
The present paper is an extended version of the paper

“Accelerating gene regulatory networks inference
through GPU/CUDA programming” [23]. The main
improvements found in this manuscript include: i - an
improved version of the algorithm that works on multi-
ple GPUs, instead of a single GPU; ii - a more complete
description of the model used to infer gene networks
from temporal gene expression data (probabilistic gene
networks); iii - novel experiments considering binary
and ternary genes (instead of only binary) and adopting
single and multiple GPUs (one, two and four).

Identifying predictors by probabilistic gene networks
using mutual information
Expression profiles of predictor genes display relevant
informative content (individual or in conjunction with
other predictors) about the expression profile of a given
target gene. Feature selection methods can be employed
to find the subset of genes (predictors) presenting the
largest information content about the target gene values.
We adopted the probabilistic genetic network (PGN)

approach [11-13] which follows the feature selection prin-
ciple: for each target, a search for the subset of predictors
that best describes the target behavior according to their
expression signals is performed. Barrera et al. discusses
this approach in the context of the analysis of dynamical
expression signals of the Plasmodium falciparum (one of
the agents of the malaria disease), providing interesting
biological results [11]. This approach assumes that the
temporal samples follow a first order Markov chain in
which each target gene value in a given instant of time
depends only on its predictor values at the previous
instant of time. The transition function is homogeneous
(it is the same for every time step), almost deterministic
(from any given state, there is one preferential state to go
in the next time) and conditionally independent.
Lopes et al. [13] provides a comparative study invol-

ving this approach (using the Sequential Floating For-
ward Search as search algorithm) and methods like
MRNET [8], ARACNE [9] and CLR [10]. Such approach
showed superior performance for retrieving multivariate
predictors. The mean conditional entropy (MCE), indi-
cating the average information content of the target
gene given its predictors, was adopted as fitness func-
tion. Mutual information is a measure of dependence
between variables that has been employed in many
research fields such as image processing [24,25], physics
[26] and bioinformatics [27,28]. The main advantage of
mutual information compared to other similarity mea-
sures such as Pearson correlation is the capability to
capture non-linear relationships between variables [28].
The exhaustive search that looks for all possible pairs

of candidate predictors for each target was considered
as search method. In fact, it is the only way to obtain
optimality in feature selection due to the intrinsically
multivariate prediction, which may be present in biolo-
gical systems [29]. Such phenomenon is related to the
nesting effect that occurs when a greedy feature selec-
tion algorithm or other sub-optimal heuristics are
applied. Once the exhaustive search is applied for all
genes considered as target, the network is achieved.

Search algorithm
Given a set G of genes, the search algorithm identifies,
for each target gene y Î G, the best subset X ⊆ G that
predicts y according to a criterion function. The following

Borelli et al. BMC Bioinformatics 2013, 14(Suppl 18):S5
http://www.biomedcentral.com/1471-2105/14/S18/S5

Page 2 of 12

algorithm performs an exhaustive search in order to iden-
tify the pairs (X,y):
Algorithm 1 : ExhaustiveSearch
1: for each target gene y Î G do
2: for each predictor genes subset X ⊆ G do
3: calculates the criterion function H of the predic-

tion of y by X
4: end for
5: end for

Criterion function
The mean conditional entropy (MCE) was adopted as
criterion function. The Shannon’s Entropy [30] of a vari-
able Y is defined as

H(Y) = − �
y∈Y

P(Y = y) log P(Y = y),

where P(Y = y) is the probability of the variable Y be
equal to y. The conditional entropy of Y given X = x is:

H(Y|X = x) = −
∑

y∈Y
P(Y = y|X = x) log P(Y = y|X = x),

where X is a feature vector and P(Y = y|X = x) is the
conditional probability of Y be equal to y given the
observation of an instance x Î X.
Lastly, the Mean Conditional Entropy (MCE) is

defined as the weighted average of the conditional
entropies [11-13]:

H(Y|X) = �
x∈X

P(X = x)H(Y|X = x).

GPU architecture and CUDA
GPUs (Graphics Processing Unit) are programmable gra-
phic processor which, in combination with CPUs, can

be used as a general purpose programming platform.
They are optimized to perform vector operations and
floating point arithmetics, executing in SIMD (Simple
Instruction, Multiple Data) mode [31].
Each GPU has a set of Streaming Processors (SMs),

each constituted by an array of processor cores, which
are the logical-arithmetic units of the GPU, as shown in
Figure 1(a). Each SM has a large number of registers, a
small control unit and a small amount of shared mem-
ory, accessible from the threads executing in the SM.
Graphical devices normally have a large amount of glo-
bal memory, which is shared among the SMs. The
latency for accessing this memory is high and, conse-
quently, the shared memory is normally used as a user
controlled cached.
CUDA (Compute Unified Device Architecture) is a

platform that provides an extension to the C language
that enables the usage of GPUs as a general purpose
computing device. A compiler generates executable code
for the GPU device from the provided CUDA code.
The programmer defines special functions called ker-

nels, which are executed in the GPU. The user defines
the number of threads to create, organizing them in
thread blocks. The collection of blocks from a single
kernel execution is called grid. Each thread block runs
on a single SM, but multiple blocks can be assigned to
the same SM in a time-shared way. The CUDA pro-
gramming model is shown in Figure 1(a).

A GPU/CUDA algorithm for GRNs inference
The general concept of the parallel exhaustive search
consists in distributing the fitness function computation
along the SMs. The algorithm partitions the set of target
genes T into k segments T0, T1, …, Tk−1 and distributes
these segments among the thread blocks. Each thread

Figure 1 The CUDA platform. a) Architecture of a modern GPU containing a large global memory and a set of multiprocessors, each one with
an array of floating-point processors, a small shared memory and a large number of registers. b) Hierarchical organization of CUDA threads in
thread blocks and in kernel grids, where each thread block is assigned to a single multiprocessor.

Borelli et al. BMC Bioinformatics 2013, 14(Suppl 18):S5
http://www.biomedcentral.com/1471-2105/14/S18/S5

Page 3 of 12

block is responsible for evaluating the criterion function
for its assigned target genes Tifor every pair of predic-
tors from the set of genes P.

Preliminary considerations and user settings
Given G with n genes, the complexity of the exhaustive
search is O(n|X|) for each evaluated target, where |X| is
the number of predictors. This occurs because for each
target we must evaluate the entropy for every p-tuple of
predictor genes. If every gene is used as target, we have
a total complexity of O(np+1).
For larger values of |X|, this procedure becomes

impractical for typical values of n (thousands in micro-
array experiments). In this way, the number of predic-
tors was fixed in two (|X| = 2) to reduce the search
space. From the biological point of view, this decision is
reasonable since the average number of predictors in
GRN is between 2 and 3 according to some previous
studies [32]. Besides, in a typical microarray experiment,
only dozens of samples are available, which leads to a
weak statistical estimation if one considers subsets with
3 or more predictors per target [11].

Preprocessing
Initially, the program reads the expression matrix from
the disk and replicates it into two matrices T and P in
the main memory. Matrices T and P represent the
expressions of the target and candidate predictor genes,
respectively. Each matrix has s lines, representing the
experiment samples, and n columns, represent each
gene. Figure 2(a) shows an example matrix with 4 genes
and 7 samples. After loading the data into T and P into
the main memory, the program allocates space and
transfers the matrices to the GPU global memory.

Local exhaustive search
We consider that k blocks are started, denoted by Bl0,
Bl1, …, Blk−1. The algorithm then partitions the set
of target genes T into k segments T0, T1, …, Tk−1 of size

n/k and the set of predictor genes p into 2k segments
P0, P1, …, P2k−1 of size n/2k, as illustrated in Figure 3.
Each thread block is responsible for evaluating the
criterion function for its assigned target genes in Ti

for every pair of predictors from the set of genes P.
Each thread evaluates the conditional entropies, for

every pair of predictors, of a single target gene in Ti. To
evaluate the entropies, each thread block transfers to
the shared memory of its SMs parts of tables T and
P containing the set of target genes Tiand two sets of
predictors Pj1and Pj2. These data are transferred from
the global memory in a coalesced way, which joins up
to 32 individuals memory reads into a single one,
increasing the effective memory bandwidth.
Algorithm 2 describes the exhaustive search procedure

executed by each block. To evaluate the conditional
entropies of a target gene in Tifor each pair of predic-
tors in Pj1and Pj2, the thread creates a table, shown in
Figure 2(b). This table contains the number of times a
gene in Tiassumed the values 0 or 1 for each combina-
tion of the predictor genes values, and the associated
conditional entropy. The threads maintain this table at
the registers of their associated SMs during the evalua-
tion of the entropies, preventing expensive global mem-
ory accesses.
Algorithm 2 : LocalExhaustiveSearch
Require: segment Ti of target genes and segments

Pj1and Pj2of predictor candidates
1: for each target t Î Tido
2: for each pair (p1, p2) Î {Pj1× Pj2} do
3: calculates the power of (p1, p2) to predict

t according to a criterion function H
4: end for
5: end for

Global exhaustive search
The global exhaustive search provides, for each thread
block, all pairwise combinations of predictor subsets
Pj1and Pj2. With these permutations along the segments

Figure 2 Input expression matrix example. a) Input expression matrix with 7 samples and 4 genes. Two copies of such matrix are assigned to
matrices T and P. b) Evaluation of the mean conditional entropy based on the conditional probabilities of a target given two predictors.

Borelli et al. BMC Bioinformatics 2013, 14(Suppl 18):S5
http://www.biomedcentral.com/1471-2105/14/S18/S5

Page 4 of 12

of P, each thread block can evaluate all predictor candi-
date pairs for every target gene in Ti, as described in
Algorithm 3 and illustrated in Figure 4.
Algorithm 3 : GlobalExhaustiveSearch
1: Transfers the table values for the genes belonging to

Ti

2: for j1 ¬ 0 to 2k − 1 do
3: Transfers the table values for the genes belonging

to Pj1 to all blocks
4: for j2 ¬ j1 to 2k − 1 do
5: Transfers the table values for the genes

belonging to Pj2 to all blocks
6: Evaluates the entropy for every pair of predic-

tors (p1, p2) Î {Pj1× Pj2}
7: end for
8: end for
As we will analyze in the next section, this algorithm

reduces the number of transfers from global memory
for each predictor gene from set P. Moreover, it trans-
fers each target gene from set T only a single time, in
the beginning of the algorithm.
Besides reducing the number of global memory trans-

fers for each gene, by dividing the tables into contiguous
sets, we can perform coalesced transfers [31] from the
global to the shared memory, further increasing the
bandwidth of the memory. In this kind of transfer, up to

w memory values are transferred as a single memory
access. w is architecture dependent and has a value of
32 in the tested GPUs. Consequently, the algorithm
works optimally for multiple of 32 genes, since the
GPUs execute the threads in clusters (warps) of 32.
Thus, the transfers between shared and global memories
and the use of GPU cores are optimized. For different
GRN sizes, dummy genes might be included to the
GRN.

Analysis of the algorithm
Considering a single thread block, for each iteration of
the outer loop from Algorithm 3, one segment of
genes Pj1 is transferred from the memory. For the
inner loop, there are 2k − j1 iterations for each value
of j1, where on each iteration the segment Pj2 is trans-
fered. Consequently, the number of segment transfers
per thread block, considering the inner and outer
loops, is:

2∗k−1∑

j1=0

2 ∗ k − j1 + 1 = 2 + 3 + . . . + (2k + 1) = 2k2 + 3k

We must add to this value the transfer of Tiin the
beginning of the algorithm. Considering that there are k
thread blocks operating simultaneously and that there

Bl
k−1 k−1

T
Bl Bl

0 1 2Bl

0 1 2 k−1

0 1 2P: P P P P

. . .

. . .

0 1 2
...

T: T T T T

T T T

2k−1

Figure 3 Matrices partitioning. Partitioning the matrices T and P in k segments and blocks access to segments of T: an arrow Ti® Bliindicates
that the block Bliaccesses the segment Ti.

Borelli et al. BMC Bioinformatics 2013, 14(Suppl 18):S5
http://www.biomedcentral.com/1471-2105/14/S18/S5

Page 5 of 12

Bl
10

Bl 2Bl Bl
k−1

i=
0

i=
1

Bl
10

Bl 2Bl Bl
k−1

...
...

Bl
10

Bl 2Bl Bl
k−1

0
P P

0 P

...P0 P1 P2 P2k−2 P2k−1

...P0 P1 P2 P2k−2 P2k−1

...P0 P1 P2 P2k−2 P2k−1

i=
2k−

1

1
P P

1 P1

2k−1
P P

2k−1 P2k−1

...

P:

T0 P T1
T2 Tk−1

...

P:

T0 P T1
T2 k−1T

...

P:

T0 T1
T2 Tk−1

0

1

2k−1
P

Figure 4 Access rule of blocks to segments. An arrow Pi® Bljindicates that the block Bljaccesses the segment Pi. Arrows of the same color
indicate that the accesses are simultaneously performed.

Borelli et al. BMC Bioinformatics 2013, 14(Suppl 18):S5
http://www.biomedcentral.com/1471-2105/14/S18/S5

Page 6 of 12

are n/2k genes per segment, the total number of gene
transfers will be:

k ∗ n

2k
∗ (2k2 + 3k + 1) = n × (k2 +

3
2
k +

1
2
)

Consequently, we can see that the number of gene
transfers from the global memory is O(n ∗ k2) and that
each gene is transfered O(k2) times. This means that by
increasing the segment sizes, we have a smaller k less
transfers from the global memory.
Also, if the shared memory is not used, the total num-

ber of gene transfers would be O(n3), resulting in a
memory load (n/k)2 times higher. For n = 4096 predic-
tors and segments of size 128, resulting in k = 32 blocks,
the number of transfers without the segmentation would
be 128 * 128 = 1.6 * 104 times higher. This difference
occurs because when a segment is transferred to the
shared memory, the values for each gene from the seg-
ment are used multiple times.

Multi-GPU algorithm
In order to provide scalability for our method and
improve its performance, we extended our inference
algorithm to work with multiple GPUs. The general idea
of the multi-GPU algorithm is to partition the set of tar-
get genes among the available GPUs and execute Algo-
rithms 2 and 3 in each GPU. Consequently, each GPU
is responsible for calculating the entropy of a subset of
target genes.
Suppose we have m GPUs denoted by C0, C1, …, Cm−1.

The multi-GPU algorithm is described as follows:
1. Copy matrix P to the global memory of each GPU.

Then, partition matrix T in m supersegments of size
n/m, which we denote by T0, T1, …, Tm−1 (we assume
here that n is a multiple of m). Copy each supersegment
Tito the global memory of Ci, 0 ≤ i ≤ m − 1.
2. Launch the kernels with k/m thread blocks per

GPU, where k is the total number of blocks. We denote
by Blij the block Blj started in Ci, where 0 ≤ j ≤ k/m − 1
and 0 ≤ i ≤ m − 1.
3. Execute Algorithms 2 and 3 on each GPU, so that

GPU Cireceives the blocks Bli0,Bl
i
1 . . . ,Blik/m−1, which

operate on the segments Ti
0,T

i
1 . . . ,Ti

n/m−1. Here Ti
j

denotes the segment j belonging to supersegment i.
4. Copy the best predictor pairs for each target gene

along with their corresponding entropy values from the
GPU global memory to the CPU main memory.
Figure 5 shows a schematic representation of the main

characteristics of the multi-GPU algorithm.

Implementation
The implementation of the parallel exhaustive search
algorithm was performed using CUDA. We applied all

optimizations described in the algorithm description.
The implementation source code can be obtained at
https://sourceforge.net/p/inferencemgpu/.
The CPU implementation, which we used to evaluate

the speedups, utilizes OpenMP to enable the usage of all
cores from the processor. OpenMP is an API (Applica-
tion Program Interface) designed for implementing par-
allel algorithms in architectures with shared memory
multiprocessors. We divided the target genes among the
threads, resulting in a good load-balancing among
the cores.

Results and discussion
We executed the CPU version of the algorithm in a
machine with a six-core Intel i7 3930K 3.2 GHz proces-
sor and 32GB of DDR3 RAM memory. For the GPU
implementation execution, we used a quad-core compu-
ter with Intel i7 920 2.6 GHz with 6 GB of DDR3 RAM
memory and 2 NVIDIA GTX 295 graphic boards, with
2 GPUs and 1792 Mb of memory on each board. Each
GPU has 30 multiprocessors (SMs) with 8 cores on
each, resulting in a total of 240 cores per GPU. We
used Linux Ubuntu 12.04, with CUDA version 4.2 and
gcc 4.6.3 compiler, configured with the option -O3.
In both versions, we measured the elapsed times of

the complete execution of the application. In the GPU
version, this means that the time necessary to allocate
the variables in the CPU and GPU memories and the
data transfers are included in the measurements.
The binary data samples used in the experiments pre-

sented in this section were generated using the Artificial
Gene Network (AGN) simulator [33], considering the
Erdös-Rényi Boolean network model. Such simulator
allows to control the number of genes present in the
network and the number of samples. We also performed
experiments considering ternary data samples, i.e., genes
can be underexpressed, normal and overexpressed (-1, 0
+1). For this set of experiments, we considered the Plas-
modium falciparum database [34], the same database
considered in [11], whose expression values were quan-
tized in three values by applying normal transform
(Z-Score).

Execution times for binary samples
We performed three experiments to evaluate the perfor-
mance of our method, comparing the execution times of
the CPU implementation with the GPU algorithm run-
ning in 1, 2 and 4 GPUs. We used datasets with 30 bin-
ary samples and GRNs with different sizes (1024, 2048,
4096, 8192).
Tables 1, 2 and 3 show the average execution times

for each experiment (3 executions for each experiment)
considering 32, 64 and 128 target genes per block. For a
fixed GRN dize, larger number of target genes per block

Borelli et al. BMC Bioinformatics 2013, 14(Suppl 18):S5
http://www.biomedcentral.com/1471-2105/14/S18/S5

Page 7 of 12

https://sourceforge.net/p/inferencemgpu/

implicates in smaller execution times. This happens
because the higher the number of target genes pro-
cessed per block, the higher the number of genes pro-
cessed in parallel in each block, which leads to less
traffic between shared and global memories. Experi-
ments with targets/block > 128 were not performed,
since the GPU shared memory does not support the
segment lengths of the expression matrices T and P.
The small amount of shared memory is an important
restriction of the GPU architecture.
We verified that as we increase the number of targets

per block, the execution time decreased as expected,

since the number of transfers from global memory for
each gene is O(n * k2). But the number of operations for
evaluating the entropies is the same, regardless of the
number of targets per block. This explains the almost
linear gains in performance when increasing the block
size from 32 to 128 targets per block.

Execution times for ternary samples
The same experiments performed for binary samples
were also run considering 30 ternary samples (consider-
ing that each gene can assume three values). Tables 4, 5
and 6 show the average execution times for each

...
T 0

... ...
C 0 C i C m−1

...

T
0

T
0
10 T 0

n/m−1
...

...
C i

T: T T10 n/m−1
T

i i i T
n/m−1

m−1
TT

0

m−1

1

m−1

T Ti m−1

T 10 T
n/m−1

i
T
i i

0
Bl

1
Bl Bl

k/m−1
i i i

Figure 5 Multi-GPU Algorithm. An arrow Ti® Ciindicates that the supersegment Tiis copied to the global memory of GPU Ci; Ti
j denotes the

segment j belonging to supersegment i; Blij denotes the block Bljstarted in Ci.

Table 1 Experiment 1: Execution times for binary samples
experiment using 1 GPU.

GRN size CPU 32 targets/bl 64 targets/bl 128 targets/bl

1024 4 min 19.8s s 20.1 s 9.3 s

2048 34.5 min 2.7 min 1.4 min 36 s

4096 5 h 16.4 min 11 min 4.8 min

8192 1.7 days 1.8 h 1.1 h 28.6 min

Columns from left to right: different sizes of GRNs (number of genes);
execution times of the 6 core CPU algorithm; execution times for 3
experiments using the GPU algorihm: 32, 64 and 128 target genes per block
using 1 GPU.

Table 2 Experiment 2: Execution times for binary samples
experiment using 2 GPUs.

GRN size CPU 32 targets/bl 64 targets/bl 128 targets/bl

1024 4 min 19.5 s 20 s 9.2 s

2048 34.5 min 1.4 min 1.3 min 35 s

4096 5 h 13.3 min 5.6 min 2.4 min

8192 1.7 days 1.1 h 43 min 18.7 min

Columns from left to right: different sizes of GRNs (number of genes);
execution times of the 6 core CPU algorithm; execution times for 3
experiments using the GPU algorihm: 32, 64 and 128 target genes per block
using 2 GPUs.

Borelli et al. BMC Bioinformatics 2013, 14(Suppl 18):S5
http://www.biomedcentral.com/1471-2105/14/S18/S5

Page 8 of 12

experiment (3 executions for each experiment) consider-
ing 32, 64 and 128 target genes per block.
The same observations stated for the binary samples

case are also valid here.

Obtained speedups
We also evaluated the speedups obtained with the GPU
algorithm. We defined the speedup as the execution
time spent by the multi-core algorithm parallelized on 6
CPU cores divided by the execution time spent by the
GPU algorithm for the same instance of the problem.
Figures 6(a), 6(b) and 6(c) show the speedup versus
number of genes considering 32, 64 and 128 target
genes per block, respectively. These results consider
both binary and ternary samples.
The results show good speedups on networks with

2048 or more genes, especially when using two or four
GPUs. For example, using four GPUs for networks of
8192 genes, we obtain speedups of approximately 55,
110 and 260, when using 32, 64 and 128 target genes
per block, respectively, for the binary samples case. For
ternary samples, the speedup behaviors look similar,
with speedups of approximately 30, 40 and 185 for 32,
64 and 128 targets per block, respectively. Moreover,
the speedup tends to increase with the number of genes,
since in this case we use all the cores in the GPUs more
effectively.
The speedup obtained with the ternary samples was

smaller than with the binary samples because each
thread uses more state variables. This results in a larger
register utilization and, consequently, a smaller number

of simultaneously executing threads. However, the
obtained speedup is 185 when using 4 GPUs and 60
when using a single GPU.
Regarding the usage of multiple GPUs, Figure 6(a)

shows that, for the binary coding, there is no advantage
in using two or four GPUs when we take 32 target
genes per block and GRNs with 1024 genes. With tern-
ary coding, the execution times with two and four GPUs
were the same. A similar scenario occurs for networks
with up to 2048 genes and 64 and 128 genes per block,
as shown in Figure 6(b) and 6(c).
This result can be explained considering the number

of thread blocks required to represent all target genes.
For instance, considering 32 targets per block, we need
32, 64 and 128 blocks for networks with 1024, 2048 and
4096 genes, respectively. In the experiments we used
GPUs with 30 SMs, which can simultaneously execute a
number of blocks multiple of 30. With 32 genes per
block and 1024 genes, the speedups with 1, 2 and 4
GPUs were the same. In this case, it is clear that with
one GPU, 2 SMs executed 2 blocks simultaneously, with
the others executing a single block, without a perfor-
mance penalty. With 2048 genes there are 64 blocks
and there was a performance gain when using 2 or
more GPUs. In this case, with one GPU some SMs had
to execute three blocks, which could not be performed
simultaneously. Consequently, it required almost twice
the time when compared to the execution with 2 GPUs.
Finally, for networks with larger number of genes, such

as 8192 genes, the use of multiple GPUs provides impor-
tant gains in the speedup. For instance, considering 128

Table 3 Experiment 3: Execution times for binary samples
experiment using 4 GPUs.

GRN size CPU 32 targets/bl 64 targets/bl 128 targets/bl

1024 4 min 19.5 s 20 s 9.3 s

2048 34.5 min 1.3 min 1.3 min 35 s

4096 5 h 5.4 min 5.4 min 2.3 min

8192 1.7 days 43 min 22.3 min 9.4 min

Columns from left to right: different sizes of GRNs (number of genes);
execution times of the 6 core CPU algorithm; execution times for 3
experiments using the GPU algorihm: 32, 64 and 128 target genes per block
using 4 GPUs.

Table 4 Experiment 4: Execution times for ternary
samples experiment using 1 GPU.

GRN size CPU 32 targets/bl 64 targets/bl 128 targets/bl

1024 4.2 min 48.5 s 28.7 s 13.5 s

2048 36.9 min 5 min 3.9 min 53 s

4096 5.6 h 33.8 min 24.5 min 7.4 min

8192 1.9 days 4.7 h 2.7 h 45.3 min

Columns from left to right: different sizes of GRNs (number of genes);
execution times of the 6 core CPU algorithm; execution times for 3
experiments using the GPU algorihm: 32, 64 and 128 target genes per block
using 1 GPU.

Table 5 Experiment 5: Execution times for ternary
samples experiment using 2 GPUs.

GRN size CPU 32 targets/bl 64 targets/bl 128 targets/bl

1024 4.2 min 24.5 s 28 s 13.1 s

2048 36.9 min 3.3 s 1.9 min 50 s

4096 5.6 h 20.2 min 16 min 3.7 min

8192 1.9 days 2.7 h 1.6 h 29 min

Columns from left to right: different sizes of GRNs (number of genes);
execution times of the 6 core CPU algorithm; execution times for 3
experiments using the GPU algorihm: 32, 64 and 128 target genes per block
using 2 GPUs.

Table 6 Experiment 6: Execution times for ternary
samples experiment using 4 GPUs.

GRN size CPU 32 targets/bl 64 targets/bl 128 targets/bl

1024 4.2 min 24 s 28 s 12 s

2048 36.9 min 1.7 min 1.9 min 49 s

4096 5.6 h 13.3 min 8 min 3.5 min

8192 1.9 days 1.6 h 1.1 h 14.5 min

Columns from left to right: different sizes of GRNs (number of genes);
execution times of the 6 core CPU algorithm; execution times for 3
experiments using the GPU algorihm: 32, 64 and 128 target genes per block
using 4 GPUs.

Borelli et al. BMC Bioinformatics 2013, 14(Suppl 18):S5
http://www.biomedcentral.com/1471-2105/14/S18/S5

Page 9 of 12

Figure 6 Speedup × GRN size. (a), (b) and (c): graphics representing speedup × GRN size for 32, 64 and 128 targets per block. The terms “BIN”
and “TER” indicate binary and ternary samples cases, respectively.

Figure 7 Time elapsed in function of the number of samples. Curves representing time elapsed in function of the number of samples, in
which each curve corresponds to a number of targets per block (32, 64 and 128). In this case, 4 GPUs were employed to infer a network of
4096 genes. The terms “BIN” and “TER” indicate binary and ternary samples cases, respectively.

Borelli et al. BMC Bioinformatics 2013, 14(Suppl 18):S5
http://www.biomedcentral.com/1471-2105/14/S18/S5

Page 10 of 12

genes per block using 4 GPUs (Figure 6(c)), the speedup
was 2 times higher than the obtained by considering 2
GPUs and 3 times higher than the obtained by consider-
ing a single GPU when applying to binary samples. And
in the ternary samples case, considering the same set-
tings, the speedup obtained for 4 GPUs was 2 times
higher than the obtained by considering 2 GPUs and 3.1
times higher than the obtained by considering a single
GPU.

Number of samples
To evaluate the dependence of the runtime on the num-
ber of samples, we conducted an experiment using four
GPUs and a network with 4096 genes. We varied the
amount of samples and target genes per block. The
results (see Figure 7) show that there is a linear depen-
dence between the runtime and the number of samples
for both binary and ternary samples cases.

Conclusions
In this paper we propose a multi-GPU algorithm that
allows the inference of gene regulatory networks (GRNs)
with multivariate predictions in significantly lower times
than using multi-core CPUs. For instance, the inference
of a GRN with 8192 genes, which took about two days
in a six core CPU, was executed in less than 30 minutes
using 1 GPU and about 10 minutes using 4 GPUs. The
main contribution of the algorithm is to permit the
execution of the exhaustive GRN inference method
using large datasets in a reasonable time.
Another important observation is that the proposed

multi-GPU scheme is well scalable, since the speedups
increased in an almost linear fashion with the employed
number of GPUs. Such speedups results suggest that it
is an efficient and low cost solution for researchers that
need to infer GRNs of realistic sizes (order of thou-
sands) from transcriptome data in a reasonable time,
considering multivariate (N-to-1) relationships. Besides,
this paper presents a proof of principle, showing that it
is possible to parallelize the exhaustive search algorithm
in GPUs with encouraging results. Although our focus
was on the GRN inference problem, we developed an
exhaustive search technique based on GPU which can
be applied to other combinatorial problems with minor
adaptations.
As future work, the algorithm will be improved to

work with predictor subsets with cardinality greater
than 2, which allows to infer GRNs with more complex
interactions. Such improvement requires new appro-
aches for gene expression matrices division and for data
traffic management between the global and shared
memories. Also, we will also update the method to exe-
cute in clusters of heterogeneous GPUs, which will

provide more performance, specially for inferences with
larger networks and higher cardinalities.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors analyzed the initial problem, conceived the general framework of
the proposed approach and discussed aspects of the development and
implementation. FFB and RYC worked on development and implementation
of the method. All authors idealized the experiments, discussed the results
and participated in the production and revision of the manuscript.

Acknowledgements
We would like to especially thank Beatriz Stransky for the helpful comments
on the biological motivation aspects of this work. We are also grateful to
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
proc. 559955/2010-3), Fundação de Amparo à Pesquisa do Estado de São
Paulo (FAPESP) and Universidade Federal do ABC (UFABC) for financial
support.

Declarations
Publication of this article was supported by Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq proc. 559955/2010-3).
This article has been published as part of BMC Bioinformatics Volume 14
Supplement 18, 2013: Selected articles from the Second IEEE International
Conference on Computational Advances in Bio and Medical Sciences
(ICCABS 2012): Bioinformatics. The full contents of the supplement are
available online at http://www.biomedcentral.com/bmcbioinformatics/
supplements/14/S18.

Published: 5 November 2013

References
1. Maniatis T, Reed R: An extensive network of coupling among gene

expression machines. Nature 2002, 416:499-560.
2. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P: Molecular biology

of the cell. 4 edition. New York: Taylor & Francis Books, Inc.; 2002.
3. DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y,

Su YA, Trent JM: Use of a cDNA microarray to analyse gene expression
patterns in human cancer. Nat Genet 1996, 14(4):457-460.

4. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW: Serial analysis of gene
expression. Science 1995, 270:484-487.

5. Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for
transcriptomics. Nat Rev Genet 2009, 10:57-63.

6. Friedman N, Linial M, Nachman I, Pe’er D: Using Bayesian networks to
analyze expression data. Journal of Computational Biology 2000, 7:601-620.

7. Chen M, Ning K: BNArray: an R package for constructing gene regulatory
networks from microarray data by using Bayesian network. Bioinformatics
Application Notes 2006, 22:2952-2954.

8. Butte AJ, Kohane IS: Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements. Pac Symp
Biocomput 2000, 418-429.

9. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla
Favera R, Califano A: ARACNE: An algorithm for the reconstruction of
gene regulatory networks in a mammalian cellular context. BMC
Bioinformatics 2006, 7(Suppl 1):S7.

10. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S,
Collins JJ, Gardner TS: Large-scale mapping and validation of escherichia
coli transcriptional regulation from a compendium of expression
profiles. PLoS Biol 2007, 5:e8.

11. Barrera J, Cesar-Jr RM, Martins-Jr DC, Vencio RZN, Merino EF,
Yamamoto MM, Leonardi FG, Pereira CAB, del Portillo HA: Constructing
probabilistic genetic networks of Plasmodium falciparum from dynamical
expression signals of the intraerythrocytic development cycle. Methods
of Microarray Data Analysis V Springer; 2007, 11-26.

12. Lopes FM, Martins DC Jr, Cesar RM Jr: Feature selection environment for
genomic applications. BMC Bioinformatics 2008, 9:451.

Borelli et al. BMC Bioinformatics 2013, 14(Suppl 18):S5
http://www.biomedcentral.com/1471-2105/14/S18/S5

Page 11 of 12

http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S18
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S18
http://www.ncbi.nlm.nih.gov/pubmed/11932736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11932736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8944026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8944026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7570003?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7570003?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10902190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10902190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17254312?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17254312?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17214507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17214507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17214507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18945362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18945362?dopt=Abstract

13. Lopes FM, Martins-Jr DC, Cesar-Jr RM: Comparative study of GRN’s
inference methods based on feature selection by mutual information.
IEEE International Workshop on Genomic Signal Processing and Statistics
(GENSIPS) Minneapolis, MN, USA; 2009.

14. D’haeseleer P, Liang S, Somogyi R: Genetic Network Inference: From
Co-Expression Clustering to Reverse Engineering. Bioinformatics 2000,
16:707-726.

15. de Jong H: Modeling and Simulation of Genetic Regulatory Systems: A
Literature Review. Journal of Computational Biology 2002, 9:67-103.

16. Styczynski MP, Stephanopoulos G: Overview of computational methods
for the inference of gene regulatory networks. Computers & Chemical
Engineering 2005, 29(3):519-534.

17. Schlitt T, Brazma A: Current approaches to gene regulatory network
modelling. BMC Bioinformatics 2007, 8:S9.

18. Karlebach G, Shamir R: Modelling and analysis of gene regulatory
networks. Nat Rev Mol Cell Biol 2008, 9(10):770-780.

19. Hecker M, Lambeck S, Susanne Toepfer EvS, Guthke R: Gene regulatory
network inference: Data integration in dynamic models - A review.
Biosystems 2009, 96:86-103.

20. Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC: GPU
computing. Proceedings of the IEEE 2008, 96(5):879-899.

21. Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Skadron K: A performance
study of general-purpose applications on graphics processors using
CUDA. Journal of Parallel Distributed Computing 2008, 68(10):1370-1380.

22. Shi H, Schmidt B, Liu W, Muller-Wittig W: Parallel mutual information
estimation for inferring gene regulatory networks on GPUs. BMC
Research Notes 2011, 4:189.

23. Borelli FF, Camargo RY, Martins-Jr DC, Stransky B, Rozante LCS: Accelerating
Gene Regulatory Networks Inference through GPU/CUDA Programming.
2nd IEEE International Conference on Computational Advances in Bio and
Medical Sciences (ICCABS) Las Vegas, NV; 2012.

24. Pluim JPW, Maints JBA, Viergever MA: Mutual-information-based
registration of medical images: a survey. IEEE Transactions on Medical
Imaging 2003, 22:986-1004.

25. Martins-Jr DC, Cesar-Jr RM, Barrera J: W-operator window design by
minimization of mean conditional entropy. Pattern Analysis & Applications
2006, 9:139-153.

26. Fraser AM, Swinney HL: Independent coordinates for strange attractors
from mutual information. Phys Rev A 1986, 33:1134-1140.

27. Zhou X, Wang X, Dougherty ER, Russ D, Suh E: Gene Clustering Based on
Clusterwide Mutual Information. Journal of Computational Biology 2004,
11:147-161.

28. Zhou X, Wang X, Dougherty ER: Nonlinear-Probit Gene Classification
Using Mutual-Information and Wavelet Based Feature Selection.
Biological Systems 2004, 12(3):371-386.

29. Martins-Jr DC, Braga-Neto U, Hashimoto RF, Dougherty ER, Bittner ML:
Intrinsically Multivariate Predictive Genes. IEEE Journal of Selected Topics in
Signal Processing 2008, 2(3):424-439.

30. Shannon CE, Weaver W: The mathematical theory of communication Univ. of
Illinois Press; 1963.

31. Nvidia1: NVIDIA CUDA C Programming Guide 2010 [http://www.nvidia.com/].
32. Kauffman SA: The Origins of Order New York: Oxford University Press; 1993.
33. Lopes FM, Cesar-Jr RM, Costa LF: Gene expression complex networks:

synthesis, identification and analysis. Journal of Computational Biology
2011, 18:1353-1367.

34. Bozdech Z, Llinás M, Pulliam BL, Wong ED, Zhu J, DeRisi JL: The
transcriptome of the intraerythrocytic developmental cycle of
Plasmodium falciparum. Plos Biol 2003, 1:E5.

doi:10.1186/1471-2105-14-S18-S5
Cite this article as: Borelli et al.: Gene regulatory networks inference
using a multi-GPU exhaustive search algorithm. BMC Bioinformatics 2013
14(Suppl 18):S5.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Borelli et al. BMC Bioinformatics 2013, 14(Suppl 18):S5
http://www.biomedcentral.com/1471-2105/14/S18/S5

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/11099257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11099257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11911796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11911796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24039917?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24039917?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18047732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18047732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18797474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18797474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19150482?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19150482?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21672264?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21672264?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12906253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12906253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24040463?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24040463?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9896728?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9896728?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15072693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15072693?dopt=Abstract
http://www.nvidia.com/
http://www.ncbi.nlm.nih.gov/pubmed/21548810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21548810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12929205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12929205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12929205?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Identifying predictors by probabilistic gene networks using mutual information
	Search algorithm
	Criterion function

	GPU architecture and CUDA
	A GPU/CUDA algorithm for GRNs inference
	Preliminary considerations and user settings
	Preprocessing
	Local exhaustive search
	Global exhaustive search
	Analysis of the algorithm
	Multi-GPU algorithm
	Implementation

	Results and discussion
	Execution times for binary samples
	Execution times for ternary samples
	Obtained speedups
	Number of samples

	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	References

