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Abstract

Background: Germinal Centers (GC) are short-lived micro-anatomical structures, within lymphoid organs, where
affinity maturation is initiated. Theoretical modeling of the dynamics of the GC reaction including follicular CD4+

T helper and the recently described follicular regulatory CD4+ T cell populations, predicts that the intensity and life
span of such reactions is driven by both types of T cells, yet controlled primarily by follicular regulatory CD4+

T cells. In order to calibrate GC models, it is necessary to properly analyze the kinetics of GC sizes. Presently, the
estimation of spleen GC volumes relies upon confocal microscopy images from 20-30 slices spanning a depth
of ~ 20 - 50 μm, whose GC areas are analyzed, slice-by-slice, for subsequent 3D reconstruction and quantification.
The quantity of data to be analyzed from such images taken for kinetics experiments is usually prohibitively large
to extract semi-manually with existing software. As a result, the entire procedure is highly time-consuming, and
inaccurate, thereby motivating the need for a new software tool that can automatically identify and calculate the
3D spot volumes from GC multidimensional images.

Results: We have developed pyBioImage, an open source cross platform image analysis software application,
written in python with C extensions that is specifically tailored to the needs of immunologic research involving 4D
imaging of GCs. The software provides 1) support for importing many multi-image formats, 2) basic image
processing and analysis, and 3) the ExtractGC module, that allows for automatic analysis and visualization of
extracted GC volumes from multidimensional confocal microscopy images. We present concrete examples of
different microscopy image data sets of GC that have been used in experimental and theoretical studies of mouse
model GC dynamics.

Conclusions: The pyBioImage software framework seeks to be a general purpose image application for
immunological research based on 4D imaging. The ExtractGC module uses a novel clustering algorithm for
automatically extracting quantitative spatial information of a large number of GCs from a collection of confocal
microscopy images. In addition, the software provides 3D visualization of the GCs reconstructed from the image
stacks. The application is available for public use at http://sourceforge.net/projects/pybioimage/.

Background
During the later phase of primary immune responses to
protein antigens, as well as in secondary immune responses
to the same antigen, the produced antibodies display higher
affinity for their antigen compared with the early phase of
the response, a phenomenon known as affinity maturation
[1]. The precise mechanisms responsible for this phenom-
enon are the subject of current intense research, and are

known to take place in well-organized micro-anatomical
structures, called germinal centers (GC), that develop tem-
porarily within primary follicles of secondary lymphoid
organs during immune responses to protein antigens [2].
The number of GCs and their average size increases

dramatically within the first week after immunization
and then start to decrease within days 10-14, so that by
days 21-24 very few of them remain, while those that do
have small sizes. GCs consist of a dominant population
of antigen-specific B cells and smaller populations of T
lymphocytes, follicular dendritic cells, and macrophages
[3-5]. The antigen-specific B cells proliferate intensely,
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undergo somatic hypermutation in the variable region of
their antibody molecules, and are subject to a poorly
understood affinity-based selection process [2,6].
The long-held interest in GCs stems from being the

place where a Darwinian process, involving somatic hyper-
mutation (SHM) and selection, acts on responding B cells
and their antibodies, thereby leading to memory B cell
generation and to the phenomenon of affinity maturation.
Because of the very high rate of SHM (10-4 to 10-3 per
base pair and cell division), a GC reaction with an exces-
sively long duration may not only spoil previous affinity
enhancing mutations, but also generate autoreactive and
even aberrant mutations leading to leukemia cells. Contra-
rily, because of the random character of SHM, affinity-
enhancing mutations appear only several days after the
activation of hypermutation, so that GC reactions with
durations too short will have an ineffectual selection. As a
result, it is not totally surprising that the time scale of GC
reactions is regulated. The precise mechanisms that drive
and control the dynamics of GCs are not presently known
and is the focus of intense research.
Recently some of us [7] and others [8,9] have shown that

the dynamics of GCs is controlled by follicular regulatory
CD4+ T (TFreg) lymphocytes, a newly discovered distinct
subpopulation of Foxp3+CD4+ T cells that share with folli-
cular CD4+ T helper cells the same responsiveness to the
follicular chemokine CXCL13. The impact of TFreg on the
kinetics of GC sizes was made evident in studies involving
confocal microscopy analysis of murine mesenteric lymph
nodes at different times after immunization [7]. Our theo-
retical modeling of the dynamics of the GC reaction,
including TFreg cells, suggests that the intensity and life
span of such a reaction is subject to two different control-
ling processes: an initial process driven by TFreg cells, and
a later one, detectable only when the first process is too
weak, controlled by follicular CD4+ T helper cell matura-
tion (JF, manuscript in preparation). In order to properly
calibrate GC models with TFreg lymphocytes, comparisons
and fits to experimentally obtained GC sizes taken at dif-
ferent time during the kinetics of entire process is funda-
mental. A sufficiently accurate study, however, requires a
more exhaustive analysis with the acquisition of more
time points during the immune response than previously
accomplished in experiments to date. Also, such an analy-
sis would require accurate determination of all the GC
volumes obtained from these experiments.
Presently, the estimation of GC volumes relies upon

sectioning either the spleen or lymph nodes in several
tissue samples of approximately ~ 20 - 50 μm thickness
and performing immunohistochemical staining. Subse-
quently, confocal microscopy is used to acquire images
from each section at different equally spaced plane
depths, usually generating more than 20-30 thin slices.
These image slices are then digitized and assembled into

Z-stacks, as shown in Figure 1. Finally, using a program
such as ImageJ [10,11], the analysis of GC areas is per-
formed semi-manually slice-to-slice, in the Z-stack, for
subsequent 3D reconstruction. Such a tedious and highly
time-consuming procedure provides a crude estimation
of GC volumes. Moreover, the sheer quantity of data to
be analyzed from this large set of confocal microscopy
imaging is so prohibitively large, that manual or semi-
manual extraction is not tenable. Indeed, for understand-
ing the order of magnitude of data produced, a typical
experiment for study GC dynamics involves the analysis
of on average ~100 GCs (5-10 slices per GC) per mouse
and per time point (minimum 3-4 mice per time point
and 4-5 time points). As a result, there may be more than
6000 individual GC slices to be analyzed in a single
experiment.
Available software A candidate software application for

the proposed task would provide automatic measurements
of all GC densities; that is, an accurate and automatic
measure of the individual GC volumes, a count of the con-
stituent cells, and subsequent visual confirmation of each
GC using a three dimensional isosurface reconstruction
[12]. Perhaps the two most popular representative open-
source software tools used for post-processing of micro-
scopy images are ImageJ [10,11] (together with a newer
distribution branch, Fiji [13]) and OMERO [14-16]. Other
open-source software tools for biological visualization
include Vaa3D (http://www.vaa3d.org), which is a cross
platform tool geared towards biological visualization of
3D/4D/5D formats, and Icy (http://icy.bioimageanalysis.
org), which is another powerful image analysis software
that provides a powerful environment for third party
developers together with visualization software. Several
commercial software applications, such as Imaris and
MetaMorph, are also widely used by the biology commu-
nity for performing post-processing image analysis and
visualization tasks. While a complete listing or comparison
of all available software solutions are beyond the scope of
this paper, these applications are certainly state-of the art
and highly representative of other applications with their
particular advantages/disadvantages. Also, in keeping with
our design philosophy, we have focused more upon open-
source analysis tools for comparing our software and
algorithms.
In the case of OMERO, this is a large client/server appli-

cation, designed to provide centralized access of images
from a disk server, and provides many types of analysis as
well as data annotation and workflow. While OMERO has
a large user base, and many analysis extensions, it pre-
sently lacks the ability to automatically perform segmenta-
tion of objects such as GCs in 3D (also referred to as 3D
spot volumes) and does not provide a 3D output that
allows for visual checking of the accuracy of the borders of
the detected GCs. Moreover, there is no provision in their
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roadmap for the addition of these difficult, yet important
features [14].
Fiji/ImageJ, is a multi- platform Java-based application

written for the desktop that uses the powerful ImageJ
image analysis library for a microscopy specific applica-
tion. It features extendible plug-in module support, script-
ing in multiple languages, and supports a large collection
of image formats used the microscopy community. In an
independently developed branch, Fiji, provides many new
powerful analysis extensions; an example of which is
image registration techniques [17-19], for stitching multi-
dimensional images from low-level autocorrelation of fea-
tures. Nonetheless, it also does not contain the capability
for automatic segmentation of volumes with constituent
cells, as envisioned in this work.
In summary, with respect to segmenting and extracting

GC volumes, the microscopy software applications and
algorithms that we have evaluated either (a) lack sufficient
information about the segmented dimensions, (b) underes-
timate the number of objects segmented due to the diffi-
culty of selecting the appropriate input parameters, (c)
provide only gross estimates of areas/volumes, or (d) sim-
ply do not provide the desired functionality for automati-
cally obtaining GC volumes. As such, with respect to
extracting GC volumes, no single software tool exists, to
our knowledge, able to perform the proposed automated
tasks and that meets all requirements desired.
While ImageJ and Fiji have a large user base and provide

the ability to write customized plug-ins in various pro-
gramming languages, we decided from the onset to deviate
from this standard development course in order to
develop our own microscopy infrastructure, written in
python and called pyBioImage. While motivated by sev-
eral reasons, the principle advantage of this design choice
is to leverage the growing software base for scientific com-
puting with powerful and efficient numerical and visual

libraries recently made available in the python community.
Given the power of the python C-extension API, available
libraries, and the ability for rapid and robust open software
development, other microscopy software application have
recently emerged, albeit with slightly different scientific
goals, but based upon a similar python/C design philoso-
phy. Two recent open source tools also written in python
and C/C++, which have recently been reported in the lit-
erature for microscopy applications, are IOCBioMicro-
scope [20] (focused upon deconvolution of microscopy
images) and BioImageXD [21].

Implementation
Our software suite, pyBioImage, is a cross-platform bio-
imaging application, written in Python and makes use of
low level C code exposed through the Python C-extension
API. The application supports multiple data formats and
provides visualization and analysis of standard multi-
dimensional image data. For the work described in this
paper, we have developed a set of algorithms implemented
either in pure python or as python/C-extension modules,
that form a core feature called ExtractGC, which is specifi-
cally tailored for automatically extracting GC volume sta-
tistics and visualization from a collection of 3D confocal
fluorescent microscopy image stacks. These images are
highly magnified regions of tissue samples taken from
secondary lymphoid organs. The set of such images from
tissue specimens may be used to reconstruct a 3D mosaic,
consisting of several GCs, and thereby making it possible
visualize a large section of the organ in question. Our ana-
lysis software module ExtractGC, which is part of the more
general pyBioImage application, uses a pseudo-recursive
segmentation algorithm for performing simultaneous pixel
level clustering in all directions xyz of a complete image
stack. Our segmentation technique is based upon a general
segmentation algorithm, often referred to as spot finding

Figure 1 Fluorescent confocal microscopy image of germinal centers. (a) Confocal microscopy image showing a germinal center (green
labeled cells) together with the outer zone in a draining lymph node from a mouse at day 17 after immunization. (b) The image mosaic of a
larger portion of the lymph node specimen formed from individual images of germinal centers. (c) A graphical representation of the 3D stack
formed from the images slices togehter with a construction of the GC volumes.
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algorithm in the context of fluorescent microscopy, first
described and implemented by Goldberg and col. [22].
In order to maintain the goal of cross-platform intero-

perability, the selection and design of the libraries used, as
well as our software suite pyBioImage (and in particular
ExtractGC) depend upon several standard open source
software libraries, as shown in Figure 2. In particular, in
order to perform low-level pixel operations as efficiently
as possible, we have written several python C-extension
modules. We use Numpy and Scipy for several post-pro-
cessing numerical routines. For image analysis operations,
we use the OpenCV library. The graphical interface is
based upon wxPython, and 2D visualization with specia-
lized bindings with Matplotlib and the Enthought Traits
library (code.enthought.com/). For 3D reconstruction, we
have written python bindings for the well known power-
crust algorithm [23], and visualization rendering is pre-
sently performed with with the GeomView (http://www.
geomview.org), however we are presently incorporating
the use of VTK (http://www.vtk.org).
Many file formats for confocal microscopy are based

upon variants of Tiff, or at least the ability to include mul-
tiple images with the same file. For standard Tiff files, we
have used a python based wrapper of the standard libtiff
library. In order to connect with LOCI BioFormats [24],
that is provided through a Java jar library module, we use

the Internet Communication Engine (ICE) (http://www.
zeroc.com) which provides a drop-in C/C++ connectivity
for I/O module.

Workflow and interface
Figure 3 illustrates the workflow of our software suite
pyBioImage with ExtractGC for the specific task of
obtaining detailed statistics and visualizations of GC
volumes. In particular, a set of acquired confocal micro-
scopy images are read/loaded into the application accord-
ing to the appropriate format with efficient memory
management. At this point, either the individual image
stacks may be analyzed for obtaining GC volumes, or a
mosaic may be obtained for subsequent analysis.
For extracting GC volumes, an initial seed value for the

threshold and minimum spot size are provided by the
user. The optimal global threshold is found with a simu-
lated annealing optimization algorithm, by using this
initial seed together with other parameters. This will pro-
duce the optimal 3D bounding surface together with sta-
tistics for all GCs that pass the maximum size specified
by the input parameter. As with general stochastic global
optimizers, further flexibility towards optimal solutions
can be explored by adjusting a subset of input para-
meters. Full 3D renderisation of all or selected GC
volumes may be obtained interactively by the user.

Figure 2 The architecture. The figure shows the relation between the ExtractGC module and other software components that makes up the
architecture of pyBioImage. The core application of the pyBioImage application is written in Python with the graphical user library wxPython.
The ExtractGC module consists of python classes, used for high level processing, and low-level pixel operations performed in C, exposed
through the Python C-extension API. Numerical algorithms, image analysis, image I/O, the graphical user interface and data visualization leverage
the use of powerful open-source libraries.
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Segmentation algorithm for extracting germinal center
volumes
Broadly speaking, segmentation algorithms decompose
an image into distinct parts for recognizing objects of
interest. These algorithms can be divided into three
groups: statistical feature-based, region-growing, and
boundary methods [25,26]. For multidimensional images,
feature based and boundary methods use image registra-
tion algorithms [27] to associate image pixels of one
image to those of another. There are many techniques
for accomplishing this task, including pixel-wise compar-
isons, cross-correlations, and scale invariant feature-
based methods. These techniques have been extensively
studied and applied to multi-dimensional medical and
microscopy imaging for reconstructing volumes from dif-
ferent z-stack slices. Region growing methods perform
segmentation by low-level pixel assembly, subject to
some condition related to the pixels intensities of nearby
neighbors. For multidimensional microscopy images, the
FindSpot algorithm described by I. Goldberg [22], has
been shown to be effective for constructing spot volumes,
which are the bright/dark regions of interest, by recur-
sively obtaining correspondence between neighboring
pixels on the same and different image slices. By manu-
ally providing threshold and geometric constraints, the
algorithm can efficiently encounter 3D continuous object
volumes within and throughout the multidimensional
image. Given the power of this method, our GC volume
extraction software uses the core part of this algorithm
together with several practical software modifications as
well as additional algorithm details, described below.

Optimal global threshold
Two fundamental parameters of the findspot algorithm (as
developed by Goldberg and col.) are the pixel threshold th,

which determines which pixels are allowed into a contigu-
ous cluster, and the minimum cluster size smin (or spot
size), which provides a final cut-off on contiguous volume
region. The threshold may be a global parameter or based
upon the mean pixel (or even more sophisticated statisti-
cal-based methods, which for our purpose are not effec-
tive). With fluorescent microscopy, the intensity is directly
proportional to the amount of B-cell membrane marker or
receptor molecules, which is relatively homogeneous
throughout the volume. Thus, it is sensible that a global
threshold should be used since it will provide the most
accurate indication of the amount of cells of a particular
type at a particular z-slice. Also, a proper segmentation of
the GC areas on each slice will be sensitive to an optimal
selection of the initial values of th and smin, where each
depends upon the other.
First, it is useful to understand the effect of the global

threshold th and smin parameters upon the final segmenta-
tion of GC volumes, and in particular why this selection is
non-trivial. For segmenting the central part of a GC, as
seen in Figure 4, slice 19, a particular threshold will per-
form well; however for the image slices at the extremes (in
the z-plane), it becomes unclear which parameter values
lead to the best segmentation results. Indeed, if the thresh-
old is too low, pixel clusters will be unnecessarily too large
(possibly selecting the entire image). However, if the
threshold is too high, or optimized to the center of the GC
where the fluorescent contrast is max, then on higher/
lower z-stack slices, the GC borders, and hence GC
volumes, will be underestimated. With respect to the
selection of the minimum spot size parameter, a small
minimal spot size will result in many pixel clusters that
are not germinal centers.
For the specific case of segmenting GCs from multidi-

mensional images, we can use biological information to

Figure 3 The workflow. ExtractGC is based upon an easy to use, yet productive workflow for quickly obtaining GC size and volume statistics at
the lab bench. Given a set of confocal microscopy images, pyBioImage provides the option of direct visualization, image mosaic construction, or
direct analysis with the ExtractGC module. An automatic optimization algorithm iteratively selects the best input parameters for extracting GC
volumes. From the output of the analysis, the user may interact with the data via a 3D visualization.
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guide the choice of an appropriate objective function. In
particular, it is well known that by staining tissue sam-
ples with flourochrome-tagged peanut agglutinin, GCs
will be brightly labeled throughout the volume and con-
sist of fluorescently marked B cells that are involved in
the immune response, while adjacent regions are charac-
terized by a pronounced dark ring or halo. This dark
outer ring zone is due to both follicular B cells not par-
ticipating in the immune response (and, therefore, are
not antibody-flourochrome labeled) and to T and den-
dritic cells of the adjacent T-cell zone, which are also
unlabeled.
Given this nearly universal observed GC structure, an

ideal segmentation algorithm for GCs will include all pixels
up to and including the border adjacent to the dark halo
zone. Since the global threshold parameter of our algo-
rithm directly controls this segmentation, our algorithm
optimizes this choice of threshold that segments the GC
by the use of an iterative procedure, driven by a simulated
annealing algorithm that minimize the objective function,
applied to all z-slices. This objective function seeks a mini-
mum in the sum of pixel-tone histogram differences for all
z-slices, between different values of the input parameters,
while at the same time strongly penalizing solutions that
give rise to segmented borders outside the GC region. The
algorithm for optimizing the input parameters can be for-
malized by referring to Figure 5 as follows. First, let
θi(i = 1 · · ·m) represent the set of m input parameters to
be optimized. We denote the set of values of these para-
meters at the iteration step t as λt = {θ t

i }. Next, we con-
sider GC segmentation regions obtained from the findspot
algorithm. The segmentation region of the j-th GC on the
n-th image slice and at iteration step t is denoted by

γ n
j (λt). Similarly, the segmentation region of the j-th GC
region on the n-th slice at iteration t’ is given by γ n

j (λt′).
From this, we can obtain the fraction of the number of
points above the threshold Nf in the annular region
between γ n

j (λt) and γ n
j (λt′) as compared to the total

number of pixels Nt in that annular region, as Nf /Nt.
Moreover, for each of these regions, we can obtain the
pixel-tone histogram, denoted H(γ n

j (λt)) ≡ Hn
j (t). The

histograms for different segmented regionsγ n
j , for a given

GC and a particular slice n corresponding to different
input parameters λt are shown in Figure 6. As can be seen
from this figure, the difference between histograms
decreases as the segmented regions are closer. An optimal
solution, found from the optimal input parameters λ∗

t
would produce a segmentation that wraps tightly around
the GC. Conversely, the value of the input parameters λt

should tend to maximize the individual areas of the seg-
mented regions on all z-stack slices of each GC. Thus, the
objective function should penalize those values of the
input lt that eliminate areas at the extremes of the GC
volumes where the pixel intensities are at the limit of
threshold. This tradeoff provides a convex objective func-
tion for applying an optimization strategy.
First, we use the Bhattacharyya histogram distance

metric

D(Ht ,Ht′) =

√√√√1 −
∑

k,k′
√
Ht(k) · Ht′(k′)√∑

kHt(k) · ∑ k′Ht′(k′)

where Ht and Ht’, represent H
n
j (λt) and Hn

j (λt′), and k
and k’ represent the individual bins in each histogram,
respectively.

Figure 4 GC borders obtained with the ExtractGC algorithm. Different z-stack slices of the GC from Figure 1a are shown together with the
performance of the segmentation algorithm. The green box represents the maximum bounding box, while the red curve is the convex hull
enclosing all interior pixels above the desired intensity threshold for forming continuous clusters in 3D.
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Figure 5 Model parameters. Graphical representation of two segmented regions representing the regions of GC shown on two different slices
n1 and n2 used for defining the objective function for automatically optimizing the input parameter l.
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Figure 6 Histogram comparison of segmented regions. The normalized histograms for four different segmented regions γ n

j , for a particular
GC and slice n using four different input parameter values λt are shown. Inset, j-th GC and slice n displaying the corresponding different
segmentations. The objective function L tries to minimize the difference between histograms, while at the same time maximize the areas on
different image slices.
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Now, let anj (λt) be the area of the segmentation region
γ n
j (λt), that is, corresponding to the j-th GC at slice n
using input parameters l at iteration t, and let

An
j (λt ,λt′) =

|anj (λt) + anj (λt′)| − |anj (λt) − anj (λt′)|
|anj (λt) + anj (λt′)|

which is a symmetric function, since An
j (λt ,λt′) = An

j (λt′ ,λt).
Then, we can define the objective function Lj for the j-th
GC as follows:

Lj(λt,λt′) =

∑
n exp[α D(Hn

j (λt),Hn
j (λt′))]

ε + β
∑

nAn
j (λt,λt′)

where Î is a small nonzero constant that we insert to
prevent division by zero error, while a and b are arbitrary
constants (we have used a ~ 0.001 and b = 1.0) that could
be useful for controlling the strength of either the histo-
gram difference or the sum over areas, respectively. With
this function, the optimization is then with respect to the
input parameters λt = {θ t

i }, that is, ∂Lj/∂θi = 0. Notice that
if the areas anj (λt)and anj (λt′) on each slice n for each seg-
mentation region j are very different —either because
anj (λt) is much larger than anj (λt′) (or vice-versa) or
because, suddenly, aj(λt) = 0 (oraj(λt′) = 0) due to the
disappearance of the contour at slice n—, then
Lj(λt,λt′)and Lj(λt,λt′) grows to very large values, thereby
penalizing Lj. Conversely, if a

n
j (λt) = anj (λt′) (or are very

similar) then An
j (λt ,λt′) → 1.

In general, the function Lj(λt,λt′) is a nonlinear multi-
dimensional function with many local minimima, many
of which are not ideal solutions. In order to understand
the behavior of Lj as a function of λt and λt′, Figure 7(a)
shows two hyperplane cuts with smin for different values
of the threshold th. For constructing this plot, we chose
consecutive values of the threshold, with t′h = th + 1 (red
curve), and t′h = th + 2 (green curve). As can be seen, in
both planes, the function experiences a dramatic global
minimum for the optimal solution.
From this objective function, we use a simulated

annealing algorithm that efficiently samples the space of
all possible λt in order to find the optimal set of input
parameters,λ∗, given by:

λ∗ = argmin
λt

Lj(λt,λt′)

In order to show how robuts our optimization algorithm
is with respect to the choice of initial input parameters,
Figure 7(b) shows the difference in accumulated area
(which is related to the GC volume) between the calcu-
lated and ground truth value for several iterations of the
algorithm for three separate initial values of l. In these
studies, the ground truth determination was obtained from
manual inspection by an expert. Figure Figure 7(c) shows

a comparison, superposed on a particular Germinal Center
image, between borders obtained with optimal parameter
solution, l*, using our algorithm and the ground truth
border obtained by manual determination.
Since the original findspot algorithm finds all contigu-

ous clusters of pixels throughout a volume, connected
regions can be filled with holes. By using a convex hull
algorithm, or more sophisticated computational geome-
try algorithms based upon alpha shapes, we can represent
and visualize the 3-dimensional GC volumes with the
outer bounding surface. Nearby artifacts due to outliers
points may be present, distorting the volume estimate,
and should be corrected. We eliminate outliers by a sim-
ple heuristic algorithm that determines the full distance
matrix between all points on the contour and determines
whether the distance between each point and all others is
greater than 2 × s value of all other inter point distances
(where s is the standard deviation). Conversely, we can
find the geometric center and determine whether a point
is 2 × s from that center.
Optimal stitching Our software pyBioImage also

contains a module for automatic stitching of multi-
dimensional images, similar to that found in ImageJ.
Side-by-side z-stack images of draining lymph nodes
were acquired to allow 3D reconstructions of larger
organ areas. Due to the large amount of image stacks, we
developed our own software algorithms that used infor-
mation from the microscope position and accelerated the
task of forming large image mosaics, referred to as image
stitching, from adjacent z-stacks acquisitions.
For matching adjacent image stacks, our algorithm uses

a fast implementation of the Fourier phase correlation
technique for achieving image registration at the borders
of adjacent (and overlapping) images. For blending adja-
cent images, we use a nonlinear pyramid scheme together
with pixel intensity scaling for matching potential differ-
ences in acquisition exposures. The implementation of our
algorithm is available in our cross-platform pyBioImage
package, available at the public repository (sourceforge.
net/projects/pybioimage/). Information about the installa-
tion, documentation, and other software modules (whose
description is beyond the scope of this paper), can also be
found in the package distribution.
3D reconstruction
Another capability of the ExtractGC module is the ability
to accurately visualize the GC volumes in 3D. The recon-
struction of the set of borders pixels obtained from each
z-stack slice is used for constructing an isosurface with a
computational geometry algorithm, called Powercrust,
described by Amenta, Choi and Kolluri [28,29]. We have
provided a full set of python bindings to the original open-
source C-language implementation of these authors in
order to easily expose the core algorithm to our applica-
tion, pyBioImage. The output of powercrust, with the
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points obtained from the findSpot algorithm in the prior
phase, is a set of files that specify the polygons and their
vertex locations in 3D that define the maximum bounding
surface. Presently, we have maintained the original power-
crust related .off extension file structure which can be
visualized with Geomview, an interactive 3D viewing pro-
gram for Unix. An example 3D renderization of a GC is
shown in Figure 8.
Details of the 3D rendering algorithm are as follows:

the algorithm takes point samples from a 3D object’s
surface and produces both a surface mesh and an
approximate medial axis. The powercrust algorithm is
based on the Medial Axis Transformation (MAT) that
provides a complete description of the object’s shape
through maximally inscribed discs. Together with the
Voronoi diagram computation its duality, and its
weighted adaptations, the powercrust algorithm pro-
duces the so-called power diagram. Then, the algorithm
can be described briefly with the following steps [30]:
(1) given a collection of sampled points, a bounding box
is used to enclose what shall be the 3D object, (2) a
Voronoi Diagram is computed and pole computation for
each sample point is made, (3) each pole is analyzed and
labeled with its relation to the Voronoi surfaces, and

finally (4) the algorithm provides output of the power-
crust and powershape parameters, that can be used for
constructing polygons of the external surface.
While there are several other fundamental algorithms

for 3D reconstruction, including Alpha Shapes (a gener-
alization of the convex hull algorithm by Edelsbrunner),
Marching Cubes, Voronoi-based algorithms, and Delau-
nay-based algorithms, we found the Crust/Powercrust
algorithms the most effective for our application.

Results and discussion
The architecture of pyBioImage, together with the
ExtractGC module, is designed to provide a productive
and intuitive workflow for the experimental and theore-
tical biologist for extracting accurate GC statistics.

Germinal center image acquisition
In order to test our software, we applied our algorithms to
a set of GC image data acquired with typical experimental
conditions. In particular, Balb/c mice maintained in SPF
facilities were immunized intraperitoneally with 20 μg of
OVA (Sigma, St Louis, USA) previously run through a
DetoxyGel column (Pierce, Rockford, USA) in 2.0 mg of
endotoxin-free aluminum hydroxide (alum, Alu-gel-S,
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Figure 7 Ground truth comparisons. (a) Two hyperplane cuts of the multidimensional objective function Lj(λt,λt′), with respect to l= (th,

smin), with smin held constant and two values of the arguments, t′h = th + 1 (red curve) and t′h = th + 2 (green curve); values of the constants

in Lj were a = 0.001 and b = 1.0. (b) Various iterations of the optimization algorithm, showing the values of the area difference between
ground truth and the calculated borders. The area difference is obtained by summing the difference of areas for all image slices. The plot shows
that despite the initial l, the algorithm converges towards a constant non-zero area difference. (c) Visual inspection of borders obtained with an
optimal solution l* compared with the ground truth, superposed on the corresponding germinal center image.
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Serva, Heidelberg, Germany). Seventeen days after immu-
nization the draining lymph nodes were excised and fixed
with PFA (Sigma). 50 μm vibratome sections from fixed
tissue were stained with the following primary antibodies:
rabbit anti-CD3 (Abcam), rat anti-IgM-TxRd (Southern-
Biotech, Birmingham, USA), and PNA-FITC (Vector, Bur-
lingam, USA). Anti-rabbit immunoglobulin-alexa647
(Invitrogen, Carlsbad, USA) was used as secondary
antibody.
Once the regions of interest were located, 35 images

were acquired at 1.43μm z-steps, using a LSM710 confo-
cal microscope (Zeiss, Jena, Germany) equipped with a
20 × (0,80 NA, Zeiss) objective. Several images were
acquired across a relatively large section of the specimen,
such that each image contained at least one GC, and the
set of all images formed a mosaic (with an irregularly
ordered tiling).

Evaluation
From the data, prepared as described above, we analyzed
four independent data sets that represent magnified
regions of small sections of lymph nodes. For each speci-
men, 5 GCs were imaged independently, with a slight
overlap of the nearby image, so that a mosaic could be
formed. The images consisted of 4-color channels, were
512 × 512, and contained an average of 30 z-stack slices.
We used our algorithm to automatically collect GC statis-
tics by loading all the images in the directory and provid-
ing initial input parameter guesses for the pixel intensity
threshold and the minimum spot size: l = (th, smin).
Results of extracting GCs for different datasets are shown
in Figure 4, showing the contour encountered of the GC
region at different z-stack slices.
The algorithms described are efficient, requiring no

special hardware, and can run on any modern computer
system. In order to appreciate the typical running times,
we ran the algorithm on a standard laboratory computer
(Intel Pentium D CPU 2.80GHz, with 2G Memory), and
execution times to process multi-dimensional images
with sizes 512 × 512 × 35 never exceeded from 1.2 s and

the execution time for the optimization step was always
below 0.5 s for different image sizes.
Figure 9 illustrates the visualization features of pyBio-

Image/ExtractGC. The 2D window, allows the user to
maneuver through the image stacks slice by slice, with
the segmented contour superposed on the image. A 3D
visualization allows the user to interactively manipulate
the GC volume from all angles, and provides a more
accurate calculation of the GC volume.

Conclusions
Our application, pyBioImage with the ExtractGC mod-
ule provides fully automatic and accurate estimates of
GC volumes from an arbitrarily large collection of mul-
tidimensional images. The framework pyBioImage
leverages the relatively recent availability of high quality
scientific software based upon python for rapid develop-
ment of complex image and computation. As such, our
application is positioned to tackle several problems
described in this paper not provided by standard open-
source solutions, such as Fiji/ImageJ. The ExtractGC
module is a relevant bioinformatics tool that should be
of interest to scientists working with confocal and 2-
photon microscopy imaging and has also served to be a
proof of concept module for integrating specific applica-
tions within our general software framework. Given the
usefulness of the ExtractGC module, we are presently
planning to also release a version of the algorithm for
both the ImageJ as well as OMERO projects.

Availability and requirements
Project name: e.g. pyBioImage package
Project home page: http://sourceforge.net/projects/

pybioimage/
Operating system(s): Platform independent
Programming language: phyton, C
Other requirements:
License: GNU GPL
Any restrictions to use by non-academics: license

needed

Figure 8 Examples of borders extracted for different germinal centers. ExtractGC analysis on five images of different germinal centers taken
from the same specimen shown in the mosaic of Figure 1b. The images show the border (red curves) at slices in the center of each germinal
center.
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