
RESEARCH Open Access

A subgraph isomorphism algorithm and its
application to biochemical data
Vincenzo Bonnici1†, Rosalba Giugno2*†, Alfredo Pulvirenti2, Dennis Shasha3, Alfredo Ferro2

From Ninth Annual Meeting of the Italian Society of Bioinformatics (BITS)
Catania, Sicily. 2-4 May 2012

Abstract

Background: Graphs can represent biological networks at the molecular, protein, or species level. An important query
is to find all matches of a pattern graph to a target graph. Accomplishing this is inherently difficult (NP-complete) and
the efficiency of heuristic algorithms for the problem may depend upon the input graphs. The common aim of existing
algorithms is to eliminate unsuccessful mappings as early as and as inexpensively as possible.

Results: We propose a new subgraph isomorphism algorithm which applies a search strategy to significantly
reduce the search space without using any complex pruning rules or domain reduction procedures. We compare
our method with the most recent and efficient subgraph isomorphism algorithms (VFlib, LAD, and our C++
implementation of FocusSearch which was originally distributed in Modula2) on synthetic, molecules, and
interaction networks data. We show a significant reduction in the running time of our approach compared with
these other excellent methods and show that our algorithm scales well as memory demands increase.

Conclusions: Subgraph isomorphism algorithms are intensively used by biochemical tools. Our analysis gives a
comprehensive comparison of different software approaches to subgraph isomorphism highlighting their
weaknesses and strengths. This will help researchers make a rational choice among methods depending on their
application. We also distribute an open-source package including our system and our own C++ implementation of
FocusSearch together with all the used datasets (http://ferrolab.dmi.unict.it/ri.html). In future work, our findings may
be extended to approximate subgraph isomorphism algorithms.

Background
Complex biological systems arise from the interaction and
cooperation of a large number of molecular or organismal
components. Understanding such systems has required,
just at the molecular level, the construction and analysis of
protein−protein interaction, metabolic interaction, tran-
scription factor binding, and hormone signaling networks.
Networks are represented by graphs, where vertices are,
for example, molecular components and edges represent
some relationship among them. Understanding such
networks mainly requires finding specific topological sub-
graphs, which entails the application of subgraph

isomorphism algorithms [1-3]. Such subgraphs are some-
times called network motifs [4]. These motifs, which could
be repeated in the same network or in different networks,
give insight into evolutionary mechanisms (analogous to
the process of establishing the evolution of proteins
through local alignments of sequences). In [5,6], the
authors find network motifs through the following steps:
(i) enumerate all possible subgraphs of the network;
(ii) classify them in classes of isomorphic subgraphs;
(iii) generate random graphs and enumerate and classify
all subgraphs in such graphs (i.e. null hypothesis construc-
tion); and (iv) establish as motifs all subgraphs classes that
appear with higher frequency in the real network than in
the random networks. The second step is repeated many
times in real and random networks and entails the usage
of subgraph isomorphism algorithms [1]. In [7], the
authors provides a Cytoscape plugin to query networks by

* Correspondence: giugno@dmi.unict.it
† Contributed equally
2Dept. Clinical and Molecular Biomedicine - University of Catania, Catania,
95125, Italy
Full list of author information is available at the end of the article

Bonnici et al. BMC Bioinformatics 2013, 14(Suppl 7):S13
http://www.biomedcentral.com/1471-2105/14/S7/S13

© 2013 Bonnici et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://ferrolab.dmi.unict.it/ri.html
mailto:giugno@dmi.unict.it
http://creativecommons.org/licenses/by/2.0

drawing and searching known or user-defined subgraphs.
It uses the subgraph isomorphism algorithm of [3]. The
authors in [3] and related publications show their speed-
up compared to the algorithm in [1] which is used in [5,6].
In another application, molecular components, such as
small or large proteins, are represented as graphs. In such
chemical networks, vertices are atoms and edges are the
bonds among them. Systems such as Daylight [8] and its
academic version Frowns [9], collect a set of molecules
represented in two dimensions. Then, given a subgraph,
they apply a subgraph isomorphism algorithm [3] to deter-
mine how many times and where the subgraphs occur in
each molecule of the collection. The aim of the above
works is to predict or increase the functionality of new or
known molecules. In [10], graphs are used to represent
proteins in three dimensions. There, vertices and bonds
are associated with their positions in space or contact
maps are used. Contact maps represent protein residues
and the cut-off distances among them starting from a
three dimensional protein structure. The authors discuss
subgraph isomorphism algorithms, graph theoretical prop-
erties and the importance of an efficient implementation
of such algorithms with the aim of detecting ligands that
bind to proteins (i.e., common regions in the maps).
Finally, in [11], the authors describe the relations among
the components and subcomponents of molecules by
using hierarchical graphs and making use of subgraph iso-
morphism algorithms [1] to find common substructures.
Finding a solution for the subgraph isomorphism pro-

blem is inherently hard [12] and therefore the efficiency of
any software using subgraph isomorphism algorithms lar-
gely depends on (i) finding efficient heuristics to make the
isomorphism algorithms faster; (ii) reducing the number
of subgraph isomorphism calls; and (sometimes) (iii) relax-
ing the isomorphism conditions.
Graph indexing based methods aim to design efficient

indexes (i.e. extracted from graph subgraph, trees or paths
[13-18]) or data structures [19,20] capable of limiting the
execution of subgraph isomorphism to only a few candi-
date graphs; graph mining algorithms [21-24] reduce the
size of indices by identifying frequent subgraphs having at
least a specified support; and graph pattern matching algo-
rithms [25-28] solve a “near” subgraph isomorphism pro-
blem by applying more relaxed reachability conditions [27].
This paper introduces a new algorithm for the subgraph

isomorphism problem and compares it on synthetic and
biochemical data with the most efficient and recent algo-
rithms present in literature [3,29,30]. Notions, concepts
and related work are given next.

Basic notions
A graph G is a pair (V, E), where V is the set of vertices
and E ⊆ (V × V) is the set of edges. Let A be a set of
labels, the functions lab : V ® A and b : E ® A assign

labels to vertices and edges, respectively. If (u, v) Î E, v
is called a neighbor of u. Given G, |V | (|E|) indicates
the number of vertices (edges). A graph G is dense
when the ratio |E|/|V| is high, sparse otherwise.
Given a pattern graph G and a target graph G’, the

problem is to find an injective function, M : V ® V’,
mapping each vertex of G to a unique vertex of G’ such
that the following isomorphism conditions are satisfied:
if (u, v) is an edge in G, u has label lab(u), v has lab(v),
then the corresponding edge (u’, v’) in G’ has lab(u) =
lab(u’), lab(v) = lab(v’), and b(u, v) = b(u’, v’). Note that
there may be an edge (u’, v’) is Î E’ without any corre-
sponding edge in E; when this happens, the subgraph
isomorphism is also called a monomorphism. When G
has exactly the edges that appear in G’ over the same
vertex set, then G is an induced subgraph of G’.
In what follows, we view G and G’ as connected graphs

and ignore edge labels (edge labels improve efficiency,
because they add more constraints, but complicate the
algorithm needlessly). Moreover, we consider graphs that
are directed, that is (u, v) Î E does not imply that (v, u) is
also in E. Our approach applies as well directly to undir-
ected connected graphs. When needed, we denote an
undirected edge with 〈u, v〉.

Algorithmic aspects of subgraph isomorphisms methods
A simple enumeration algorithm to find all the subgraph
isomorphisms (i.e., occurrences) of a pattern graph in a
target graph works as follows: generate all possible maps
between the vertices of the two graphs and check whether
any generated map is a subgraph isomorphism (which we
will call a match). Whereas this algorithm is inefficient if
done naively, it serves as a good starting point.
All the maps can be represented using a search space

tree. The tree has a dummy root. Each node represents a
possible match between some vertex u of the pattern G
and some vertex u’ of the target graph G’ . The path from
the root to a given node represents a partial match
between G and G’ . Only certain leaves correspond to sub-
graph isomorphisms between the pattern and the target
graph (see Figure 1 for an example of a search space tree).
During the visit, the isomorphism conditions are applied
to verify the partial matches. When the conditions are not
satisfied the algorithm prunes the underling branches and
backtracks on the parent nodes of the search tree. The
size of the above search space tree increases exponentially
with the graph size. Because the subgraph isomorphism
problem is NP-complete [12] (to be precise, subgraph iso-
morphism of graphs with repeated labels or no labels is an
NP-complete problem; such graphs are typical in biomedi-
cal applications) a cheaper-than-exponential algorithm
may not exist. Next we sketch the main heuristics in exist-
ing subgraph isomorphism algorithms. The common aim
is to eliminate unsuccessful mappings as early as possible.

Bonnici et al. BMC Bioinformatics 2013, 14(Suppl 7):S13
http://www.biomedcentral.com/1471-2105/14/S7/S13

Page 2 of 13

Search strategy An important factor influencing an
algorithm’s performance is the choice of a good variable
ordering (sometimes called a search strategy) of the pat-
tern graph vertices in the branches of the search tree. For
example, a variable ordering may begin with a pattern
vertex having the highest degree or having the most
uncommon label in the target graph [31,32]. A strategy
depending on the partial solution could choose the next
pattern vertex to be matched such that the number of
children in the current search tree’s branch is minimized
[29]. One can choose to maintain the same variable
ordering for all the branches of the search tree or can
choose different orderings for different branches. These
two strategies are called static ordering and dynamic
ordering [29,33], respectively.
An important difference between static and dynamic

orderings is that the first one can be chosen a priori,
before the search phase. Dynamic strategies must be ela-
borated during the search.
Reduce the search space After evaluating a partial solu-

tion, an algorithm may backtrack if there is no possible
mapping for the remaining unmatched vertices [3]. Alter-
natively inference-based techniques can predict future
branching of the search tree thus avoiding the need to
explore partial solutions that do not result in a match
[29,30]. An intelligent matching algorithm orders vertices
well and filters well. However, intelligence often comes at
a cost.

Related work
Next, we briefly describe the state of the art. We refer to
[3,29,30,34] for a deep treatment of the subject.
A popular algorithm, VFlib, was presented by Cordella

et al. in [3]. It uses a dynamic search strategy. Given a par-
tial solution, first it chooses unmatched pattern vertices
having edges starting from vertices in the partial solution;
then it chooses those unmatched vertices having edges

ending in vertices in the partial solution. In order to
reduce the search space, the approach uses the following
two lookahead heuristics. A mapping pair (u, u’), where u
and u’ are vertices of the pattern and target graph, respec-
tively, is considered a valid match if it satisfies the follow-
ing rules: (i) u and u’ are both neighbors of matched
vertices; (ii) the number of unmatched pattern vertices
which are neighbors of matched vertices and are con-
nected with u must be less than or equal to the number of
unmatched target vertices which are neighbors of matched
vertices and are connected with u’; (iii) the number of ver-
tices connected with u and not in (i) and (ii) must be less
than or equal to the number of vertices connected to u’
that are not in (i) or (ii). The rule (ii) is subdivided into
four cases depending on the direction of involved edges
between the neighbors of u and the set at (i).The rule (iii)
applies only for induced subgraph isomorphism as
opposed to monomorphisms.
Subgraph isomorphism may be modeled as a constraint

satisfaction problem (CSP). Given a set of variables (pat-
tern vertices) and a set of constraints among them, a solu-
tion of a CSP for the subgraph isomorphism problem
consists of finding an assignment of values (target vertices)
to all variables such that all constraints are satisfied. Initi-
ally, each pattern variable v is associated with a set of
values formed by the set of target vertices that could be
matched to v, i.e. lab(v) = lab(M(v)) and the degree of v is
less of degree of M(v). That set is called the domain of v.
Constraints guarantee that isomorphism conditions are
maintained.
Several filtering techniques, such as forward-checking

[34], prune the branches of the search tree by propagating
constraints to remove values from potential domains (i.e.,
domains of variables not yet assigned).
A branch is pruned when a domain becomes empty. In

forward checking, first a variable is assigned, then all con-
straints involving such variables are propagated to remove

Figure 1 Search space tree. The leaves of the search space tree corresponding to a path of the search tree leading to an isomorphism are
highlighted with a green stick.

Bonnici et al. BMC Bioinformatics 2013, 14(Suppl 7):S13
http://www.biomedcentral.com/1471-2105/14/S7/S13

Page 3 of 13

values from other domains that are not consistent with the
current assignment. This is called inference.
Solnon in [30] proposes LAD, which combines the

constraints that two pattern vertices cannot be matched
with the same target vertex into a partial solution,
together with the preservation of edge correspondence
between the pattern graph and the target graph. Such
constraints are applied during backtracking and are pro-
pagated until convergence (i.e., as much as possible).
LAD defines a dynamic search strategy where the next
pattern vertex to be assigned is the vertex with the
smallest domain cardinality.
Recently, Ullmann proposed an algorithm called Focus-

Search [29]. The search process is done by a backtracking
algorithm that applies a bit-vector domain reduction to
each step. Before the search starts, it runs two preliminary
steps. The first one, called prematch, fills domains by fil-
tering them using vertex invariants based on labels and
topology. The second one locally ensures that two pattern
vertices cannot be matched to the same target vertex.
After the preliminary steps, a static search strategy orders
the pattern vertices in the following way: each pattern ver-
tex with a single compatible target vertex is put at the
head of the sequence and the next pattern vertex to be
matched is the one with the highest number of branches
between it and the partial solution. If there are two ver-
tices that are equal candidates to be the the next vertex in
the ordering, it chooses the one with the highest sum of
the degrees of its neighbors.
Other methods in the literatures do not rely on back-

tracking or CSP techniques, but rather apply heuristics
based on probabilistic functions, explicit enumeration of
matches, and so on [35-46].

Contribution
Inference-based methods, which propagate constraints
until convergence (for example LAD), reduce the search
time to the greatest extent. Unfortunately, such inference
is done at the price of a greater computational cost. On
the other hand, when constraint verification is applied
only locally (for example, the local inference used by
FocusSearch and the pruning rules of VFlib), it is crucial
to define a search strategy that tries to prune the search
space as much and as early as possible at low cost. This
aspect is not addressed by VFLib. FocusSearch applies
this concept only partially. It defines a static and partly
target-dependent search strategy reflecting the pattern
topology. It also performs local inference, minimizing the
cost by using bit-vectors. In this paper we present a novel
subgraph isomorphism algorithm, called RI (http://ferro-
lab.dmi.unict.it/ri.html). It creates a search strategy based
only on the pattern graph topology. The order is chosen
to create constraints as early as possible in the matching
phase. Roughly, vertices having high valence and that are

highly connected with vertices previously present in the
ordering tend to come early in the final variable-ordering.
During the matching phase, RI does not apply any com-
putationally costly pruning or inference rules. This is the
first paper that compares all the most recent and used
algorithms (LAD, FocusSearch, VFlib). We analyze algo-
rithmic aspects including the size of search space, the
memory requirement, the timeout of the algorithms, the
matching time and the total time, varying the density and
dimension of pattern and target graphs, the number and
the distribution of the labels. Dataset characteristics are
typical of molecular biological data. We also used the
synthetic data analyzed in the previous work by authors
of LAD and VFLib. In order to validate our strategy, we
compare RI and two versions of RI, called RI-Ds and RI-
DsPm. RI-Ds computes, after defining the variable order
of pattern vertices and before the subgraph isomorphism
starts, an initial domain assignment. For each pattern
vertex, RI-Ds computes its domain and verifies that pat-
tern edges are compatible in the target domains. It does
not apply inference or domain reduction during back-
tracking. This low-priced verification helps in large dense
targets, because it reduces the number of candidates to
be verified during backtracking. RI-DsPm, in addition to
RI-Ds, uses the prematch phase defined in FocusSearch,
i.e. filters domains by using vertex invariants based on
neighbor labels and topology. We show that RI-DsPm
does not improve performance compare to RI and RI-Ds.
This behavior is supported by the analysis given in [29]
(see in [29] Section 7.7 “Molecular graph retrieval experi-
ments”). Moreover, it validates the main ideas in RI: a
powerful pattern vertex ordering, i.e. strongly dependent
only on pattern graph topology, together with light con-
straint verification, is more efficient than a local or global
inference procedure.

Results and discussion
Compared software We compared RI, along with var-
iants RI-Ds and RI-DsPm with VFlib (using the last
released version named VF2), LAD and FocusSearch
measuring the search space size, the matching time, the
memory requirements and the total time.
RI, RI-Ds, RI-DsPm, VF2 and LAD are implemented

in C/C++. Since FocusSearch has been released in Mod-
ula2, in order to compare the algorithms under the
same platform, we re-implemented FocusSearch in C++
following the author’s guidance and the original source
code.
Next we describe the pattern and target graphs used to

test the algorithms. Table 1 reports the statistics on the
number of vertices, edges and labels of the real target
graphs described below. We refer to the Additional File 1
for details on the synthetic datasets. We consider all
graphs to be directed. We transform undirected graphs

Bonnici et al. BMC Bioinformatics 2013, 14(Suppl 7):S13
http://www.biomedcentral.com/1471-2105/14/S7/S13

Page 4 of 13

http://ferrolab.dmi.unict.it/ri.html
http://ferrolab.dmi.unict.it/ri.html

into directed graphs by replacing each edge connecting
two vertices with two edges.
Patterns are searched against all graphs of the dataset,

by a one-to-many approach (pattern/target dataset). See
the Table 1 in Additional File 1 for the average (and
standard deviation) of the number of subgraph iso-
morphisms obtained per datasets.
Molecular dataset AIDS dataset contains the topologi-

cal structures of 40000 chemical compounds that have
been tested for evidence of anti-HIV activity (available
from NCBI [47]). Compounds are graphs where the num-
ber of vertices varies from 4 to 245. They are small sparse
graphs. Since the AIDS dataset contains relatively small
graphs, the patterns are graphs of the dataset. Patterns
were divided into four groups, each group has one hun-
dred graphs, and each graph may have 4, 8, 16 or 32 ver-
tices. The topology of patterns was chosen in order to
respect the average degree and label distribution of the
target graphs. This implies that patterns were often quite
complex. Patterns of the same size may have different
number of matches (this is shown in Table 1 of the Addi-
tional File 1, based on the standard deviation values asso-
ciated with the number of matches).
Protein dataset PDBSv1 dataset contains 30 graphs

with data from DNA, RNA, and proteins having up to
33067 vertices. Original structures can be downloaded
from http://www.fli-leibniz.de/ImgLibPDB/pages/entry_-
list-all.html[48] and http://www.rcsb.org/pdb/home/home.
do[49]. In our software package we include the software to
convert the original data into graphs. Our software makes
use of the BALL library available at http://www.ball-pro-
ject.org. The dataset mostly contains large sparse graphs.
Pattern graphs were extracted from the corresponding tar-
get graphs fixing the number of wanted edges. Patterns
are subgraphs (monomorphisms) of their corresponding

target graphs. We create six groups of 10 random patterns
having a number of edges equals to 4, 8, 16, 32, 64, and
128. We generated the patterns from the original targets
in the following way. Starting from an edge, the algorithm
adds its closest edges to a list of candidate edges. Then, it
choses a candidate edge, adds it to the pattern and then
adds its neighbors to the candidates list. The process is
repeated until the desired number of edges is reached.
Again, patterns reflect the average degree and label distri-
bution of the target graphs. The number of subgraph iso-
morphisms for patterns of size 64 and 128 is larger than
for smaller patterns sizes (see Table 1- Additional File 1).
This may due to the fact that patterns match parts of the
backbones and parts of protein surfaces. Protein surfaces
are rich in atoms of the same type such as hydrogens,
leading to an increased number of possible subgraph
isomorphisms.
Protein backbones dataset PDBSv2 dataset contains 40

proteins represented by the backbones of the proteins com-
ing from the crystallography downloaded from Jena [48]
and Protein Data Bank [49] converted to graphs by BALL
library (available at http://www.ball-project.org). They are
medium sparse graphs. They may have from 1683 to 7979
vertices per graph. Pattern graphs were extracted from the
corresponding target graphs as we have done for dataset
PDBSv1. We create seven groups of 10 random patterns,
reflecting the typology of the target graphs, having a num-
ber of edges equals to 4, 8, 16, 32, 64, 128 and 256. Again,
the number of subgraph isomorphisms for patterns of size
64 and 128 is larger than for smaller patterns sizes but is
much smaller compared to the corresponding results in
PDBSv1 (see Table 1- Additional File 1). This is due to the
fact that the graphs are protein backbones.
Proteins contact maps dataset PDBSv3 dataset con-

tains 50 contact maps of the amino acids of the domains

Table 1 Statistics of biochemical datasets.

Min
Vertices

Min
Edges

Max
Vertices

Max
Edges

Avg (SD)
Vertices

Avg (SD)
Edges

Avg (SD)
Degree

Total
Labels

Avg (SD)
Labels

AIDS
Small Sparse

4 8 245 500 44.98
(21.68)

93.91
(45.05)

4.17
(2.28)

62 4.36
(0.86)

PDBSv1
Large Sparse

240 480 33067 61546 5663.6
(6954.82)

86661.27
(12365.7)

3.21
(2.52)

14 5.9
(1.04)

PDBSv2
Medium
Sparse

1683 3414 7979 16302 3614.1
(1772.06)

7386.2
(3814.08)

4.08
(17.47)

13 4.63
(0.76)

PDBSv3
Small Dense

7 16 883 18832 376.86
186.66

8679.48
3814.08

44.78
(17.47)

21 18.86
(3.48)

Graemlin
Medium
Dense

1081 12961 6726 230468 3167.6
(1568.66)

87759.6
(75939.2)

48.14
(63.61)

31676 3167.6
(1568.66)

PPI
Large Dense

5720 51464 12575 332458 7827.1
(2120.15)

107135
(82730.9)

28.66
(47.44)

78271 7827.1
(2120.15)

Statistics of the number of vertices and number of edges. These describe the minimum, maximum and average number of vertices and edges in the dataset.
Total Labels is the total number of labels in the dataset. Avg Label is the average number of labels per graph. Standard deviations are reported in parentheses.

Bonnici et al. BMC Bioinformatics 2013, 14(Suppl 7):S13
http://www.biomedcentral.com/1471-2105/14/S7/S13

Page 5 of 13

http://www.fli-leibniz.de/ImgLibPDB/pages/entry_list-all.html
http://www.fli-leibniz.de/ImgLibPDB/pages/entry_list-all.html
http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do
http://www.ball-project.org
http://www.ball-project.org
http://www.ball-project.org

of the proteins, retrieved by CMView [50]. While for
backbones we can have thousands of vertices corre-
sponding to atoms, the number of vertices in the con-
tact maps is relatively small (corresponds to the length
of the proteins), since they represent relationships
among amino acids. Contact maps are small dense
graphs. In average a graph may have 380 vertices.
Since target graphs are dense, we extracted from them

different types of pattern graphs (from dense to sparse) to
vary the performance comparisons. Patterns were gener-
ated from the corresponding target graphs giving the
number of desired edges. Dense patterns are constructed
by forcing the number of vertices to be approximately
equal to 25% of the number of edges. Since patterns are
subgraphs (monomorphisms) of their corresponding target
graphs each pattern tends to reach the desired percentage
of vertices. Semi-dense patterns have a number of vertices
almost equal to 50% of the number of edges. For the
sparse patterns the percentage of vertices is set to 90% and
cycles avoid simple structures as paths. For each density of
patterns, we create seven groups of 10 random patterns
having a number of edges equals to 4, 8, 16, 32, 64, 128
and 256. Dense patterns have an average degree of 11.5
with a standard deviation equals to 3.74, an average num-
ber of labels equals to 9.94 with 6 as standard deviation.
Semi-dense patterns have an average degree of 7 with a
standard deviation equals to 3.04, an average number of
labels equals to 10.24 with a standard deviation 6.33.
Sparse patterns have an average degree of 4.4 with a stan-
dard deviation equals to 2.69, an average number of labels
equals to 12.88 with a standard deviation 5.67. As we
expected, dense patterns have fewer subgraph isomorph-
isms. The number of matches increases with the size of
semidense patterns. However, this is not always true (see
Table 1- Additional File 1). Sometimes, larger patterns
may have fewer matches. In real data, this depends on the
nature of the data.
Graemlin dataset This dataset contains 10 microbial

networks (Campylobacter jejuni, Caulobacter crescentus,
Helicobacter pylori 26695, Salmonella typhimurium LT2,
Synechocystis PCC6803, Vibrio cholerae, Escherichia coli
K12, Mycobacterium tuberculosis H37Rv, Streptococcus
pneumoniae TIGR4, Streptomyces coelicolor) [51]. Since
each vertex has a unique label, we perform the test using
networks without labels, with unique labels, and varying
the number of assigned random labeled from 32, 64, 128,
256, 512, 1024, to 2048. For subgraph isomorphism algo-
rithms, the former corresponds to the hardest and the
easiest cases, respectively. In [52], authors prove that the
complexity of subgraph isomorphism algorithms is quad-
ratic in the number of vertices on graphs labelled with
unique labels. Labels are assigned using a uniform distri-
bution. As described for PDBSv3 we create sets of 20

dense, semidense and sparse patterns for each pattern
dimension (4, 8, 16, 32, 64, 128, to 256). The number of
matches reflects the density but is not exactly proportional
to the the pattern sizes (see Additional File 1, plots are
shown for pattern dimensions varying the number of
labels and density).
Protein−Protein interaction networks dataset This

dataset contains 10 networks describing the known and
predicted protein interactions downloaded from STRING
[53]. We used the following organisms: Mus musculus,
Saccaromyces cerevisiae, Caenorhabditis elegans, Droso-
phila melanogaster, Takifugu rubipres, Danio rerio, Xeno-
pus tropicalis, Bos taurus, Rattus norvegicus, and Homo
sapiens. They are large dense graphs. Since each vertex
has a unique label, we perform tests using the networks
with unique labels and then with randomly assigned labels
varying the number from 32, 64, 128, 256, 512, 1024, to
2048. Labels are assigned using a uniform distribution and
a normal distribution (gaussian). We extracted from the
target graphs sets of 20 dense, semidense and sparse pat-
terns for each pattern dimension (the number of edges
vary from 4, 8, 16, 32, 64, 128, to 256). Again, the number
of matches depends on the density factor but is not exactly
proportional to the pattern sizes (see Additional File 1
where plots are shown for pattern dimensions varying the
number of labels and density). In the Additional File 1 we
present an application of subgraph isomorphism on pro-
tein complexes searching on GO annotated PPI dataset.
Synthetic dataset RI has been compared also on the

synthetic dataset distributed by Sansone et al. [54]. They
are pairs of unlabeled graphs having sizes varying from 20
to 1000 vertices. The dataset contains the following kinds
of graphs: Bounded Valence: (the number of edges per ver-
tex varies from 3, 6, 9), Mesh (2D, 3D and 4D, where 2,3,4
indicate the dimensionality of the meshes), and Random
(edges are added according to a fixed probability; edges
are independent and the probability distribution is uni-
form). Since the synthetic dataset is composed of a pair of
(target and pattern) graphs, we do not need to generate
patterns for it. We refer to [54] for the detailed statistics of
this dataset and to Additional File 1 for the performance
results on the compared softwares.
Performance Experiments have been conducted on a

QuadCore Intel Xeon 2.33 Ghz, with 4 physical cores at
64 bit with 4 Mb cache, 4 Gb of RAM, running Linux ver-
sion 2.6.32. We do use multi-threading. Experiments were
repeated to get rid of caching effects. We set a timeout of
3 minutes to the total execution time of the algorithms
(note that all algorithms end). We chose this timer since it
reflects in proportion the results reported in [30] (where
test are run with a timeout of 1 hour). For each dataset we
report how many subgraph isomorphism runs each algo-
rithm completes before the timeout. When an algorithm

Bonnici et al. BMC Bioinformatics 2013, 14(Suppl 7):S13
http://www.biomedcentral.com/1471-2105/14/S7/S13

Page 6 of 13

times out, we exclude the related running times from the
means of all algorithms. RI shows the best behavior on all
datasets. Results for VF2 on PPI datasets are not reported
since they often time out. FocusSearch times out on dense
datasets and LAD times out on large graphs.
Here, we report the average and standard deviation of

space size, memory requirement, matching time and total
time on biochemical datasets (see Additional Files 2, 3, 4,
5, 6, 7, 8, 9). All detailed comparisons and plots are given
in the Additional File 1. In Additional Files 2 and 3 we
give a comparison of all tested algorithms on AIDS and
PDBS datasets for time and space respectively. Additional
Files 4 and 5 give the performances on synthetic datasets
provided by Sansone et al. Additional Files 6, 7, 8, 9 pre-
sent a comparison of microbial and protein interaction
networks varying the number of labels. For each dataset,
tests are grouped with respect to the pattern density,
number of labels or labels distributions as shown in the
plots. We highlighted in bold the algorithm outperform-
ing the others.
The total time needed by an algorithm includes the time

to read graphs from files, to build data structures, to run
preprocessing operations, to run the real matching phase
and so on. Therefore, we distinguish between the total
time and the matching time. The matching time for RI
and VF2 pertains only to the matching process; conversely
for RI-Ds, RI-DsPm, LAD and FocusSearch it also includes
the preprocessing time. Notice that the preprocessing
steps are the first parts of the matching processes and they
depend on the pattern graphs. The space size is the num-
ber of visited nodes of the hypothetical search space tree
and the memory size is the number of kilobytes required
to store all data structures.
Beside total time comparisons, we analyzed space, and

memory size due to the fact that comparing the perfor-
mance of those algorithms means to deal with basic differ-
ences that may influence the final results and their
applicability on a variety of data.
RI, RI-Ds, RI-DsPm, VF2, and FocusSearch store data in

adjacency lists. LAD uses adjacency matrices. The formers
use less memory but require linear time to check the exis-
tence of an edge. On the other hand, LAD requires quadra-
tic memory to represent the data, but verifies the existence
of edges in constant time We refer to the actual implemen-
tation of data structures of the algorithms in the released
codes. Theoretically, efficient matrix implementations for
sparse graphs could be used with moderate look-up time
sacrifice. The search in adjacency lists could takes logarith-
mic time on the number of edges if a binary search were
used on ordered lists of edges. Moreover, each algorithm
uses several data structures besides the data structures to
store the graphs. Therefore the resulting plots do not show
the quadratic memory increases of an algorithm compared
to another.

RI and VF2 do not use initial domains (which are com-
patibility maps among pattern and target vertices) or make
use of variable domains. For this reason, FocusSearch,
RI-Ds, RI-DsPm, and LAD check label similarity between
vertices or edges once. On the other hand, RI and VF2
compare labels even if they have already done so in some
previous step.
Since LAD, FocusSearch, RI-Ds and RI-DsPm, run a

preprocessing phase to filter out the variable domains
before the matching phase begins, they can potentially
generate a smaller search space.
The extensive reduction operations of LAD prune the

search space well at the price of a greater computational
cost. FocusSearch applies cheaper reduction operations
decreasing the running time but generating a larger search
space. RI-Ds and RI-DsPm do not apply inference, there-
fore only the initial domains are reduced. RI and its two
versions apply very light pruning rules and, therefore, they
may generate a larger search space. In fact, the aim of our
approach is to maintain a balance between the size of the
generated search space and the time needed to visit it.
Summarizing the results (see Additional File 1 for

detailed plots) we observed that
• RI always outperforms VF2.
• RI outperforms all other algorithms in sparse target

graphs such as AIDS, PDBSv1, PDBSv2.
• RI is comparable with LAD and FocusSearch on

small dense pattern graphs PDBSv3 with dense patterns,
and with semidense small-medium patterns.
• RI outperforms LAD but not FocusSearch on small

dense pattern graphs PDBSv3 with large semidense or
sparse patterns.
Morever:
• We suggest to use RI-Ds on medium or large dense

targets (such as Graemlin and PPI datasets). Here, RI-
Ds outperforms (or comparable in total times with
FocusSearch on PPI) all algorithms across different
numbers of labels, pattern dimensions, and densities.
• We do not suggest the use of RI-DsPm or any costly

inference or pruning rules. RI-DsPm does not improve
performance compare to RI and RI-Ds. This behavior is
supported by the analysis given in [29] (see in [29]
Section 7.7). Since, our algorithm is independent of the
used pruning rules, we also tried to run our algorithm
with the rules from VFlib [3]. Experiments show that
the rules helped to reduce the search space but their
contribution were not significant and, in some cases,
they increased the total time of the matching process.
Therefore, we did not deploy those pruning rules.
These considerations validate the main idea in RI: a

powerful pattern vertex ordering, i.e. strongly dependent
only on the pattern graph topology, together with light
constraint verification, is more efficient than a local or
global inference procedure.

Bonnici et al. BMC Bioinformatics 2013, 14(Suppl 7):S13
http://www.biomedcentral.com/1471-2105/14/S7/S13

Page 7 of 13

Conclusions
Subgraph isomorphism is an important functionality of
biochemical tools. This paper has made two intellectual
and two pragmatic contributions to solving this inher-
ently difficult problem. First, it proposes a new algo-
rithm that outperforms existing algorithms in many
though not all settings. Second it offers a perspective
into when to choose which algorithm. Third, it provides
implementations of the various leading algorithms.
Fourth, it compares for the first time all most recent
and popular subgraph isomorphism algorithms on bio-
chemical data. In future work, we will apply these algo-
rithms and similar analyses to approximate subgraph
isomorphism search.

Method
A measure of goodness for a subgraph isomorphism
algorithm is its ability to reduce the search space. Our
approach is based on the generally applicable observation
that the order in which vertices of the pattern are
matched is crucial to speeding up the pruning process.
So, our algorithm starts by ordering the vertices of the
pattern graph independently of any target graph and
maintains the same variable ordering for all the branches
of the search space. So, our search strategy is static and
target independent.

The static search strategy in RI
The search space tree has a dummy root. Each node
represents a possible match between some vertex u of
the pattern G and some vertex u’ of the target graph
G’. Let M : V ® V’ be a mapping and pt = ((u0, M(u0)),
(u1, M(u1)), ..., (un, M(un))) be a path of the state tree
starting from the root. If n <|V | then pt is a partial
match between G and G’. When n = |V |, pt is a full
solution. Because our search strategy is static, each
such full match maps the same order of vertices from
the pattern graph to some sequence of vertices of the
target graph.
Before the subgraph isomorphism process starts, RI

orders the vertices of the pattern graph to maximize the
chance that a partial path will be pruned away. This
means that the ordering seeks to introduce as many
edge constraints as possible and as early as possible in
the ordering. Constraints are deduced only from the
pattern graph and not from the target graph.
Recall that we have defined graphs as directed, that is

(u, v) Î E does not imply that (v, u) is also in E. Thus,
given a vertex u we could distinguish among edges
going out from u, such as (u, v), from edges going into
u, such as (v, u). Our search strategy considers the
neighbors of a vertex u to be all edges touching u, with-
out regard to directionality. So, here we denote the edge
by 〈u, v〉.

Given the pattern graph G(V, E), let n = |V|. The aim is
to define a suitable sequence of vertices μ=(u0,u1, ...,un) of
V . Specifically, at each step i, the vertex ui Î V chosen is
the one that maximizes the size of the set Bi = {〈ui, uj〉 Î E :
uj Î μ, 0 < j ≤ i ≤ n}. Bi represents the set of edges in the
pattern graph connecting ui with vertices in μ. By making
Bi as large as possible, the algorithm imposes the most con-
straints on corresponding subgraphs of a potential target
graph. That is, in the subgraph isomorphism process, RI
first will be matched to nodes that are highly connected
(i.e., a large number of constraints to verify) with nodes
already matched.
We use a greedy algorithm called GreatestConstraint-

First to find a good sequence of vertices μ. GreatestCon-
straintFirst visits the pattern graph based on a scoring
function. It starts from a vertex u0 in the pattern graph
that has the maximum number of neighbors among any
vertex in the pattern graph. The algorithm iteratively
proceeds until all vertices in the pattern graph are
inserted in μ. For each vertex v not yet in the sequence
(u0, u1, ..., um−1) we maintain the concept of vertex par-
ent, that is the vertex ui in the sequence with the smal-
lest index i such that 〈ui, v〉 Î E. Figure 2 shows the
pseudocode of the algorithm.
The scores are assigned in the following way. Let m be

the next step of a visit in the pattern graph and let μ
(u0, u1, ..., um−1) the visited vertices so far. Let um be the
next candidate vertex to be inserted in μ.
We can ascribe a score to um using the following

three sets.

1 Vm,vis = {ui : 0 ≤ i < m : 〈um, ui〉 Î E}, the set of
vertices in μ that are neighbors of um.
2 Vm,neig = {ui : 0 ≤ i < m, ∃j > m : (ui, uj) Î E, (um,
uj) Î E}, the set of vertices in μ each of which is a
neighbor of at least one vertex outside μ that is con-
nected to um.
3 Vm,unv = {uj : j > m, (um, uj) Î E, ∀i < m (ui, uj) ∉
E}, the set of vertices that are not in μ, not even
neighbors of vertices in μ but are neighbors of um.

The score of candidate um is a lexicographic score
based on |Vm,vis| as the high order quantity, followed by
|Vm,neig| and finally |Vm,unv|. Thus, suppose ua and ub
are both candidates. The score of ua is greater than the
score of ub if either (i) |Va,vis| >|Vb,vis| or (ii) |Va,vis| = |
Vb,vis| and |Va,neig| >|Vb,neig| or (iii) |Va,vis| = |Vb,vis| and
|Va,neig| = |Vb,neig| and |Va,unv| >|Vb,unv|. If two vertices
tie for the highest score, then we choose one arbitrarily
and keep track of the other.
Note that, if we are working with directed graphs then

our algorithm increases the score more when both under-
lying directed edges are present than if only one of the
pair exists.

Bonnici et al. BMC Bioinformatics 2013, 14(Suppl 7):S13
http://www.biomedcentral.com/1471-2105/14/S7/S13

Page 8 of 13

Figure 3 reports an example of the RI search strategy.
The first vertex inserted in μ is 4, since it has the high-
est number of edges. Then, suppose that μ = {4, 1}, the
candidates to be inserted are vertices 0,2,6,5 and 7. The

next vertex that will be inserted in μ is 5. The reason is
that, even though it has the same number of edges
pointing to vertices in μ as vertex 0, the vertex 5 has a
higher number of edges pointing to neighbors of

Figure 2 GreatestConstraintFirst algorithm. The algorithm generates an order on the pattern vertices, sequence μ, that during the subgraph
isomorphism process will maximize the number of topological constraints as early as possible in the matching process.

Bonnici et al. BMC Bioinformatics 2013, 14(Suppl 7):S13
http://www.biomedcentral.com/1471-2105/14/S7/S13

Page 9 of 13

vertices in μ (i.e. point to 2 and 7). Even though the
node 5 has fewer edges pointing to all remaining ver-
tices (i.e. consider the edge 〈5, 8〉 for 5, and for 0 the
edges 〈0, 3〉 and 〈0, 9〉), this case has less weight in the
defined score.
Finally, we point out that our search strategy does not

favor (i.e. put in the ordering first) more dense parts of the
pattern graph nor the most central vertex according cen-
trality measures such as between centralities and so on. In
fact, in the example in Figure 3 the most central vertices 6
and 0 are not at the beginning of the ordering.

Reduce search space procedure
Each node in the search space tree represents a mapping
from a vertex in the pattern graph to a vertex in the target

graph. All paths from the root downward in the tree corre-
spond to the order of vertices μ in the pattern graph gen-
erated by GreatestConstraintFirst. The vertices from the
pattern graph must be compared to every vertex in the
target graph to see whether it satisfies the subgraph iso-
morphism conditions. Each step consists of choosing, at
each level i, the candidate vertices in the target graph,
u′
i = M (ui) to match ui, among the neighbors of the

matched vertices of the parents of ui. Parents of the pat-
tern graph are constructed in GreatestConstraintFirst. The
following isomorphism conditions prune away un-feasible
paths.

1. Neither ui nor M(ui) is already matched in the
current path.
2. The matched vertices are compatible, i.e., lab(ui) ≡
lab(M(ui)).
3. The number of edges connected to M(ui) in V’ is
greater than or equal to the number of edges con-
nected to ui in V. That is |{(v’, M(ui)) Î E’}| ≥ |{(w,
ui) Î E}| and |{(M (ui),v’) Î E’ }| ≥ |{(ui, w) Î E}|.
In the case of undirected graphs the it verifies that
|〈M(ui), v’〉 Î E’}| ≥ | 〈ui, w〉 Î E}|.
4. The constraints deriving from the topology of the
pattern graph up to this point in the path are met,
∀ui, uj Î V where 0 ≤ j ≤ i (ui, uj) Î E ⇒ (M(ui),
M(uj)) Î E’ If edges are labeled, then b is defined,
we would also verify the compatibility of the edge
labels.

The isomorphism conditions are tested in the above.
Condition i is verified only if condition i − 1 does not
fail. Conditions 1, 2, and 4 ensure the isomorphism,
whereas the third one is a filtering test that often obvi-
ates the need for the substantial work needed to verify
condition 4. The above matching procedure, called
Matching, is illustrated in Figure 4.

Algorithmic aspects of RI vs existing popular algorithms
RI is the first to suggest a static and target independent
search strategy. It reduces the search space by applying
only the subgraph isomorphism conditions rather than
costly filtering rules as in [3] or inference procedures as in
[2,29,30]. It’s not a priori clear that this will be better.
Inference or pruning rules that look at the target graph
and that consider the actually partial solutions can reduce
the space search more, but may be more expensive.
VFlib [3] and LAD [30] define a dynamic search strategy

that looks at the target graph; FocusSearch [29] defines a
partly dynamic search strategy, almost independent from
the target graph. FocusSearch first looks at the target
graph to run a domain reduction by filtering them using
vertex invariants based on labels and topology. This is
used to select the first vertex of the variable ordering.

Figure 3 Search strategy in RI. The sequence of pattern vertices
produced by the static search strategy of RI. The first vertex inserted
in μ is 4, since it has the greatest number of edges. Then, suppose
that μ = {4, 1}, the candidates to be inserted are vertices 0,2,6, 5
and 7. The next vertex that will be inserted in μ is 5, because vertex
5 has a greater number of edges pointing neighbors of vertices in μ

(i.e. point to 2 and 7) than vertex 0. Even though the node 5 has
fewer edges pointing to all remaining vertices (i.e. consider the
edge 〈5, 8〉 for 5, and for 0 the edges 〈0, 3〉 and 〈0, 9〉), this case has
less weight in in defined score.

Bonnici et al. BMC Bioinformatics 2013, 14(Suppl 7):S13
http://www.biomedcentral.com/1471-2105/14/S7/S13

Page 10 of 13

Then it constructs the rest of the sequence of vertices by
applying topology constraints only on the pattern graph.
FocusSearch has less pruning power than LAD, but the
overhead is also less.

Besides the fact that RI is static, the rules are different
too. For example, (i) in contrast to VFlib rules, RI does
not distinguish among edges going out or into a vertex,
(ii) FocusSearch can handle only integer label edges, and

Figure 4 Matching algorithm. Matching algorithm in RI

Bonnici et al. BMC Bioinformatics 2013, 14(Suppl 7):S13
http://www.biomedcentral.com/1471-2105/14/S7/S13

Page 11 of 13

(iii) LAD cannot perform induced subgraph isomorph-
ism and cannot deal with edge labels. Table 2 sum-
marizes the main differences among RI, VFlib and
FocusSearch.

Additional material

Additional file 1: Results and applications. It completes the Results
and Discussion Section with the detailed description of all used datasets
and obtained results. It reports an application of subgraph isomorphism
on protein complexes searching on GO annotated PPI dataset.

Additional file 2: Average matching and total time performances on
AIDS and PDBS datasets. For PDBSv3, tests are grouped with respect to
pattern densities. For each algorithm, the average of its result values
(expressed in sec) is reported together with the standard deviation (see
Additional File 1 for more detailed results). The best algorithm is
highlighted in bold.

Additional file 3: Average space and memory requirements on AIDS
and PDBS datasets. For PDBSv3, tests are grouped with respect to
pattern densities. For each algorithm, the average of its result values
(expressed as the number of space’s nodes and kilobytes) is reported
together with the standard deviation (see Additional File 1 for more
detailed results). The best algorithm is highlighted in bold.

Additional file 4: Average matching and total time performances on
Sansone et al dataset. Tests are grouped with respect to target
topologies. For each algorithm, the average of its result values (expressed
in sec) is reported together with the standard deviation (see Additional
File 1 for more detailed results). The best algorithm is highlighted in bold.

Additional file 5: Average space and memory requirements on
Sansone et al dataset. Tests are grouped with respect to target
topologies (see Additional File 1 for more detailed results). For each
algorithm, the average of its result values (expressed as the number of
space’s nodes and kilobytes) is reported together with the standard
deviation. The best algorithm is highlighted in bold.

Additional file 6: Average matching and total time performances on
Graemlin dataset. Tests are grouped with respect to the number of
labels as shown in the plots (see Additional File 1 for more detailed
results). For each algorithm, the average of its result values (expressed in
sec) is reported together with the standard deviation. The best algorithm
is highlighted in bold.

Additional file 7: Average space and memory requirements on
Graemlin dataset. Tests are grouped with respect to the number of
labels as shown in the plots (see Additional File 1 for more detailed
results). For each algorithm, the average of its result values (expressed as
the number of space’s nodes and kilobytes) is reported together with
the standard deviation. The best algorithm is highlighted in bold.

Additional file 8: Average matching and total time performances on
PPI dataset. Tests are grouped with respect to the number of labels and
label distributions as shown in the plots (see Additional File 1 for more
detailed results). For each algorithm, the average of its result values is
reported together with the standard deviation. The best algorithm is
highlighted in bold.

Additional file 9: Average space and memory requirements on PPI
dataset. For each dataset, tests are grouped with respect to respect to
the number of labels and label distributions as shown in the plots (see

Additional File 1 for more detailed results). For each algorithm, the
average of its result values (expressed as the number of space’s nodes
and kilobytes) is reported together with the standard deviation. The best
algorithm is highlighted in bold.

Authors’ contributions
VB and RG conceived and designed the algorithm. VB implemented the
algorithm. RG, AP, DS and AF contributed to analysis aspects. RG, AP, DS,
and AF supervised the project. All authors wrote and approved the
manuscript.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
We would like to thank the authors of VFlib, LAD and FocusSearch for
having kindly provided their tools for comparison purpose. In particular, we
thank J. R. Ullmann for very informative discussions.
This article has been published as part of BMC Bioinformatics Volume 14
Supplement 7, 2013: Italian Society of Bioinformatics (BITS): Annual
Meeting 2012. The full contents of the supplement are available online at
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S7

Declarations
This article is published as part of a supplement. The publication costs for
this article were funded by PO grant - FESR 2007-2013 Linea di intervento
4.1.1.2, CUP G23F11000840004.

Author details
1Dept. Computer Science - University of Verona, Verona, 37134, Italy. 2Dept.
Clinical and Molecular Biomedicine - University of Catania, Catania, 95125,
Italy. 3Courant Institute of Mathematical Sciences - New York University, NY
10012, USA.

Published: 22 April 2013

References
1. McKay B: Practical graph isomorphism. Congressus Numerantium 1981,

30:45-87.
2. Ullmann J: An algorithm for Subgraph Isomorphism. Journal of the

Association for Computing Machinery 1976, 23:31-42.
3. Cordella L, Foggia P, Sansone C, Vento M: A (Sub)Graph Isomorphism

Algorithm for Matching Large Graphs. IEEE Transactions on Pattern Analysis
and Machine Intelligence 2004, 26(10):1367-1372.

4. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U: Network
motifs: simple building blocks of complex networks. Science 2002,
298(5594):824-827.

5. Kashani Z, Ahrabian H, Elahi E, Nowzari-Dalini A, Ansari E, Asadi S,
Mohammadi FSSchreiber, Masoudi-Nejad A: Kavosh: a new algorithm for
finding network motifs. BMC Bioinformatics 2009, 10:318.

6. Wernicke S, Rasche F: FANMOD: a tool for fast network motif detection.
Bioinformatics 2006, 22:1152-1153.

7. Ferro A, Giugno R, Pigola G, Pulvirenti A, Skripin D, Bader GD, Shasha D:
NetMatch: a Cytoscape plugin for searching biological networks.
Bioinformatics 2007, 23(7):910-912.

8. Daylight Chemical Information Systems. [http://www.daylight.com/].

Table 2 Comparison of subgraph isomorphism algorithms.

Search Stratergy Reduce Search Space Preprocessing Data x Data Structure

FocusSearch [29] Static Semi-target dependent Local domain reduction Yes List

Lad [30] Dynamic Target dependent Domain reduction until convergence Yes Matrix

VFlib [3] Dynamic Target dependent Two-Look-Head pruning rules No List

RI Static Target independent Fast and light pruning rules No List

Review of some algorithmic aspects of the most recent subgraph isomorphism algorithms.

Bonnici et al. BMC Bioinformatics 2013, 14(Suppl 7):S13
http://www.biomedcentral.com/1471-2105/14/S7/S13

Page 12 of 13

http://www.biomedcentral.com/content/supplementary/1471-2105-14-S7-S13-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-14-S7-S13-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-14-S7-S13-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-14-S7-S13-S4.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-14-S7-S13-S5.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-14-S7-S13-S6.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-14-S7-S13-S7.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-14-S7-S13-S8.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-14-S7-S13-S9.pdf
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S7
http://www.ncbi.nlm.nih.gov/pubmed/15641723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15641723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12399590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12399590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19799800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19799800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16455747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17277332?dopt=Abstract
http://www.daylight.com/

9. Frowns. [http://frowns.sourceforge.net/].
10. Lemons NW, Hu B, Hlavacek W: Hierarchical graphs for rule-based

modeling of biochemical system. BMC Bioinformatics 2011, 12-45.
11. Kucukural A, Szilagyi A, Sezerman U, Zhang Y: Chemoinformatics: Advances

in Chemoinformatics and Computational Methods, Protein Homology Analysis
for Function Prediction with Parallel Sub-Graph Isomorphism IGI global; 2009.

12. Garey M, Johnson D: Computers and Intractability: A Guide to the Theory of
NP-Completeness Freeman and Company; 1979.

13. Giugno R, Shasha D: GraphGrep: A Fast and Universal Method for
Querying Graphs. Proceeding of the International Conference in Pattern
recognition (ICPR), ICPR ’02 2002, 112-115.

14. Yan X, Yu P, Han J: Graph indexing: a frequent structure-based approach.
Proceedings of the ACM SIGMOD international conference on Management of
data SIGMOD ‘04; 2004, 335-346.

15. Cheng J, Ke Y, Ng W, Lu A: Fg-index: towards verification-free query
processing on graph databases. Proceedings of the 2007 ACM SIGMOD
international conference on Management of data SIGMOD ‘07; 2007, 857-872.

16. Di Natale RD, Ferro A, Giugno R, Mongiovì M, Pulvirenti A, Shasha D: SING:
Subgraph search In Non-homogeneous Graphs. BMC Bioinformatics 2010,
11:96.

17. Bonnici V, Ferro A, Giugno R, Pulvirenti A, D S: Enhancing Graph Database
Indexing by Suffix Tree Structure. Proceedings of the 5th IAPR international
conference on Pattern recognition in bioinformatics 2010, 195-203.

18. Zhang S, Hu M, Yang J: TreePi: A Novel Graph Indexing Method.
Proceedings of IEEE 23rd International Conference on Data Engineering 2007,
181-192.

19. He H, Singh AK: Closure-Tree: An Index Structure for Graph Queries. ICDE
‘06: Proceedings of the 22nd International Conference on Data Engineering
2006, 38.

20. Zou L, Chen L, Yu JX, Lu Y: A novel spectral coding in a large graph
database. Proceedings of the 11th international conference on Extending
database technology: Advances in database technology, EDBT ’08 2008,
181-192.

21. Inokuchi A, Washio T, Motoda H: An Apriori-Based Algorithm for Mining
Frequent Substructures from Graph Data. Proceedings of the 4th European
Conference on Principles of Data Mining and Knowledge Discovery PKDD ‘00;
2000, 13-23.

22. Kuramochi M, Karypis G: Frequent Subgraph Discovery. Proceedings of the
2001 IEEE International Conference on Data Mining ICDM ‘01; 2001, 313-320.

23. Yan X, Han J: gSpan: Graph-Based Substructure Pattern Mining.
Proceedings of the 2002 IEEE International Conference on Data Mining ICDM
‘02; 2002, 721.

24. Zhu F, Qu Q, Lo D, Yan X, Han J, Yu PS: Mining Top-K Large Structural
Patterns in a Massive Network. PVLDB 2011, 4(11):807-818.

25. Fan W, Li J, Ma S, Tang N, Wu Y, Wu Y: Graph pattern matching: from
intractable to polynomial time. Proc. VLDB Endow 2010, 3(1-2):264-275.

26. Gallagher B: Matching structure and semantics: A survey on graph-based
pattern matching. AAAI FS 2006, 6:45-53.

27. Cheng J, Yu JX, Ding B, Yu PS, Wang H: Fast Graph Pattern Matching.
Proceedings of the 2008 IEEE 24th International Conference on Data
Engineering ICDE ‘08; 2008, 913-922.

28. Fan W, Li J, Luo J, Tan Z, Wang X, Wu Y: Incremental graph pattern
matching. Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data SIGMOD ‘11; 2011, 925-936.

29. Ullmann JR: Bit-vector algorithms for binary constraint satisfaction and
subgraph isomorphism. J Exp Algorithmics 2011, 15(1.6):1.1-1.6, 1.64.

30. Solnon C: AllDifferent-based filtering for subgraph isomorphism. Artificial
Intelligence 2010, 174:850-864.

31. Tarjan R, Yannakakis M: Simple linear-time algorithms to test chordality of
graphs,test acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs. SIAM J Comput 1984, 13:566-579.

32. Shier D: Some aspects of perfect elimination orderings in chordal
graphs. Discr Appl Math 1984, 325-331.

33. Bacchus F, van Run P: Dynamic variable reordering in CSPs. CP ‘95
Proceedings of the First International Conference on Principles and Practice of
Constraint Programming 1995, 258-275.

34. Lecoutre C: Constraint Networks: Techniques and Algorithms ISTE/Wiley; 2009.
35. Messmer BT, Bunke H: Subgraph Isomorphism Detection in Polynominal

Time on Preprocessed Model Graphs. Proceedings of Asian Conference on
Computer Vision 1995, 373-382.

36. Akinniyi F, Wong A, Stacey D: A new algorithm for graph monomorphism
based on the projections of the product graph. Trans Systems, Man and
Cybernetics 1986, 740-751.

37. Cortadella L, Valiente G: A relational view of subgraph isomorphism.
Proceedings of fifth international seminar on relational methods in computer
science 2000, 45-54.

38. Barrow H, Burstall RM: Subgraph Isomorphism, Matching Relational
Structures and Maximal Cliques. Information Processing Letters 1976,
4:83-84.

39. Henderson TC: Discrete Relaxation Techniques Oxford University Press; 1990.
40. Horaud R, Skordas T: Stereo Correspondence Through Feature Grouping

and Maximal Cliques. IEEE Transactions on Pattern Analysis and Machine
Intelligence 1989, 11(11):1168-1180.

41. Levi G: A note on the derivation of maximal common subgraphs of two
directed or undirected graphs. Journal of Calcols 9 1972, 341-354.

42. Myaeng SH, Lopez-Lopez A: Conceptual graph matching: a flexible
algorithm and experiments. Journal of Experimental Theoretical Artificial
Intelligence 1992, 4:107-126.

43. Nilsson N: Principles of artificial intelligence Palo Alto CA: Tioga; 1980.
44. Sanfeliu A, Fu K: A Distace Measure between Attributed Relational

Graphs for Pattern Recognition. IEEE Transactions on Systems Man and
Cybernetics 1983, 13(3):353-362.

45. Wong A, You M: Entropy and Distance of Random Graphs with
Application to Structural Pattern Recognition. IEEE Transactions Pattern
Analysis and Machine Intelligence 1985, 7(5):599-609.

46. Lipets V, Vanetik N, Gudes E: Subsea: an efficient heuristic algorithm for
subgraph isomorphism. Data Min Knowl Disc 2009, 19:320-350.

47. National Cancer Institute. [http://www.nci.nih.gov/].
48. Huehne R, Suehnel J: The Jena Library of Biological Macromolecules.

Nature-precedings 2009.
49. Protein Data Bank. [http://www.rcsb.org/pdb/].
50. Vehlow C, Stehr H, Winkelmann M, Duarte JM, Petzold L, Dinse J, Lappe M:

CMView: Interactive contact map visualization and analysis. Bioinformatics
2011, 27(11):1573-1577.

51. Flannick J, Novak A, Srinivasan B, McAdams H, Batzoglou S: Graemlin:
general and robust alignment of multiple large interaction networks.
Genome research 2006, 16(9):1169.

52. Dickinson P, Bunke H, Dadej A, Kraetzl M: On graphs with unique node
labels. Lecture Notes in Computer Science 2003, 2726.

53. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P,
Doerks T, Stark M, Muller J, Bork P, Jensen L, von Mering C: The STRING
database in 2011: functional interaction networks of proteins, globally
integrated and scored. Nucleic Acids Res 2011, 39:D561-D568.

54. Foggia P, Sansone C, Vento M: A Database of Graphs for Isomorphism
and Sub-Graph Isomorphism Benchmarking. Proceedings of the 3rd IAPR
TC-15 Workshop on Graph-based Representations in Pattern Recognition 2001,
176-187.

doi:10.1186/1471-2105-14-S7-S13
Cite this article as: Bonnici et al.: A subgraph isomorphism algorithm
and its application to biochemical data. BMC Bioinformatics 2013
14(Suppl 7):S13.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Bonnici et al. BMC Bioinformatics 2013, 14(Suppl 7):S13
http://www.biomedcentral.com/1471-2105/14/S7/S13

Page 13 of 13

http://frowns.sourceforge.net/
http://www.ncbi.nlm.nih.gov/pubmed/20170516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20170516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22915836?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23444276?dopt=Abstract
http://www.nci.nih.gov/
http://www.rcsb.org/pdb/
http://www.ncbi.nlm.nih.gov/pubmed/21471016?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16899655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16899655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21045058?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21045058?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21045058?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Basic notions
	Algorithmic aspects of subgraph isomorphisms methods
	Related work
	Contribution

	Results and discussion
	Conclusions
	Method
	The static search strategy in RI
	Reduce search space procedure
	Algorithmic aspects of RI vs existing popular algorithms

	Authors’ contributions
	Competing interests
	Acknowledgements
	Declarations
	Author details
	References

