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Abstract

The assignment of gene function remains a difficult but important task in computational biology. The
establishment of the first Critical Assessment of Functional Annotation (CAFA) was aimed at increasing progress in
the field. We present an independent analysis of the results of CAFA, aimed at identifying challenges in assessment
and at understanding trends in prediction performance. We found that well-accepted methods based on sequence
similarity (i.e., BLAST) have a dominant effect. Many of the most informative predictions turned out to be either
recovering existing knowledge about sequence similarity or were “post-dictions” already documented in the
literature. These results indicate that deep challenges remain in even defining the task of function assignment, with
a particular difficulty posed by the problem of defining function in a way that is not dependent on either flawed

gold standards or the input data itself. In particular, we suggest that using the Gene Ontology (or other similar
systematizations of function) as a gold standard is unlikely to be the way forward.

Introduction

In computational biology, critical assessment of algo-
rithms plays an important role in keeping the field honest
about utility by ensuring progress is measurable and in a
direction that is helpful in solving biological problems.
The recognition of the need for assessment dates back to
the first Critical Assessment of Structure Prediction
(CASP), which aimed to determine the state of the art in
protein structure prediction [1]. CASP’s ongoing assess-
ment has proven highly successful in characterizing pro-
gress, and 20 years later CASP largely defines the field of
protein structure prediction. CASP has a number of fea-
tures that are important to its success, some of which
were built in from the start and others which were the
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result of lessons learned along the way. Among those fea-
tures are forcing participants to make true predictions
rather than blinded post-dictions (limiting over-training),
the use of fully representative evaluation metrics (limiting
artifactual performance), and the recognition of sub-pro-
blems that are treated as distinct tasks (allowing for dif-
ferent strategies, e.g. “template-free” vs. “template-based”
prediction). In addition to these inherent lessons, CASP
has taught the field that progress in “template-free” (ab
initio) prediction, while substantial, is slower than predic-
tion that can directly leverage existing protein structures
thanks to sequence similarity. CASP’s results have also
shown that the aggregation of algorithms is an effective
way to reduce the effect of “noisy” low-quality predictions
[2].

CASP has inspired numerous other critical assess-
ments, including the topic of this paper, the first Critical
Assessment of Functional Annotation (CAFA). CAFA
was aimed at assessing the ability of computational
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methods to predict gene function, starting from protein
sequences. The general approach for predicting gene
function is often referred to as “guilt by association”
(GBA) [3]. In a computational GBA framework, the
input data takes the form of similarities among genes
(sometimes this is treated as a graph or gene network)
and some initial functional labeling (often based on the
Gene Ontology or a related scheme [4]). Genes which
are in some sense “near” genes with a given label might
be proposed to share that label (function) with them.
While a common measure of “guilt” uses sequence simi-
larity, numerous other data types have been used alone
or in combination, such as coexpression, protein inter-
actions, patterns of conservation and genetic interac-
tions. All of these have been shown to be predictive of
gene function to varying degrees when tested by cross-
validation, and numerous algorithms of varying levels of
sophistication have been proposed. However, indepen-
dent assessment of computational GBA is not routine.
CAFA represented an attempt to fill this gap. This is a
very challenging goal due to problems in defining gold
standards and evaluation metrics [5].

In the first CAFA, in which we were only observers,
approximately 47000 protein sequences from UniProt
were selected as targets. These sequences were chosen
because they lacked high-quality evidence codes (“EXP”,
“TAS” or “IC”) on any their Gene Ontology (GO) anno-
tations (if they had any), and thus were considered to
have “unknown function” (http://biofunctionprediction.
org/node/262). Participants were asked to assign GO
terms to the proteins, with no more than 1000 terms
assigned to any given target. Importantly, the GO terms
that would eventually be used for assessment were not
known in advance, and users were left to decide which
data to use as input to their algorithms, without restric-
tions. The large number of targets in CAFA and the
unpredictable nature of which sequences would be used
for assessment in the end ensured that it would be diffi-
cult for participants to “game” the system.

After participants submitted their predictions, a six
month waiting period ensued. At the end of this period,
UniProt/GOA was checked for updates to the GO anno-
tations of the targets. New GO annotations which had
“EXP”, “TAS” or “IC” evidence codes were treated as the
gold standard “truth” to which each participant’s predic-
tions would be compared. Such new GO annotations
were available for ~750 sequences. As set out by the
CAFA rules, performance for a submission was to be
measured for each target, by comparing the GO annota-
tion predicted by the algorithm with the truth. To cap-
ture the idea of “near misses”, a novel measure of
precision and recall were devised by the organizers
using the number of common (up-propagated) GO
terms shared by the truth and prediction.
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CAFA was structured differently from an earlier assess-
ment that had similar motivations, Mousefunc [6].
Mousefunc provided participants with a blinded set of
prepared data (gene networks and the like), and an honor
system was used to prevent the nine participating groups
from reverse-engineering the coding. In addition to clas-
sifying a training set of genes against the target GO
terms, participants made predictions for a held-out 10%
of the genes, which were unmasked for the assessment.
The conclusions of the Mousefunc assessors were that in
general methods performed fairly similarly (combined
yielding 41% precision at 20% recall), with one method
standing out as the “winner” by a modest margin; and
that “molecular function” terms were easier to predict
than those for the “biological process” aspect of GO. By
far the most informative data sets were those based on
protein sequence (while sequences were not directly
used, two of the data sets were founded on protein
sequence patterns). A set of 36 novel predictions (that is,
high-scoring apparent “false positives”) were evaluated by
hand and found to have literature support at an encoura-
ging rate of around 60% [6]. Recently, we reanalyzed the
Mousefunc data and many other gene networks and
showed that much of the learnability of gene function in
cross-validation is explained by node degree effects (to a
first approximation, assigning all functions to “hubs” is a
surprisingly effective strategy) [7]. We hypothesized that
the problem of prediction specificity would play a similar
role in CAFA results.

In this paper, we report the results of our independent
assessment of a portion of the CAFA results made avail-
able to us. Our intention was to assist the CAFA organi-
zers in making the most of the assessment, and to gain
insight into how gene function predicts “in the wild”.
Our results suggest that most prediction algorithms
struggle to beat BLAST. An evaluation based on an
information-based metric suggest that informative pre-
dictions are made at a rate of at best 15%, and that
many of the informative predictions made could be
inferred from the pre-existing literature and GO annota-
tions. In agreement with our previous results on multi-
functionality, informative predictions tended to be made
to GO groups containing highly multifunctional genes.
We find a comparison of the CASP and CAFA tasks to
be informative, in terms of the some lessons learned
through CASP and how they might be applied to CAFA
in the future. However, the evidence suggests that many
of the challenges are fundamentally due to reliance on
an imperfect gold standard.

Methods

All data and methods we describe for CAFA were based on
information that was publicly available to non-participants
at the time of the assessment or shortly after the summer
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2011 workshop. As noted in the discussion, there are a few
points of variance in the assessment that was finally done
by the organizers. Our methods reflect our understanding
of the state of affairs as they would have appeared to a par-
ticipant in the assessment.

Data

The CAFA participants were contacted by the organi-
zers at our behest, asking them if they would be willing
to provide their predictions to us for analysis. It was
made clear that we would be focusing on overall pat-
terns and not on the performance of individual identi-
fied algorithms. Positive responses were received from
16 groups (no negative responses were obtained; the
remainder were apparently non-responses). This yielded
a set of results for 16 out of 56 algorithms that were
entered in the assessment; for the sake of discussion we
assume this subset is representative. In accordance with
our agreement with the participants, in this paper we do
not identify the specific algorithms or the participants.
We were also not provided with any information about
the input data used by the algorithms other than the
target sequences that were provided. We note that it
was straightforward for participants to determine exist-
ing annotations for the sequences, if they desired, so we
assume this information was available for the purposes
of our evaluation.

The format of the data we were given was as follows,
for the Molecular Function (MF) and Biological Process
(BP) categories separately. For each of up to 1000 GO
terms per target, a score in the interval (0.00, 1.00] was
provided, where 1.00 was to indicate the strongest pre-
diction (some algorithms only provided binary scores).
Non-predictions were indicated by missing values (that
is, the value 0.00 was not allowed). Not all algorithms
made predictions for all targets, and not all algorithms
made the maximum of 1000 predictions for all targets.
One submission did not provide predictions in the BP
category. We only received predictions made for the eva-
luation targets and were thus unable to examine the
results for the other ~46,000 targets.

In addition to the official entries, the organizers pro-
vided results of using BLAST [8] as a predictive method
(assigning GO terms based on the top BLAST hit in the
“nr” database, using default settings) and results from a
BLAST-based method, GOtcha [9]. GOtcha takes into
account information about the structure of the Gene
Ontology in combining information from multiple high-
scoring BLAST hits. Another data set was provided to us
in which sequences were “predicted” to have GO terms
according to the proportion of sequences which had a
given term in the existing GO annotations. Thus all pro-
teins were assigned the terms “Biological Process” and
“Molecular Function” with weights 1.0, and terms “lower
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down” in the GO hierarchy with decreasing weights until
1000 GO terms were reached. We refer to this as the
“Prevalence” data set. For reasons to be described the
Prevalence data set is best considered a control, not a
real entry; thus our evaluation focuses on 18 entries
including BLAST and GOtcha. To create an aggregate
classifier, the results from all 18 algorithms were com-
bined using the average normalized rank of the scores
provided for each algorithm. We chose this method of
aggregation because it is as naive an aggregation as we
could imagine, involving no prior expectation as to per-
formance or training based on data. We stress that it
should not be regarded as a competitor algorithm since it
merely averages the other algorithms’ prediction data
after the fact.

The annotations treated as a gold standard for evalua-
tion involve 558 sequences in the biological process
(BP) evaluation category, and 454 for molecular function
(MF), from 10 difference taxa. These sequences were
selected for evaluation from the starting set of 46997
because they had received GO annotations with “strong”
evidence codes ("EXP”, “TAS” or “IC”) during the six
month waiting period. After propagating these terms
upwards in the GO hierarchy, a total of 2457 terms (out
of 18982 possible) were annotated at least once in the
BP category and 709 (out of 8728) in MP.

Assessment metrics

The primary assessment metric proposed by the organi-
zers is gene-centric (http://biofunctionprediction.org/
node/262). For each gene, the terms assigned are propa-
gated up the GO hierarchy to the root, yielding a set of
terms. This is performed for each scored term a gene is
given, starting with the highest scoring and working
downward, adding to the number of predicted terms.
This propagation could be done by the submitter, or
would be done by the organizers for all non-zero predic-
tions. The same propagation was done for the gold stan-
dard term. Any terms overlapping between these sets
was considered “correct”. Given these sets, precision and
recall can be computed the usual way, (precision = |
True terms|/|predicted terms|, recall = |correct pre-
dicted terms|/|True terms|). To generate a precision-
recall curve, the predictions for each gene were treated
as a ranked list of GO terms (with the non-assigned GO
terms being tied at the bottom). When a term is
expanded by up-propagation, the best score given for
the term is the one retained (since submitters may have
submitted an explicit score for a GO term as well as
one or more scores implied by the structure of GO)
unless the submitter had provided a specific lower score
for that term. Precisions at each recall were computed,
generating a precision-recall curve. The assessment rules
did not specify a way in which to summarize these
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curves, so we used the average precision [10]. We refer
to this as the “CAFA score”.

We present results from two additional metrics. One
is function-centric and is a standard area under the
receiver operating characteristic curve (AUROC). We
first propagated GO terms as described above. For each
GO term in the gold standard, we considered it for
ROC computation if it had 10-100 members. For each
such GO term, across all evaluation targets, we used the
scores provided by the submitter to rank the predic-
tions, with non-predictions treated as tied. The area
under the ROC curve was computed using standard
methods. Because we did not get information on the
unevaluated targets, the AUCs we computed are prob-
ably depressed, as we suspect that the prediction scores
for the other ~46,000 would tend to be lower than that
for the evaluation targets, due to biases in which of
them received new GO annotations. However, this does
not preclude valid internal comparisons based on the
evaluation targets.

The second metric we used is gene-centric but
attempts to overcome problems we encountered with
the CAFA score. The measure is the semantic similarity
between the actual and predicted function, using the
measures of Resnik [11] or Lin [12]. These measures
take into account the information content of each GO
term, based on the usage of terms in existing annota-
tions [13]. Thus getting a rarely-used GO term correct
in a prediction is given higher weight than correctly
guessing a generic one. We note that the use of these
semantic similarity measures has been previously pro-
posed for assessment of predictions [5].

Gene Ontology annotations

To perform a retrospective analysis, we obtained anno-
tations from the GOA [14] FTP archives, dated January
11 2011. For mouse this corresponds to GOA release
79; for human it is release 93; for E. coli release 91; rat
release 79; Arabidopsis release 66. The deadline for
CAFA submissions was January 18, 2011 so the file
represents GO annotations that were available to the
participants at the time of submission and could have in
principle been used for inference. Note that our analysis
is based on the presence of the annotations in the files
for the date given, not the “date of annotation” column
in the latest files; the latter appears to be misleading or
incomplete.

Algorithm aggregation

To combine the predictions into a single set, the gene
rankings for each algorithm were normalized to the
range 0-1. We computed the mean of this normalized
rank for each gene, and ranked the resulting means to
obtain the final ranking.
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Results

Gene-centric evaluation using the CAFA score

The 18 methods evaluated yielded mean CAFA scores of
0.45 for the Molecular Function ontology (MF) and 0.21
for Biological Process (BP) (Figure 1). The scores obtained
by aggregating across all algorithms were better than any
of the individual algorithms (0.40 for BP and 0.67 for MF).
Whether these values are good in an absolute sense
depends on what one considers the null distribution. If
one completely ignores any prior knowledge of GO struc-
ture, the values appear to be very high. However, a more
appropriate null is provided by the Prevalence data. Any
algorithm that cannot do better than assignment of gene
functions based on their existing prevalence among anno-
tated genes is not useful in practice. The fact that the Pre-
valence method is not really a method but a “background”
is highlighted by the fact that it gives the same predictions
to all genes, and that it can be computed without any
information about the target genes. Considering Preva-
lence as the baseline, only three algorithms perform better
than null on BP, and six perform better than null on MF
(Figure 1B and 1D). BLAST performed worse than the
null (0.19 vs. 0.31 for BP, 0.44 vs. 0.52 for MF).

Further investigation revealed that this result is not due
to terrible performance of the algorithms, but that the
CAFA score is problematic. Consider an algorithm which
simply predicts “Molecular function” (GO:0003674, the
root of the MF hierarchy) for every target. This is always a
correct (precise) prediction, because all MF evaluation tar-
gets are assigned the term “molecular function”, due to
the propagation of annotations to the root. One might
hope this single correct prediction is counterbalanced by
poor recall; however the recall turns out not to be that
bad, because the evaluation targets for CAFA have few
annotations, even after propagation (7.3 terms on average
in MF). Thus simply assigning “Molecular function” to
each target yields a respectable CAFA score of 0.19, which
is clearly erroneous. The performance of the “Prevalence”
data represents a generalization of this problem. In theory,
the submitters could have compensated for this issue by
making sure they had at least made the predictions they
could make with little chance of decreasing their precision.
If this was done in a consistent manner, the scores would
at least be internally comparable, but there is no evidence
to suggest the submitters took this into account. The
implication of this analysis is that the CAFA score is not
giving a useful representation of the performance of pre-
diction algorithms in any absolute sense, and it also can-
not be used to reliably compare the CAFA submissions to
each other.

In prediction one can rank functions with respect to a
gene (“Which functions are most associated with this
gene?”), or one can rank genes with respect to a function
(“Which genes are most associated with this function?”).
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Figure 1 Summaries of performance using the “precision-recall"-based CAFA score. A and B show results for the BP ontology; C and D for
MF. Submitted results are shown in black, and the null Prevalence data are represented in grey. A and C plot the distribution of scores for all
evaluation targets, averaged across algorithms. B and D show the distribution of scores across algorithms, averaged across targets.
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The primary CAFA score is gene-centric. However, for a
prediction to be useful it should be valid from either per-
spective. Otherwise one might be able to argue that all
genes have all functions, in some weak or indirect sense.
To make a useful functional assignment, we must consider
whether a gene is “more involved” in a function than other
genes. We therefore considered a more traditional “func-
tion’s point of view” evaluation, and finally an alternative
gene-centric evaluation that takes into account specificity
of predictions and is thus indirectly comparative.

Evaluation by area under ROC curves
A common way to evaluate predictions is to ask, for
each function, which gene is most likely to possess that

function. This is challenging to implement in the con-
text of CAFA because of the capricious nature of which
GO terms and genes were available for evaluation. For
many GO terms there are simply too few genes which
received a prediction. Selecting GO terms that had
between 10 and 100 genes assigned to them yielded 245
terms for BP and 45 for MF. Because of the small num-
ber of targets overall, these tend to be somewhat “high
level” GO groups.

Switching to this function-centric perspective, the 18
algorithms now score quite well in BP with an average
AUROC of 0.63 (Figure 2; note that the Prevalence data
is guaranteed to score exactly 0.5 AUROC as it ranks all
genes equally for each function). The best single method
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Figure 2 Summaries of performance using ROC curves. Results
are only presented for BP because the MF results were too strongly
affected by biases due to the E. coli annotations. A. Distribution of
AUROCs for the GO terms evaluated. The mean performance across
algorithms is shown in black. A simple aggregation algorithm does
much better on average, shown in grey. B. Density plot showing
the overlay of the ROC curves that make up the results shown for
the aggregation algorithm in A, with areas of high density shown in
lighter shades. Scattered light areas are artifacts due to the effects
of GO groups with smaller numbers of genes. Note that the
Prevalence method is guaranteed to generate AUROCs of 0.5 for all
functions since it ranks all genes equally.
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is BLAST, with a mean AUROC of 0.75. Once again, the
aggregate outperforms the individual algorithms with a
mean AUROC of 0.77. AUROCs for MF were also gen-
erally high, with the average performance being 0.66,
BLAST scoring 0.71, and the aggregate performing bet-
ter than any individual algorithm (0.84). We note that
these values are likely to be somewhat artificially
depressed, because they do not take account of the
~46,000 sequences that were left out of the evaluation
due to still not being annotated with good evidence
codes at the time of assessment; we expect that if the
submitted scores for these were available, AUROC values
would be higher (this assumes that the 46,000 would be
biased towards sequences for which predictions would
tend not to be made, due to lack of sequence similarity to
annotated proteins, for example).

We also evaluated species-based variation in func-
tional assignment, to account for the possibility of issues
such as GO terms being used in only one species. For
each GO term, sequences were ranked by the incidence
of the term in the species from which the sequence was
derived (that is, all sequences from a given species were
given the same ranking). This yields a mean AUROC of
0.55 for BP (low, but significantly different from 0.5),
while assessment per-species yielded AUROCs compar-
able to the overall results reported above. This suggests
that species biases in term usage are not a major influ-
ence. However, the molecular function assignments
were badly distorted by species-specific variation in
assignments. In particular, E. coli assignments in MF
were anomalous in having exceptionally high depth
(large numbers of GO terms assigned per gene; Addi-
tional file 1. Terms for E. coli also had an unusually
high correlation within the BP; Additional file 1). The
reason for this is not clear, but may partially reflect the
smaller number of annotations assigned to E. coli in the
BPO relative to other species (17.6 vs. 30.5). However,
this elevated annotation depth outside E. coli in BPO
was extremely variable (standard deviation of 31.3), sug-
gesting it cannot fully explain the species-wide correla-
tion pattern. Curation practices in Ecocyc ([15], the
source of E. coli GO annotations) may be a more impor-
tant casual factor.

Evaluation using information content

The main problem with the CAFA gene-centred metric is
its failure to account for the structure of GO in consider-
ing how informative a prediction is. We therefore consid-
ered a metric based on the semantic similarity between
the hypothesized assignment and the true assignment.
This allowed us to measure whether prediction algorithms
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ever assign a function which is “surprisingly” precise (unli-
kely to be made by chance). We quantified “surprise” by
asking whether the most specific predictions are higher-
scoring than the best scoring prediction made by the
Prevalence method. Thus a novel prediction had to
be more informative than the best “prediction” that could
be made simply based on the null. All of the algorithms
passed this threshold at least once within the BP category,
and on average 7.6% of their predictions were more infor-
mative than the best prediction ever made by the Preva-
lence method (for any of the 558 genes), with a maximum
of 14.7% (Figure 3A). BLAST yielded 5.6% while GOtcha
yielded 9.3%. These findings were not substantially altered
by choice of semantic similarity measure (Resnik or Lin)
or different thresholds for which of a method’s top N
picks could be considered proposed functions. We
obtained comparable results for the MF evaluation, with
all algorithms generating at least some unusually informa-
tive predictions (again, relative to prevalence), with 10.0%
percent of predictions being informative, on average.
These results show that the algorithms can make correct
and specific predictions, though at low proportions.

As shown in Figure 3B, algorithms often gave infor-
mative predictions for the same sequences. The majority
of sequences had no strongly informative predictions
made for them by any algorithm. While we do not
know the methods or data sources used by the submit-
ters (other than in the case of BLAST and GOtcha) the
results suggest that these targets had some feature that
made them especially predictable. The good perfor-
mance of GOtcha led us to hypothesize that information
on sequence similarity was responsible for these unu-
sually good predictions.

To test the effect of sequence similarity we took
advantage of the fact that many of the evaluation
sequences already had GO terms prior to the assessment
(in the BP, an average of 15 functions per sequence; we
assessed this only for mouse and human). These annota-
tions were present because it is routine for genes which
have high sequence similarity to other better-annotated
genes to be assigned GO terms with “weak” evidence
codes such as “IEA”, indicating a computational predic-
tion. Over time, as experimental evidence is obtained,
these evidence codes can be upgraded to those which
were considered part of the CAFA evaluation (e.g.,
“TAS”). We tested whether using the pre-existing GO
annotations as an entry to CAFA would have been com-
petitive. Indeed, this yields performance tied with the
best-performing algorithm in terms of the number of
“informative” predictions (32 out of 275 in MF), with 16
due to the same sequences as the best-performing algo-
rithm. This strongly suggests that in many cases, com-
putational methods are simply recomputing the “IEA”
annotations, and by happenstance some of those were
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Figure 3 Summaries of performance based on information
content. Results are only shown for BP because of the distorting effect
of E. coli annotations in MF. A. The fraction of predictions considered
informative per algorithm. B. Overlaps among informative predictions.
Most sequences received no informative predictions (peak at 0), while

numerous predictions are made by multiple algorithms.

upgraded in GO during the waiting period, making them
part of the gold standard for the purposes of CAFA. We
note that, presumably, the upgrading of the GO annota-
tions is partly driven by the presence of the IEA annota-
tions in the first place (or, at least, by the underlying
sequence similarity); sequences which are already anno-
tated in GO are also more likely to be experimentally
tested, a form of confirmation bias. Thus these apparent
“informative predictions” could be considered in part
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successful guessing of which sequences are likely to
attract attention from experimentalists.

Effect of gene multifunctionality

While we did not have access to the data used by the
submitters, we wished to see if any underlying biases in
the data could be ascertained by the behaviour of the
algorithms. In particular we hypothesized that assign-
ments would tend to be made to GO groups that con-
tain multifunctional genes [7]. Indeed, functions
populated more heavily by multifunctional genes were
preferentially (rank correlation ~0.30) the function
whose assignment caused a rise in the Lin semantic
similarity (which, unlike Resnik similarity, is sensitive to
false positives).

Manual examination of informative biological

process predictions

To gain further insight into how predictions are made,
we more closely examined some of the “most informa-
tive” predictions (the top ten such predictions for BP
from the aggregated algorithms are listed in Table 1). We
used GO annotations from before the start of CAFA
(early January 2011) and compared them to the annota-
tions that appeared during the waiting period. This analy-
sis was assisted by the UniProtKB [16] and QuickGO [17]
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web sites but relied primarily on the annotation files pro-
vided by GOA [14].

As shown in Table 1, in seven of the top 10 cases, the
aggregate algorithm included the “right answer” among
the predictions meeting the threshold established by the
Prevalence baseline (although it was never the top predic-
tion, not shown). Table 1 shows that in nearly every case,
very closely related GO terms were already present
before CAFA, in agreement with the systematic analysis
described above. A possible exception is SOX11. Note
that these “similar” terms might not be in the BP ontol-
ogy, but because of correlations among the GO hierar-
chies, such terms are likely to be informative (for
example, the cellular components “vacuole” for Atp6v0c
and “late endosomal membrane” for CHMP4B). In all ten
cases, the source of the annotation was available before
CAFA, in some cases decades before (last column of
Table 1).

Discussion

CAFA provided a unique opportunity to evaluate compu-
tational gene function assignments. Our results provide
some new insights into the behaviour of gene function
prediction methods, and into the challenges in providing
an adequate and fair evaluation. Some of these challenges
have been noted prospectively [5] so it is interesting to

Table 1 The sequences with the top ten “most informatively” predicted correct annotations by the aggregate

algorithm are summarized.

Sequence Gene Gold standard Closest informative prediction Pre-existing IEA terms  Pub Date
symbol (representative)

BHMT1_MOUSE  Bhmt methionine biosynthetic process methionine biosynthetic process methionine biosynthetic 2004
(GO:0009086) (GO:0009086) process

IPO13_RAT lpo13 steroid hormone receptor nuclear protein import into nucleus, protein import into 2006
translocation (GO:0002146) translocation (GO:0000060) nucleus

ARGB_ECOLI argb arginine biosynthetic process arginine biosynthetic process arginine biosynthetic 2007
(GO:0006526) (GO:0006526) process

CAF1K_ARATH  CAF1-11 nuclear-transcribed mRNA poly(A) tail nuclear-transcribed mRNA poly(A) poly(A)-specific 2009
shortening (GO:0000289) tail shortening (GO:0000289) ribonuclease activity

CFAB_MOUSE Cfb complement activation, alternative complement activation, alternative  complement activation 1983
pathway (GO:0006957) pathway (GO:0006957)

CHMA4B_HUMAN CHMP4B endosome transport (GO:0016197) endosome transport (GO:0016197)  protein transport; late 2010

endosome membrane (Reactome)

HAT5_MOUSE H2-T23  antigen processing and presentation of ~ antigen processing and antigen processing and 1992
endogenous peptide antigen via MHC presentation of endogenous presentation of peptide
class Ib via ER pathway (GO:0002488) peptide antigen via MHC class Ib antigen via MHC class |

(GO:0002476)

SOXT1_MOUSE ~ Sox11 positive regulation of hippo signaling embryonic digestive tract cell differentiation; 2010

pathway (GO:0035332) morphogenesis (GO:0048557) nervous system
development

TGT_ECOL tgt tRNA wobble guanine modification queuosine metabolic process queuine tRNA- 1982
(GO:0002099) (GO:0046116) ribosyltransferase activity

VATL_MOUSE Atp6vOc  lysosomal lumen acidification lysosomal lumen acidification proton-transporting 2001

(GO:0007042)

(GO:0007042)

V-type ATPase, VO
domain;vacuole

The date of publication of the gold standard source is given in the last column.
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see how practice meets theory. We focus to some extent
on comparing CAFA to CASP, and where helpful lessons
could be learned.

Task categorization

One area where CAFA could follow CASP is in the defi-
nition of tasks. Currently CASP differentiates between
three categories of tasks, all of which have direct analo-
gies with function prediction tasks.

The CASP “template-based” prediction task is analo-
gous to the case of trying to predict function when the
gene has sequence similarity to already functionally
annotated genes. In such cases, methods like BLAST pro-
vide a baseline for what can be learned readily. Our ana-
lysis shows that many of the CAFA targets already had
“IEA” functions assigned, and to an extent CAFA suc-
cesses are simply recovering these. Thus perhaps unsur-
prisingly, BLAST did well in the part of CAFA we had
access to, and we expect that other high-scoring methods
are using sequence similarity information. Tasks which
exploit sequence similarity should be considered a dis-
tinct category of function prediction problems. Similarly,
the CASP “template-free” prediction task is akin to the
task of predicting gene function when no sequence simi-
larity information is available (or at least, not used).

The CASP “structure refinement” task [18] might be
analogous to the task of “function refinement” where an
already functionally annotated gene is given new or more
specific functions. We believe this could be treated as is a
different task from assigning functions to a completely
unannotated “orphan” gene (not having even IEA annota-
tions). Among methods that fall into this category are
those which use GO itself as a measure of “guilt” [19,20].
Thus if two genes share nine out of ten GO terms, the
tenth one is a pretty good bet. Even if they don’t expli-
citly rely on existing annotations, algorithms that are
good at “refinement” might not be very good at “tem-
plate-based” assignment (and vice versa).

We propose that some scheme like this be adopted for
future CAFA assessments, to more clearly differentiate
between cases where sequence similarity is highly infor-
mative and those where it is not, and possibly to extend
the competition to include targets which already have
some functions assigned with “strong” evidence codes.

The importance of evaluation metrics

Over the years, CASP has modified its assessment
metrics and now has an agreed-upon set of metrics. As
we have shown, the primary performance metric initially
proposed for CAFA is unsatisfactory. This is illustrated
by the fact that by this measure, a null “prediction
method” outperforms most methods. The problem with
the CAFA score is that it is not comparative across
genes. When one is predicting a function for a gene, the
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goal is to say that “this gene has function x more than
other genes do” in some sense. Otherwise, the definition
of function becomes degenerate, and simply assigning
all genes the same functions becomes reasonable.

We have applied two alternative measures, one which
is gene-centric and focuses on the information content of
a prediction, and a standard metric (AUROC) which is
function-centric. The information-based metric is impli-
citly comparative, because it uses information on the dis-
tribution of GO terms across genes as well as a threshold
set by the null predictor. The AUROC metric also ranks
genes against each other. By these measures, it can be
seen that the prediction algorithms (including BLAST)
are providing meaningful performance. The problem
with the function-centric measure is that it depends on
having more than one prediction for the function to be
scored, which cannot be guaranteed given the nature of
the CAFA task. The differences among annotation prac-
tices for different organisms (notably for E. coli in the
current data) make assessment even harder, as criteria
vary for what is considered good annotations.

The power of aggregation

In recent years, the top algorithms for CASP have tended
to be meta-algorithms which aggregate the results of
individual methods. If our experience is representative,
the same is likely to be true for CAFA. The aggregate
algorithm outperforms all the individual algorithms. The
reason for this is apparently because aggregation allows a
few “confident” predictions to rise to the top, while less
confident predictions (which turn out to be poor) are
“averaged out”. A similar phenomenon was reported in
the DREAMS5 assessment of gene network inference [21].

The benefit of having a clear goal

The points raised thus far are predicated on the idea that
function prediction is like protein structure prediction.
However, in a fundamental way this is not the case, at
least not yet. Algorithms that perform well in CASP are
considered to do well at “structure prediction”. That is,
the CASP tasks are well-aligned with what the field
agrees the “real life” task is. This is basically because pro-
tein structure is fairly easy to define (position of atoms in
space). In contrast, “gene function” does not have an
agreed-upon definition. Certainly there is no consensus
that the Gene Ontology is even close to biological reality,
rather than just being convenient. Since function assign-
ment/prediction methods always use experimental data
as inputs, there may be more value in simply trusting
those data than in trying to “align” predictions to a gold
standard that is acknowledged by its creators to be pro-
blematic for such uses [22]. Tuning algorithms to be
good at predicting GO annotations is probably never
going to be satisfying. The task of interest is predicting
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gene function, not predicting GO annotations as an end
in itself, and the fact that these two tasks are not congru-
ent presents a challenge.

CASP also differs from CAFA in having targets
defined by specific experimental results held back from
participants, who are given key underlying data to use
for computational analysis. The same approach is taken
in the Critical Assessment of Genome Interpretation
(CAGI, https://genomeinterpretation.org/). This has the
benefit of anchoring the assessment in a very specific
outcome measure (that is: did the computation agree
with the experiment). However, it limits the number
and scope of tasks that can be assessed. This model is
not likely to be applicable to the general problem of
gene function assignment, but might be useful as a way
to make progress on more specialized problems.

It is worth mentioning that there are “function predic-
tion” tasks that are not based on GO (or similar schemes)
in the same way as CAFA. For example, some groups
attempt to predict mutant phenotypes [19] (some of the
CAGI tasks are of this type). The roles of the issues we
raise in such situations are not entirely clear, but we note
that the types of data used are the same as those used in
the CAFA-style annotation task, and GO often figures
prominently in such work, especially as a source of vali-
dation [23].

Predicting evidence codes and “post-diction”

With the caveat that CAFA’s evaluation is based on a
relatively small number of proteins, and our analysis on a
subset of the CAFA entries, there are some important
themes that emerged in terms of which informative pre-
dictions were made. The evidence strongly suggests that
a major factor is the availability of sequence similarity
information. Finding a set of proteins which are not
annotated at all was difficult, so many of the evaluation
targets already had “IEA” annotations (presumably often
based on BLAST or a similar approach). The successful
predictions are in part simply guessing that those existing
annotations are likely to be supported by experimental
evidence once they are tested, and thus upgraded in GO.
The strong influence of sequence similarity was also sug-
gested by the Mousefunc study [6].

The fact that many of the most predictable annotations
were based on literature reports that predate CAFA
further suggests that a bottleneck in filling in GO is
information retrieval from the literature, not prediction
per se. Strictly speaking, many of the CAFA evaluation
targets are “post-dictions”. The short time window avail-
able to CAFA probably helped ensure this would be a
factor; there was little chance that many experimental
reports would be published and also curated in a six
month period. The organizers were aware of this, and it
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is unlikely that CAFA participants would have been able
to efficiently exploit the existence of publications describ-
ing the functions of proteins in the target set. On the
other hand, for all we know some of the entries may have
used text mining methods as a tool for making predic-
tions (see Addendum, below). This might be considered
yet another category of automated annotation task. But
we stress that all the predictions are based on experimen-
tal data of one type or another, so this distinction may
not be helpful.

This returns us to the issue of the relationship
between function prediction and GO. If computational
predictions are based on experimental data that could
be used by curators to populate GO, then the task of
prediction is reduced to simply copying that information
into GO (with appropriate evidence codes), rather than
considering GO to be some independent entity that
algorithms should attempt to match.

Conclusions

Our analysis is based on a subset of a single assessment
of automated annotation of a relatively small number of
proteins, but some general principles and concerns
emerged which are very likely to be relevant to any
assessment of function assignment. Sequence similarity
appears to be a dominant influence on the ability to pre-
diction function. In terms of performing assessment,
clearly a major challenge is the relatively slow pace and
unpredictable nature of the entry of experimentally-
defined functions into the annotation databases. But per-
haps the deepest issue is the difficulty of deciding what it
means to predict function in a useful way, as the current
gold standards are deeply problematic. The first CAFA
was a bold attempt to put gene function prediction on a
firmer footing, and we expect that future iterations will
continue to promote progress in this difficult area of
computational biology.

Addendum

Since our manuscript was submitted and revised, a
detailed paper describing the outcome of the CAFA eva-
luation appeared [24], which enhances the interpretation
of our analysis. First, it is now clear that our assessment
included one of the top performing methods, Argot2
[25], as finally judged by the organizers, lending weight
to our reassessment as a fair representation of the entries.
Second, it is reported that the organizers of CAFA did
not evaluate the results using the precise rules which
were released before the assessment (those which were
available to us as non-participants). For example, target
annotations for a specific term (“protein binding”) were
“not considered informative” and thus excluded from
the main evaluation [24]; including this term pushes the
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naive Prevalence score to be among the top performers
(Supplementary Figure 3 of [24]). The organizers also
interpreted “pick the highest scoring term among all
non-zero predictions and propagate it to the root of the
ontology” as excluding the root itself for evaluation (this
has a minimal effect on the value of prevalence since it is
merely the exemplary case of a general problem). Finally,
the number of evaluation targets reported in [24] varies
from ours apparently because the set was expanded after
the initial assessment.

The most striking distinction between Radivojac et al.
and our results, at first glance, is that we found that
simple methods relying on sequence similarity were
highly competitive, while Radivojac et al. ranked
BLAST poorly stating that, “top algorithms are useful
and outperform BLAST considerably,” and, “BLAST is
largely ineffective at predicting functional terms related
to the Biological Process ontology” [24]. This conclu-
sion was apparently based on the CAFA score; the
authors did not report per-algorithm (function-
oriented) AUROCs, on which basis BLAST ranks high-
est in our analysis. The issue is readily resolved by
stressing that based on the CAFA score, the Prevalence
score outperforms BLAST (sometimes even after
removing “protein binding”) and indeed other more
sophisticated methods [24].

In any case it is clear that sequence similarity was the
bedrock of function prediction in CAFA. As noted by
Radivojac et al., nearly of the methods submitted use
sequence similarity. All of the top performers use such
methods, and for some (e.g., Argot2) it was the primary
or sole source of data (not counting the use of GO itself).
The overall top-scoring group (“Jones-UCL”) reported
that “the largest contribution to correct predictions came
from homology-based function prediction” (supplement
of [24]). The only useful non-sequence source of infor-
mation cited for the Jones-UCL method was text-
mining of UniProt-presumably amounting to post-dic-
tions of the type we report in Table 1. The Jones-UCL
method also took into “account the GO ontology struc-
ture to produce final GO results”. Argot2 also leverages
the structure of GO, using information related to the
Prevalence score [25]. This reinforces our concern that
tuning algorithms to match the assessment, while bene-
ficial in a rarified sense, could be misleading about gen-
eralization to many real applications (see also [26]).
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Additional material

Additional file 1: Taxon-specific effects on annotation. The GO
annotations used as evaluation targets were used (not predictions). For
each sequence, a binary vector of GO annotations was created (1=
sequence is annotated), and the correlation among these vectors is
plotted, with lighter shades indicating high correlations. The sequences
are organized by taxon, with the E. coli sequences indicated. It is evident
that the E. coli sequences have very high correlations in their
annotations in BP (A), very low correlations in MF (B) and consistently
high depth (number of terms assigned per sequence within the MFO; C).
Depth of coverage exhibits no visually clear trend for E. coli within BPO,
but is significantly depressed relative to other species (p<10°, ranksum
test).
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