Wang et al. BMC Bioinformatics 2013, 14(Suppl 3):S3
http://www.biomedcentral.com/1471-2105/14/53/S3

BMC
Bioinformatics

PROCEEDINGS Open Access

Three-Level Prediction of Protein Function by
Combining Profile-Sequence Search, Profile-
Profile Search, and Domain Co-Occurrence
Networks

Zheng Wang', Renzhi Cao', Jianlin Cheng'**"

From Automated Function Prediction SIG 2011 featuring the CAFA Challenge: Critical Assessment of Func-
tion Annotations
Vienna, Austria. 15-16 July 2011

Abstract

Predicting protein function from sequence is useful for biochemical experiment design, mutagenesis analysis, protein
engineering, protein design, biological pathway analysis, drug design, disease diagnosis, and genome annotation as
a vast number of protein sequences with unknown function are routinely being generated by DNA, RNA and protein
sequencing in the genomic era. However, despite significant progresses in the last several years, the accuracy of
protein function prediction still needs to be improved in order to be used effectively in practice, particularly when
little or no homology exists between a target protein and proteins with annotated function. Here, we developed a
method that integrated profile-sequence alignment, profile-profile alignment, and Domain Co-Occurrence Networks
(DCN) to predict protein function at different levels of complexity, ranging from obvious homology, to remote
homology, to no homology. We tested the method blindingly in the 2011 Critical Assessment of Function
Annotation (CAFA). Our experiments demonstrated that our three-level prediction method effectively increased the
recall of function prediction while maintaining a reasonable precision. Particularly, our method can predict function
terms defined by the Gene Ontology more accurately than three standard baseline methods in most situations,
handle multi-domain proteins naturally, and make ab initio function prediction when no homology exists. These
results show that our approach can combine complementary strengths of most widely used BLAST-based function
prediction methods, rarely used in function prediction but more sensitive profile-profile comparison-based homology
detection methods, and non-homology-based domain co-occurrence networks, to effectively extend the power of
function prediction from high homology, to low homology, to no homology (ab initio cases).

Background

In the genome era, high-throughput genome, transcrip-
tome, and proteome sequencing is generating an enor-
mous amount of omics data such as gene and protein
sequences. Since experimental characterization of these
proteins can only be carried out at a selectively small
scale, large-scale and high-throughput computational
prediction methods are needed to annotate the structures
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and functions of most of these proteins in order for the
biomedical research to effectively utilize this vast
resource to study genotype - phenotype relationships. To
fill the gap, a variety of computational methods have
been developed to predict protein function from protein
sequence from different perspectives.

The most commonly used approach to function predic-
tion is based on sequence homology. It uses a sequence
comparison/alignment tool to search a target protein
sequence against protein sequences with known function
annotations in a protein database, and if some homolo-
gous hits are found, their function annotations may be
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transferred to the target protein as predictions. GOtcha
[1], OntoBlast [2], and Goblet [3] are tools that use
BLAST [4] to search for homologues and then combine
the Gene Ontology function terms [5] of homologous
hits based on BLAST e-values. PFP [6] uses a more sensi-
tive profile-sequence alignment tool PSI-BLAST [4] to
search for remote homologues, and also considers co-
occurrence relationships between GO [5] terms in order
to improve the sensitivity of prediction.

Phylogenetic relationships between proteins have been
proven to be helpful for inferring protein functions [7-9].
Paralogues and orthologues, the two kinds of homolo-
gous proteins generated by gene duplication and specia-
tion during evolution, respectively [10], may still share
similar functions. Thus, the function of a protein may be
inferred from that of its paralogues or orthologues, even
though the level of their functional similarity may depend
on their evolutionary distance and other factors. As most
of phylogenetic-tree based methods assume orthologous
proteins are more likely to share similar functions [9],
they often generate a phylogenetic tree to elucidate the
evolutionary relationships between a target protein and
its homologous proteins at first, and then preferably use
the functions of its orthologues to infer its function.
SIFTER [11], Orthostrapper [12], RIO [13], and AFAWE
[14] are typical methods in this category.

Apart from homologous relationships mentioned above,
network-based methods exploit other relationships stored
in protein networks. Assuming that neighboring proteins
interacting in a protein-protein interaction (PPI) network
may have similar protein function, some early network-
based methods use the functions of the direct (radius-one)
neighbors of a target protein in a PPI to infer its function.
More advances in this direction include the consideration
of statistically enriched functions within neighbors [15,16],
the expansion of search from direct neighbors to radius-
two and radius-three neighbors [17], and the development
of more advanced function inference methods, such as
Markov random field [18], random walk [19], and algo-
rithms taking in account the global topology of a network
[20-22]. In addition to PPI, Functional Linkage Networks
(FLNSs) [23] derived from protein interaction, gene expres-
sion data, phylogenetic profile, and genetic interaction
[22,24-26], have been used to predict protein function.
More recently, Domain Co-occurrence Networks (DCN)
has been used to predict protein function [16].

In an effort to directly link a protein with its function,
machine learning methods, such as Support Vector
Machines (SVM) and Artificial Neural Networks, have
been developed to predict protein function from scratch.
Machine learning methods usually generate features from
protein sequence, secondary structure, hydrophobicity,
subcellular location, and solvent accessibility, and then
use these features as inputs to train a classifier to assign
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proteins to a number of predefined function categories.
ProtFun [27] aims to classify a eukaryotic protein into 14
Gene Ontology (GO) categories and several Enzyme
Commission classes. FFPred [28] uses features derived
from protein disordered regions and protein sequence
profiles with SVM to classify a protein into 300 Gene
Ontology classes.

With these approaches developed from a variety of per-
spectives, protein function prediction remains a challen-
ging, largely unsolved problem, particularly when little
information regarding homology and protein interaction
is known about a target protein. Both the specificity and
sensitivity of function prediction need to be improved in
order to reliably make function predictions for most pro-
teins. One consensus in the community is to combine
multiple complementary methods and explore and inte-
grate more diverse sources of information to enhance
prediction accuracy and broaden the annotation scope
[29,30]. In this spirit, we developed a three-level method
to cope with the complexity of function prediction at dif-
ferent levels, from high homology, to remote homology,
to no homology, and synergistically integrated them into
a system that can make function prediction for almost all
the target proteins in the 2011 Critical Assessment of
Function Annotation (CAFA, http://biofunctionpredic-
tion.org/) [31]. At the first level, our method uses PSI-
BLAST to search SwissProt [32] for significant homolo-
gues of a target protein; at the second level, it applies a
sensitive profile-profile alignment tool HHSearch to
search against Pfam [33] to gather remote homologues;
and at the third level, it detects domains existent in the
target protein, and then uses their neighboring domains
found in a species-specific Domain Co-occurrence
Networks (DCNs) to infer the functions of the target pro-
tein, even though there may be no homology between the
target protein and its neighboring domains. Our method
combining predictions generated at all three levels parti-
cipated in the 2011 CAFA experiment. In comparison
with three base-line methods, our method not only sub-
stantially expanded the sensitivity/recall of function pre-
diction by adding profile search and domain network at
the top of traditional PSI-BLAST search, but increased
the semantic similarity between predicted function terms
and true ones according to the Gene Ontology. Another
advantage is that our method can readily predict the
functions of multi-domain proteins by decomposing a
protein into individual domains and aggregating the
function predictions of each domain on a Domain
Co-occurrence Network.

Results and discussion

We blindly tested our method in the 2011 Critical Assess-
ment of Function Annotations (CAFA) experiment. In
total, CAFA released 48,298 protein targets whose
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functions were not known to predictors from all around
the world to make prediction from Sept. 2010 to Jan.,
2011. At the end, 436 of the targets whose functions were
later known and deposited into the SwissProt database
were used to evaluate the performances of the predictors.
In order to gauge the advances in the field, CAFA released
the predictions of three baseline methods. The Prior
method used the frequency of GO terms in the SwissProt
database to select 836 most frequent GO terms for each
target as prediction. The BLAST method used BLAST [4]
to search a target protein against groups of proteins,
where proteins in each group shared a common GO term;
and the maximum sequence identify of BLAST alignments
with sequences in a group was used as confidence score to
rank GO terms for the target protein. The GOtcha
method [1] generated GOtcha I-Scores as the sum of the
negative logarithm of the e-values resulted from the
BLAST search and used them as confidence scores to
select GO terms. During the CAFA experiment, our
method submitted three predictions or models for each
target, which were produced by three different ways of
combining predictions of three levels. Predictor 1 mapped
predictions of three levels into three intervals of confi-
dence from high to low; predictor 2 weighed predictions
of three levels differently from more to less in confidence
score calculation; and predictor 3 simply used the fre-
quency of GO terms of all PSI-BLAST hits as confidence
scores to select GO terms. The details of these three pre-
dictors are described in the Method section. Table 1 lists
the minimum, maximum, and average number of GO
terms predicted by three baseline methods and our three
predictors. The following sub-sections report and discuss
the performances of our predictors along with the three
baseline predictors using complementary evaluation
measures.

Precision and recall of top n predictions

We evaluated these methods using precision and recall of
GO terms on top # predictions ranked by prediction con-
fidence scores, for each # in the range [1,20]. One caveat
is that multiple GO terms having the same confidence
score received the same average rank. For example, if the
confidence scores of top three GO term A, B, C are
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0.9, 0.8, 0.8, respectively, the rank of them will be 1, 2.5
(i.e. (2+3)/2), 2.5, respectively. The top n groups (GO
terms in each group have the same confidence scores) of
GO terms were used for evaluation, which makes the
actual number of GO terms possibly higher than n. The
precision and recall of a protein i were calculated as:

number of correctly predicted nodes
PI'i = .
number of predicted nodes

R number of correctly predicted nodes
= number of true nodes

Here, all of the top n predicted GO terms and the
actual GO terms (determined by experimental methods)
of protein i were propagated to the root of the Gene
Ontology Directed Acyclic Graph (DAG). All the GO
term nodes present in the paths of predicted GO terms
toward the root were considered predicted GO terms;
and all the GO term nodes existing in the paths of the
actual GO terms toward the root were considered as
true GO terms. The overlapping GO terms/nodes
between predicted ones and true ones were considered
correctly predicted nodes. For each # in [1,20], we cal-
culated the precision and recall for each target protein
and averaged them over 436 targets protein as the preci-
sion and recall on the data set. Thus, for each method,
we got 20 precision-recall pairs to generate a precision-
recall curve.

Figure 1 plots the precision-recall curves of six predic-
tors. The plot shows that our methods tend to have
higher recall and lower precision in comparison with the
lower recall and higher precision of two baseline meth-
ods: Prior and GOtcha. For instance, our best performing
predictor 1 can reach a recall value as high as ~0.55,
whereas the highest recall value of the baseline methods
(i.e. Prior and GOtcha) is at ~0.27. That the baseline
methods, particularly the Prior method that selects most
frequent GO terms in a general protein function data-
base, can have a high precision but a low recall may be
because these methods tend to predict more general GO
terms in top n predictions that are closer to the root
node of the Gene Ontology, but farther away from the

Table 1 The minimum, maximum, and average number of predictions per target of our three predictors and the three

baseline methods.

Minimum number of predictions

Maximum number of predictions

Average number of predictions

Predictor 1 1 100
Predictor 2 1 100
Predictor 3 1 100
Priors baseline 836 836
BLAST baseline 1 945

GOtcha baseline 2 519

733
56.3
578
836.0
254.1
135.7
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Figure 1 Precision and recall of our three predictors and three baseline methods when considering top n, 1 < = n < = 20, predictions

most specific true GO terms. To illustrate this point
using an example, we calculated the average depth (num-
ber of nodes from a GO term to the root node) of pre-
dicted GO terms of the target protein T07719 for the six
predictors when recall is at ~ 0.1. The average depth of
our predictor 1, 2, and 3, and the Prior, BLAST, and
GOtcha is 16.3, 16.3, 18.4, 13.9, 16.1, and 4.8, respec-
tively, which shows that our predictors tried to predict
deeper GO terms than the Prior and GOtcha. Although
the precision-recall curves of our methods and the three
baseline methods largely occupy two different areas in
the plot, when their recalls overlap within the range
(~0.22, ~0.27), our predictors have higher precisions than
the Prior and GOtcha methods at the same recalls. The
BLAST baseline method can only have a maximum recall
at ~0.18 and a maximum precision at ~0.31, which
clearly performed worse than our three methods includ-
ing our least accurate predictor 3 based on PSI-BLAST

search alone. This suggests that PSI-BLAST might work
better than BLAST for protein function prediction, even
though other factors such as how to rank GO terms
based on alignments cannot be ruled out either.

It is also interesting to notice that the best recall value
of our predictor 1 (~0.55) is higher than that of predictor
2 (~0.51), indicating that including radius-two domain
neighbors in Domain Co-occurrence Network [16] may
contribute to the increase of recall since predictor 1 used
both radius-one and radius-two domain neighbors to
make predictions whereas predictor 2 only used radius-
one neighbors (see the Method section for details). That
the recall of predictors 1 and 2 are much higher than that
of predictor 3 (0.41) demonstrates that profile-profile
alignment (HHSearch [34]) and DCN can substantially
increase the sensitivity of protein function prediction at
the top of the profile-sequence search methods such as
PSI-BLAST (e.g. predictor 3).



Wang et al. BMC Bioinformatics 2013, 14(Suppl 3):S3
http://www.biomedcentral.com/1471-2105/14/53/S3

Precision and recall under a sliding threshold on
confidence scores

We also calculated precisions and recalls according to a
sliding threshold scheme, in which only the predictions
with confidence scores higher than a threshold value ¢
(0 < =t < = 1) were selected for evaluation. The pre-
dicted and actual GO terms were propagated to the root
in the GO DAG as described in the sub-section above.
At each threshold, we calculated precision and recall for
each protein and used the average precision and recall
on all 436 target proteins as the estimated prediction
and recall for the threshold. By using the thresholds
evenly distributed in the range [0, 1] at step size 0.01,
we calculated a series of precision-recall pairs for each
of six predictors.

Figure 2 shows the precision-recall curves of our three
predictors and three baseline methods. Because all the
predictions with a confidence score above a threshold
other than just top 20 predictions are selected for
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evaluation, all the predictors in Figure 2 can reach a
higher recall than those in Figure 1. Particularly, the
Prior method can yield the highest recall (0.82) among all
predictors because it constantly predicts 836 GO terms
for each target protein, which is several times more than
all other predictors (Table 1). The other two baseline
methods (BLAST and GOtcha) that predict more than
twice as many GO terms as our methods have the maxi-
mum recall values 0.55 and 0.5 respectively, which are
lower than the ones of our three predictors. It is worth
noting that our predictor 1 that predicted ~73 GO terms
on average delivered the second highest recall ~0.68.
When recall is higher than ~0.31, our three predictors
have higher precision than all three baseline methods at
the same recall, while predictor 1 performed mostly bet-
ter than or occasionally comparable to predictors 2 and
3. That predictor 1 mostly performed better than predic-
tor 2 suggests that the sequential combination of three
levels of predictions generated by PSI-BLAST, HHSearch
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Figure 2 Precision and recall of our three predictors and three baseline methods when considering predictions with confidence score
above a threshold t, 0 < =t < = 1. A number of threshold values evenly distributed in the range [0, 1] at step size 0.01 were used to
calculated precisions and recalls.
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and DCN is more effective than the weighted combina-
tion of these predictions. Another interesting observation
is that predictor 3 that simply pooled all PSI-BLAST hits
to generate GO term predictions performed better than
the baseline BLAST and GOtcha methods throughout
the entire recall range. It also worked better than the
baseline Prior method when recall is > ~0.15, whereas
the latter yielded better precision than all other methods
when the recall is low (< ~0.15). The better performance
of the Prior method in the low recall range may be
explained by that its highly common GO term predic-
tions were largely correct, but too far away from the spe-
cific GO function of target proteins. Thus its highest
precision (~0.85) may serve as an upper limit that current
function prediction methods can aim to achieve. Table 2
shows the break-even values of our predictors and the
three baseline methods when precision equals to recall.
According to this criteria, our methods performed better
than the baseline methods, while predictor 1 yielded the
highest break-even value 0.306.

In order to further analyze the amount of contribu-
tions made by profile-sequence alignment (PSI-BLAST),
profile-profile alignment (HHSearch), and domain co-
occurrence networks (DCN), we plotted a precision-
recall curve of predictor 1 in Figure 3 to show how pre-
cision and recall changes, when progressively consider-
ing predictions resulted from PSI-BLAST search at level
1, from both PSI-BLAST and HHSearch searches at
levels 1 and 2, and from all three methods at levels 1, 2
and 3. Figure 3 shows that the profile-profile alignment
(HHSearch) extended the recall of profile-sequence
alignment (PSI-BLAST) from 0.57 to 0.64, and DCN
further increased the recall to 0.69. The results demon-
strate that three levels of predictions are complementary
and can be combined effectively to increase the sensitiv-
ity of protein function prediction. Particularly, the DCN
method may contribute valuable function predictions
when all homology search methods fail to find useful
hits, even though the prediction precision in this ab
initio situation may be low.

Table 2 The break-even values between precision and
recall (i.e., when precision = recall) of the six predictors.

Threshold Precision Recall Average
Predictor 1 0.90 0.300 0311 0.306
Predictor 2 0.81 0.269 0279 0274
Predictor 3 0.02 0.304 0.298 0301
Priors baseline 0.20 0.268 0.270 0.269
BLAST baseline 046 0.202 0.193 0.198
GOtcha baseline 0.08 0.293 0.283 0.288

Average values are the averages of precisions and recalls at decision
thresholds yielding the closest precision and recall values.
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Evaluations by semantic similarity

In addition to precision and recall measures based on the
exact match of GO terms, we evaluated these predictors
in terms of semantic similarity between true GO terms
and predicted GO terms. For two GO terms g; and g,, we
obtained their paths r; and r, to the root of the GO
DAG, and calculated the similarity score between g; and

g> as:

9(7‘1 N Tz)
max(0(r1),0(r2))’

where 6(r;) and 6(r,) denotes the number of GO terms
of paths r; and r,, respectively. The numerator is the
number of common GO terms shared by paths r; and rs.
For a target protein, every predicted GO term was com-
pared with each of the true GO terms to calculate simi-
larity scores; and the highest score was considered as the
similarity score between a specific predicted GO term
and the actual GO terms. Averaging the similarities over
all predicted GO terms of a target generated the similar-
ity score for the target. The average similarity scores of
all the target protein were used as the prediction similar-
ity score of a predictor. We computed the similarity
scores of all predictors for top 1°¢, 2", ..., 20" ranked,
predicted GO terms respectively. It is worth noting that,
because the GO terms that have the same confidence
scores get the same rank, the set of top 1°* .. n'® ranked
GO terms may actually contain more than n GO terms.
The average similarity scores of these predictors were
plotted in Figure 4. According to this measure, all our
three predictors performed better than three baseline
methods. Predictor-3 had higher scores than predictor-1
and predictor-2. It is largely because the latter two more
often predicted GO terms with the same confidence
scores than the former, resulting in more 1** .. n™® ranked
GO terms selected for evaluation than the former. In
addition to the average similarity score for each target,
we also calculated the best similarity score of a target -
the highest similarity score among all GO term predic-
tions for the target and averaged the best similarity scores
over all the targets for each predictor. Figure 5 shows the
best similarity scores of six predictors for top 1-20 pre-
dictions, which also demonstrates the better perfor-
mances of our three predictors compared with the three
baseline methods. Predict-1 and predictor-2 performed
better than predictor-3 according to this measure.

Sim(g1,82) =

An example illustrating the effectiveness of Domain Co-
Occurrence Networks for protein function prediction

We chose an example to illustrate the effectiveness of the
DCN function prediction component when both profile-
sequence alignment (PSI-BLAST [4]) and profile-profile
alignment (HHSearch [34]) cannot make precise



Wang et al. BMC Bioinformatics 2013, 14(Suppl 3):S3
http://www.biomedcentral.com/1471-2105/14/53/S3

Page 7 of 13

gradually increased recall at the expense of lower precision.
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Figure 3 Precision and recall when progressively considering predictions with confidence score in ranges [0, 1], [0.3, 1], and [0.6, 1]
for our predictor 1. The predictions in the three ranges were predicted by three different methods: PSI-BLAST search, HHSearch search, and
Domain Co-Occurrence Networks. Their precision and recall curves were drawn in three different colors, showing the higher level of prediction

predictions. Figure 6 shows how functions were predicted
by using Domain Co-occurrence Network (DCN) for tar-
get T30248 - a multi-domain protein in Mus musculus
(house mouse). Figure 6 (A) and 6(B) illustrate the ter-
tiary structure of the protein predicted by MULTICOM
[35] and electrostatic potentials (blue: positive charged;
red: negative charged), calculated and visualized by Deep-
View (http://spdbv.vital-it.ch/). In order to make function
prediction, the DCN method executed PSI-BLAST to
search the target protein against our pre-built protein
sequence database containing the proteome of H. sapiens,
S. cerevisiae, C. elegans, D. melanogaster, 15 plants, and
398 bacteria species (detailed organism names can be
found at [16]), and identified the most significant homo-
logous hit - a H. sapiens protein (Swiss-Prot ID P68543)
with PSI-BLAST e-value 3e-95 and score 348. Then it
utilized the DCN of H. sapiens (human) (Figure 6 (C)) to
make prediction as follows. Firstly it used the profile-

profile alignment tool HHSearch [34] to search the target
protein against PfamA [33] database, which detected eight
domain families with homologous probability > = 0.80:
SEP, UBX, Spt20, ubiquitin, UN_NPL4, Cobl, Rad60-SLD,
and FERM_N. The four domains (SEP, UBX, ubiquitin,
and FERM_N) that existed in the H. sapiens proteome
were then used as central domains in the DCN of H.
sapiens to identify domain neighbors. Because domains
SEP, UBX, FERM_N do not have GO functional annota-
tions in the Pfam database and the ubiquitin domain only
has one general GO term annotation (GO:0006464),
directly inferring precise function of the target from these
domains was not possible. However, the DCN method was
able to use the annotated GO terms of the neighboring
domains of these four domains to make function predic-
tion for the target as shown in Figure 6 (D), where red
nodes denotes the central domains detected for the target
and yellow nodes represents their radius-one neighboring
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Figure 4 Average similarity scores of our three predictors and three baseline methods for top 1% .. 20™" ranked predictions.

domains. The GO terms of the neighboring domains were
aggregated and ranked based on frequency. The top
ranked GO terms were used as predictions. The frequen-
cies were used as the confidence scores of the predicted
GO terms. Similarly, radius-two neighboring domains (not
illustrated) were applied to generate predictions in a
similar way.

The DNC method predicted a GO term GO:0006464
(protein modification process) using radius-one neighbor-
ing domains and predicted GO:0043687 (post-transla-
tional protein modification), GO: 0051246 (regulation of
protein metabolic process) and GO: 0008152 (metabolic
process) using radius-two neighboring domains, which
were highly related to the two real GO terms of T30248
(Swiss-Prot ID Q99K]J0.1) - GO:0031396 (regulation of
protein ubiquitination) and GO:0042176 (regulation of
protein catabolic process). Moreover, the above-mentioned
predicted GO terms all existed in the propagated paths
from the actual GO terms to the root in the Gene Ontol-
ogy Directed Acyclic Graph (DAG). Particularly, the true

GO term GO:0042176 (regulation of protein catabolic pro-
cess) and the predicted GO term GO:0051246 (regulation
of protein metabolic process) had a high semantic similarity
score of 0.730 calculated by the tool G-SESAME [36],
where 1 indicates exactly the same and 0 completely dif-
ferent. Because the homology-based method did not pro-
duce any predictions for T30248, this example
demonstrates that the DCN of a species, which may be dif-
ferent from the species of a target protein, can be used to
make de novo function prediction for the target from
scratch. It also shows that the DCN method can readily
decompose a multi-domain protein into multiple domains
and aggregate function predictions of individual domains
as the prediction for the whole protein.

Conclusions

We designed and developed an automated three-level
method to predict protein functions integrating profile-
sequence homology search, profile-profile homology
search and domain co-occurrence networks. We blindly
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Figure 5 Best similarity scores of our three predictors and three baseline methods for top 1 .. 20'" ranked predictions.

tested different ways of combining predictions generated
at the three levels on a large number of protein targets in
the 2011 Critical Assessment of Function Annotation.
The results showed that our methods integrating comple-
mentary predictions performed mostly better than three
standard baseline methods. Our experiments also clearly
demonstrated that using profile-profile alignment
(HHSearch) and domain co-occurrence networks not
only increases the sensitivity of protein function predic-
tion at top of the traditional BLAST- and PSI-BLAST-
based homology search methods, but also make it possi-
ble to make ab initio predictions and handle multi-
domain proteins readily.

Methods

We constructed three protein function predictors (pre-
dictor-1, precictor-2, predictor-3), whose predictions
were submitted to CAFA as models 1, 2, and 3. The first
two predictors combined function predictions derived
from profile-sequence PSI-BLAST search, profile-profile

HHSearch search, and domain co-occurrence networks
using different strategies. The third one used only predic-
tions derived from PSI-BLAST search at the default
threshold (i.e. 10).

Predictor-1

The three-level method integrates profile-sequence align-
ment, profile-profile alignment, and Domain Co-occur-
rence Networks (DCNs) as shown in Figure 7. At the first
level, PSI-BLAST was executed to search against Swiss-
Prot [32]. The protein hits with e-value < = 0.01 were
chosen and ranked by e-value. Only the GO terms of the
top one hit were included as predictions, whose confi-
dence score S was calculated as:

~lgo)

.6 < Spsi_ < 1.0,
200 = OPSI-BLAST =

Spsi—prast = 0.6 + 0.4 X

where e stands for e-value of the hit assigned by PSI-
BLAST. An upper limit of Spgs;_p; 457 Was set to 1.0. For
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Figure 6 An example (CAFA target T30248) showing how DCN-based “aggregated neighbor-counting” method works. (A) Tertiary
structure of target protein T30248 predicted by MULTICOM [35] (magenta: domain SEP; green: domain UBX). (B) Electrostatic of protein 730248,
generated based on predicted structures in (A) (blue: positive; red: negative). (C) The main Domain Co-occurrence Networks (DCN) of Homo
sapiens used to make function prediction. (D) Radius-one neighbor domains of the four domains - ubiquitin, UBX, SEP, and FERM_N - of the
target. The GO terms of the neighboring domains were used as predictions for the target. Detailed discussion can be found in “Results and
Discussion” section.
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example, when e-value equals to 0, S is set to 1.0. So S is
in the range [0.6, 1]. The second level applied a profile-
profile alignment tool HHSearch [34] to detect domains
of a target protein. HHSearch generated a hidden Markov
model (HMM) for a target protein, which was aligned
with the HMM of each Pfam domain family, resulting in
a probability score in the range of [0, 100] for each hit.
Only the hits with probability score > = 80 were kept,
and their GO terms were retrieved from the PfamA data-
base as predictions. The confidence scores of the pre-
dicted GO terms were assigned as:

p

SHHSearch = 0.3 + 0.3 X 100’

where p is the HHSearch probability score from 0 to
100. Thus, the confidence score of GO terms predicted
from HHSearch hits is in the range [0.3, 0.6].

The target proteins without predictions made from the
first two levels were considered hard cases. For hard
cases, we used PSI-BLAST with the default threshold (i.e.

10) to search against both Swiss-Prot and the Gene
Ontology database, and additionally applied the DCN-
based “aggregated neighbor-counting” method [16] to
make predictions. The DCN-based “aggregated neighbor-
counting” method ran PSI-BLAST to search a target pro-
tein against the pre-built proteome databases to find its
most closely related organism. Our database contains the
whole-genome protein sequences of H. sapiens, S. cerevi-
siae, C. elegans, D. melanogaster, 15 plant species, and
398 single-chromosome prokaryotic organisms (detailed
species names can be found at [16]). The organism
whose protein was most similar to the target protein
according to the PSI-BLAST search’s e-value was consid-
ered the most closely related species for the target pro-
tein. The pre-constructed DCN of this species was used
to make functional predictions for the target. The
domain co-occurrence network (DCN) of a species was
constructed by the following two steps: (1) each protein
sequence of the entire genome was searched against
Pfam database [33] using a profile-sequence alignment
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tool PfamScan to detect the occurrence of any protein
domain families in the protein; and every detected
domain family was represented as a node in DCN; (2) if
two protein domain families co-occurred in one protein,
one edge was drawn between them. In this way, a DCN
of a species was created, in which a node represents a
protein domain family and an edge the co-occurrence
relationship between two domain families. Figure 6(C)
illustrates the main DCN of H. sapiens.

For the domains of the target protein detected by
HHSearch at level two, the predictor gathered the GO
terms of their radius-one neighboring domains in this
DCN as predictions, whose confidence scores was pro-
portional to their occurrence frequencies. If no GO
terms could be found in radius-one neighboring domains,
it extended to the search to radius-two neighboring
domains and made predictions according to the same
procedure. The confidence of a predicted GO term was
calculated as

Spen = 0.3 x f,

where fis the occurrence-frequency of the GO term -
the number of the neighboring domains that have the
GO term function divided by the total number of occur-
rences of all predicted GO terms. Thus, the confidence
score of DCN-based predictions is in range (0, 0.3]. The
ranges of confidence scores assigned to three levels were
chosen according to a benchmarking on 100 proteins
randomly selected from Gene Ontology before making
predictions for the CAFA targets. We compared the per-
formances of the predictions at each level and set their
ranges of confidence scores based on their prediction
accuracies on the benchmark proteins from high to low.

Predictor-2

Predictor-2 used PSI-BLAST to search a target protein
against Swiss-Prot with e-value threshold 0.01, applied
HHSearch to search the target against PfamA, and
employed the DCN-based “aggregated neighbor-count-
ing” method on radius-one neighbors, in order to gather
GO terms at all the three levels. The same probability
score threshold (> = 80) of HHSearch was used as in Pre-
dictor-1. We assigned weights 4, 2, and 1 to a GO term
generated by PSI-BLAST, HHSearch, and DCN-based
“aggregated neighbor-counting” method, respectively.
The weighted frequency of each GO term was calculated
and normalized. The normalized score was used as the
confidence score of an individual GO term. For proteins
without any predictions generated using these three
methods, an additional PSI-BLAST search of the protein
against Gene Ontology and Swiss-Prot with the default
e-value threshold (i.e. 10) was executed in order to gather
more hits if possible.
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Predictor 3

Only a PSI-BLAST search against Swiss-Prot with the
default threshold (i.e. 10) was performed in predictor 3.
All of the PSI-BLAST hits were included to make predic-
tion. The occurrence frequency of a GO term among all
hits was used as its confidence score.
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