
PROCEEDINGS Open Access

Locating tandem repeats in weighted sequences
in proteins
Hui Zhang1, Qing Guo2*, Costas S Iliopoulos3

From The 2012 International Conference on Intelligent Computing (ICIC 2012)
Huangshan, China. 25-29 July 2012

Abstract

A weighted biological sequence is a string in which a set of characters may appear at each position with
respective probabilities of occurrence. We attempt to locate all the tandem repeats in a weighted sequence.
A repeated substring is called a tandem repeat if each occurrence of the substring is directly adjacent to each
other. By introducing the idea of equivalence classes in weighted sequences, we identify the tandem repeats of
every possible length using an iterative partitioning technique. We also present the algorithm for recording the
tandem repeats, and prove that the problem can be solved in O(n2) time.

Introduction
A weighted biological sequence, called for short a
weighted sequence, is a special string that allows a set of
characters to occur at each position of the sequence
with respective probability, instead of a fixed single
character occurring in a normal string. It can be viewed
as a compressed version of multiple alignment which
shows strength in extracting and representing the con-
served commonalities of a set of sequences.
Weighted sequences are apt at summarizing poorly

defined short sequences, e.g. transcription factor binding
sites, the profiles of protein families and complete chro-
mosome sequences[1]. With this model, one can attempt
to locate the motifs of biological importance, to estimate
the binding energy of the proteins, even to infer the evolu-
tionary homology. It thus exhibits theoretical and practical
significance to design powerful algorithms on weighted
sequences in proteins.
This paper concentrates on locating those tandem

repeats in a weighted sequence. Tandem repeats occur in
a string when a substring is repeated for two or more
times and each repetition is directly adjacent to each
other. For example, The substring ATT occurs in the
string X = CATT ATT ATTG for three times, and each

occurrence of ATT is consecutive, one after the other.
Then ATT is a tandem repeat of length 3 of X.
The motivation for investigating tandem repeats in

weighted sequences comes from the striking feature of
DNA that vast quantities of tandemly repetitive seg-
ments occur in the genome, with high proportion of
more than 50 percent in fact [2]. Some examples are
microsatellite, minisatellite, and satellite DNA.
It should be noticed that tandem repeats are not redun-

dant information, but of either functional or evolutionary
significance [3]. For instance, tandem repeats frequently
occur within or in the proximity of genes, i.e., either in the
untranslated regions up and downstream of open reading
frames, within introns, or in coding regions [4]. Recent
evidence supports that tandem repeats in these regions
can play a significant role in regulating gene expression
and modulating gene function[5]. Thus it is of great biolo-
gical interest to locate tandem repeats in biological DNA
sequences and proteins.
It has been an effort for a long time to identify special

areas in a biological sequence by their structure. Large
amount of work has been done to find all tandem repeats
in non-weighted strings. Technically, these solutions can be
divided into two main categories. One employed traditional
string comparison and searching method, where the most
famous algorithms were Crochemore’s partioning [6] and
LZ decomposition [7], with time complexity O(n log n)
respectively. The other computed tandem repeats by

* Correspondence: 13385718936@189.cn
2Corresponding author. College of Computer Science and Engineering,
Zhejiang University, Hangzhou, Zhejiang 310027, China
Full list of author information is available at the end of the article

Zhang et al. BMC Bioinformatics 2013, 14(Suppl 8):S2
http://www.biomedcentral.com/1471-2105/14/S8/S2

© 2013 Zhang et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:13385718936@189.cn
http://creativecommons.org/licenses/by/2.0

constructing suffix tree and suffix array. Although needing
extra memory, these algorithms can also reach O(n log n)
time by limiting the number of output [8-12].
However, relatively less work has been studied in

weighted sequences circumstance. Iliopoulos et al.[13,14]
were the first to touch this field, and extract repeats and
other types of repetitive motifs in weighted sequences by
constructing weighted suffix tree. Weighted suffix tree was
built simulating suffix tree, with the distinction that the
weight of each substring should be considered. This
directly led to a big size and its strong dependence on the
presence probability of the weighed suffix tree. Another
solution[15,16] used the partitioning technique based on
KMR algorithm to find tandem repeats of length d in O(n
log d) time. But they did not give efficient algorithm for
computing the tandem repeats of all lengths.
On the other hand, a lot of recent results of studies on

identifying hot spots in proteins enlightened us. Huang
et al. [17] firstly utilized the support vector machine(SVM)
classifier based upon the hydropathy blocks to classify pro-
tein sequences. Then Xia et al.[18] used support vector
machine (SVM) to predict hot spot residues in protein
interfaces. Selecting nine individual features from 62
features, they developed a new ensemble classifier APIS to
further improve the prediction accuracy. You et al. [19]
developed a robust manifold embedding technique
for assessing the reliability of interactions and predicting
new interactions, which was reinterpreted into the problem
of measuring similarity between points of its metric space
after transforming a given PPI network into a low dimen-
sional metric space using manifold embedding based on
isometric feature mapping. Zheng et al. [20] employed
independent component analysis for gene selection,
then introduced gene selection and explicitly enforcing
sparseness into nonnegative matrix factorization for tumor
clustering. Wang et al. [21] proposed a novel tumor classifi-
cation method based on correlation filters other than the
model to identify the overall pattern of tumor subtype hid-
den in genes.
The paper focuses on finding tandem repeats of all

length in a given weighted sequence in proteins. The
paper is organized as follows. In the next section we give
the necessary theoretical preliminaries used, then intro-
duce the all-tandem-repeats problem and explains why
Crochemore’s partitioning algorithm cannot be adapted
to weighted sequences. After that, we present our algo-
rithm for computing all the tandem repeats in weighted
sequences, and give experimental results to verify the
algorithm’s performance. Finally we conclude and discuss
our research interest.

Preliminaries
A biological sequence used throughout the paper is a
string either over the 4-character DNA alphabet Σ ={A,

C,G,T} of nucleotides or the 20-character alphabet of
amino acids. Assume that readers have essential knowl-
edge of the basic concepts of strings, now we extend
parts of them to weighted sequences. Formally speaking:
Definition 1 Let an alphabet be Σ = {s1, s2, . . . , sl}.

A weighted sequence X over Σ, denoted by X [1, n] = X
[1]X [2] . . . X[n], is a sequence of n sets X[i] for 1 ≤ i ≤
n, such that:

X [i] =
{(

σj,πi
(
σj

)) | 1 ≤ j ≤ l, πi
(
σj

) ≥ 0, and
∑l

j=1
πi

(
σj

)
= 1

}

Each X[i] is a set of couples (sj, πi (sj)), where πi(sj) is
the non-negative weight of sj at position i, representing
the probability of having character sj at position i of X.
Let X be a weighted sequence of length n, s be a charac-

ter in Σ. We say that s occurs at position i of X if and only
if πi(s) > 0, written as s Î X[i]. A nonempty non-weighted
string f[1,m] (m Î [1, n]) occurs at position i of X if and
only if position i + j − 1 is an occurrence of the character f
[j] in X, for all 1 ≤ j ≤ m. Then f is said to be a factor of X,
and i is an occurrence of f in X.
The probability of the presence of f at position i of X

is called the weight of f at i, written as πi(f), which can
be obtained by using different weight measures. We
exploit the one in common use, called the cumulative
weight, defined as the product of the weight of the char-

acter at every position of f : πi
(
f
)
=

∏m

j=1
πi+j−1

(
f
[
j
])
.

Considering the following weighted sequence of
length 5:

X =

⎧⎨
⎩

(A, 0.5)
(C, 0.25)
(G, 0.25)

⎫⎬
⎭G

{
(A, 0.6)
(C, 0.4)

}
⎧⎪⎪⎨
⎪⎪⎩

(A, 0.25)
(C, 0.25)
(G, 0.25)
(T, 0.25)

⎫⎪⎪⎬
⎪⎪⎭
C (1)

the weight of f = GAT at position 2 of X is: π2(f) = 1 ×
0.6 × 0.25 = 0.15. That is, GAT occurs at position 2 of X
with probability 0.15. Note that for clarity, we employ a
simplified vertical representation method for a weighted
sequence, where the probability 1 can be ignored by sim-
ply remaining the character with probability 1.
A factor f of a weighted sequence X is called a repeat in

X if there exist at least two distinct positions of X that are
occurrences of f in X. As a special case of repeat, tandem
repeats can be formally defined as follows.
Definition 2 A factor f of length p of a weighted

sequence X is called a tandem repeat in X if there exists a
triple (i, f, l) such that for each 0 ≤ j <l − 1, position i + jp
is an occurrence of the factor f in X.
It is easy to see that, the difficulty for locating the tan-

dem repeats in weighted sequences arises from uncertain-
ties of weighted sequences. Firstly, different characters
might occur at the same position, which yields multiple

Zhang et al. BMC Bioinformatics 2013, 14(Suppl 8):S2
http://www.biomedcentral.com/1471-2105/14/S8/S2

Page 2 of 7

factors of equal length at each position of the weighted
sequence. Secondly, as each character occurs at one posi-
tion with respective probability, the corresponding factors
produced also have different presence probabilities, thus
the weight of each appearance of a factor f can be highly
different.
As scientists pay more attention to the pieces with

high probabilities in DNA sequences, we fix a constant
threshold for the presence probability of the motif, that
is, only those occurrences with probability not less than
this threshold are counted.
Definition 3 Let f be a factor of length d of a

weighted sequence X that occurs at position i, a real
constant threshold k ≥ 1. We say that f is a real factor
of X if and only if the weight (probability) of f at i, πi(f),

is at least 1
k. Exactly,

∏d

j=1
πi+j−1

(
f
[
j
]) ≥ 1

k .

In the above example (1), set 1/k = 0.3, then AGA is a
real factor of X that occurs at position 1 since π1(AGA) =
0.5 × 1 × 0.6 = 0.3 ≥ 0.3, while CAC is not a real factor of
X at position 3 since π3(CAC) = 0.1 < 0.3.

The all-tandem-repeats problem
Now we introduce the all-tandem-repeats problem in
weighted sequences as below:
Problem 1 Given a weighted sequence X[1, n] and a

real constant k ≥ 1, the all-tandem-repeats problem
identifies the set S of all triples (i, f, l), where 1 ≤ | f | ≤
n/2 and f is a real factor of X.
Our algorithm for picking all the tandem repeats is

based on the following idea of equivalence relation on
positions of a string:
Definition 4 Given a string x of length n over Σ, an inte-

ger p Î{1, 2, . . . , n}, S be a set of positions of x: {1, 2, . . . ,
n − p + 1}, then Ep is defined to be an equivalence relation
on S such that: for two positions i, j Î S, (i, j) Î Ep if x[i, i +
p − 1] = x[j, j + p − 1].
In the following context, a nonempty substring of x of

length p is called a p-substring of x. Clearly, two positions
i and j of x are said to be p-equivalent when two p-sub-
strings starting at i and j in x are identical. Although this
definition is defined on non-weighted strings, it can also
be extended to weighted sequences. Before presenting our
algorithm, we first introduce Crochemore’s partitioning
algorithm[6] for computing tandem repeats in non-
weighted sequences. The algorithm employs the following
idea of equivalence class and partition.
Definition 5 Consider the substring w = x[i, i + p − 1]

for i Î S. The set of all positions of x that are related to i,
i.e, {j|(i, j) Î Ep, j Î S}, is called the equivalence class of i,
or alternatively, the equivalence class associated with w,
denoted by Cw.
Definition 6 Let S1, S2, . . . , Sr be nonempty subsets

of S, we say that {S1, S2, . . . , Sr} is a partition of S if:

(i) S = S1 ∪ S2 ∪ . . . ∪ Sr
(ii) Si∩ Sj= Ø for 1 ≤ i, j ≤ r and i ≠ j.
For an equivalence relation Ep on a set S, all the

equivalence classes of Ep, called Ep-classes, compose a
partition of S, since every element of S falls into exactly
one Ep-class. We also say that S is partitioned into a
family of Ep-classes. In this sense, partitions and equiva-
lence relations are the same.
It is obvious that each Ep-class of cardinality not less than

two records the occurrences of a repetitive p-substring of x.
Hence, the problem of computing all the repeated p-sub-
strings of x can be rephrased as finding the partition of Ep.
Observe that Ep+1 is a refinement of Ep by excluding the

position n − p + 1. Thus the equivalence relations can be
iteratively constructed by starting with E1, then succes-
sively building E2, E3, etc., until EL such that each EL-class
is a singleton who refers to a set that consists of only one
element. Crochemore efficiently executed this iterative
computation and located all the tandem repeats in x in O
(nlogn) time by introducing the following ideas:
- Small-classes: Consider the refinement from Ep to Ep+1 .

Assume that an Ep-class C is partitioned into r Ep+1-classes,
we call the one of maximal size a big class of C, and the
other r − 1’s are small classes.
- Smaller-half trick : The trick depends on the follow-

ing Lemma:
Lemma 1 Let × be a string of length n, p Î {1, 2, . . . ,

n}, i, j Î {1, 2, ... , n − p}. Then:

LLCS(X,Y)
/
n

Therefore, instead of partitioning all Ep-classes at stage
p, the algorithm simply examines each small Ep-class SC
and partitions those related classes RC such that {RC| i Î
RC and i + 1 Î SC}. Simply speaking, for any Ep-class C,
only the positions that will be transferred into small Ep+1-
classes are assigned new indexes, while the big Ep+1-class
directly inherits the index of C.
The running time of this algorithm is proportional to

the union of small classes. By definition, all the E1-
classes are small, with cardinality less than n. As each
small Ep+1-class has the size not greater than half of the
cardinality of its corresponding Ep-class, a position can-
not belong to a small class more than logn times. There-
fore, the partitioning algorithm takes O(nlogn) time for a
string of length n.
Although proved to be optimal, this algorithm cannot

conform to a weighted sequence X due to the following
reasons:
1. Multiple distinct characters may occur at the same

one position of a weighted sequence. In this case, a
position may goes to more than one equivalence classes
associated with different substrings of the same length,
thus the smaller-half trick makes no sense.

Zhang et al. BMC Bioinformatics 2013, 14(Suppl 8):S2
http://www.biomedcentral.com/1471-2105/14/S8/S2

Page 3 of 7

2. In weighted sequence circumstance, the presence
probability of any factor should not be ignored as it is
restricted by the probability threshold.

Our algorithm
As we stated above, Crochemore’s algorithm cannot be
directly used in weighted sequence, but it enlightens us
to borrow the idea of partitioning. By improving the
method for computing repeated patterns in weighted
sequences we proposed in [22], we first simulate the
definition for Ep-classes of non-weighted strings, and
give the corresponding weighted version:
Definition 7 Consider a factor f of length p in a

weighted sequence X[1, n]. An Ep-class associated with f
is the set Cf (p) of all position-probability pairs, denoted
by (i, πi(f)), such that f occurs at position i with prob-
ability πi(f) ≥ 1/k.
Cf (p) is an ordered list that contains all the positions

of X where f occurs. Note that only the occurrences of
those real factors are considered. For this reason, the
probability of each appearance of a factor should be
recorded and kept for the next iteration.
Although tandem repeats are special cases of repeats

in weighted sequences, the following facts draw a dis-
tinction between the algorithms for computing tandem
repeats and the repeats we proposed before.
Fact 1 The occurrences of a tandem repeat are not

overlapping.
Fact 2 If a factor f is a tandem repeat of X, any conse-

cutive alignment of f should not be reported as a tandem
repeat again.
For instance, a string AT AT AT AT will report a tan-

dem repeat (1, AT, 4), not (1, AT AT, 2). According to
the above facts, tandem repeats can be timely filtered
during the construction of equivalence classes.
Note that in this construction process, a position i is

allowed to go to several but no more than |Σ| different Ep-
classes, due to the uncertainty of weighted sequences.
Though, we follow to use the notion “partition” to describe
the process of building Ep-classes from Ep−1-classes, which
can be computed based upon the following corollary:
Corollary 1 Let p Î {1, 2, . . . , n}, i, j Î {1, 2, ... , n − p}.

Then:
((i, πi(f)), (j, πj(f))) Î Cf(p) iff ((i, πi(f’),

(j, πj (f ′)) ∈ Cf ′
(
p − 1

)
and ((i + p − 1, πi+p−1(s)), (j +

p − 1, πj+p−1(s))) Î Cs(1)
where s Î Σ, f and f’are two factors of length p and p − 1

respectively, such that f = f’s and πi(f) ≥ 1/k, πj(f) ≥ 1/k.
Our algorithm for picking all the tandem repeats of X

then operates as follows:
1. “Partition” all the n positions of X to build E1 and

detect all the tandem repeats of length 1: For every
character s Î Σ, create a class Cs(1) that is an ordered
list of couples (i, πi(s)), where i is an occurrence of s in

X with probability not less than 1/k. Each class com-
posed of more than one element forms E1. Those Cs(1)s
in which the distance between two or more adjacent
position i is 1 report the tandem repeats of length 1.
2. Iteratively compute Ep-classes from Ep−1-classes using

the above corollary for p ≥ 2, and find all the tandem
repeats of length p: Take each class C(p − 1) of Ep−1, parti-
tion C(p − 1) so that any two positions i, j Î C(p − 1) go
to the same Ep-class if positions i + p − 1, j + p − 1
belongs to a same E1-class, and this Ep-class represents a
real factor of X.
3. For each Ep-class C(p) partitioned by C(p − 1), test if

the factor associated with C(p) is a tandem repeat of X: If
the cardinality of C(p) is at least two and any distance
between two or more adjacent positions in C(p) equals p,
add the corresponding triple into the tandem repeat set S.
Eliminate those C(p)s who are singletons, and keep the
rest to proceed the iterative computation at stage p + 1.
4. The computation stops at stage L, once no new EL+1-

classes can be created or each EL-class is a singleton.
Algorithm 1 Compute all the tandem repeats of a

weighted sequence
Input: a weighted sequence X[1, n], k ≥ 2 Î R
Output: all the tandem repeats of X
1: Algorithm Compute-Tandem-Repeats(X, k)
2: for i ¬ 1 to n do
3: l ¬ 0
4: for j ¬ 1 to |Σ| do
5: for each sjÎ X[i] do

6: while πi+l
(
σj

) ≥ 1
k
do

7: add(i + l, πi+l(sj)) to Cσj(1)
8: l ¬ l +1
9: if l > 1 then
10: S ← S ∪ (

i, σj, l
)

11: p ¬ 1
12: while p ≤ n

2 and there is a non-singleton class C
(p − 1) of Ep−1 or Ep−1≠ Ø do
13: (Cf (p − 1), f) ¬ extract a pair from Ep−1 list
14: SUB ¬ Create-Equiv-Class(Cf (p − 1), f)
15: p ¬ p + 1
16: add SUB to Ep
We use a doubly linked list to store each equivalence

class, which needs O(n) space for a bounded-size alphabet.
The computation for tandem repeats is demonstrated as
Algorithm 1, which repeatedly calls function Create-
Equiv-Class. Algorithm 2 depicts the procedure to con-
struct all possible Ep-classes from a certain Ep−1-class, and
report those tandem repeats of length p. It is easy to see
that Algorithm 1 takes O(n2) time for a constant-size
alphabet, since each refinement of Ep from Ep−1 costs lin-
ear time, and there are O(n) stages in total. The running
time of Algorithm 2 is proportional to the size of the given
Ep−1-class, since tandem repeats of length p are reported

Zhang et al. BMC Bioinformatics 2013, 14(Suppl 8):S2
http://www.biomedcentral.com/1471-2105/14/S8/S2

Page 4 of 7

along with the partitioning of the given Ep−1-class. Taking
all the Ep−1-classes into account, stage p requires O(n)
time and O(n) extra space. Thus the overall time complex-
ity of finding all tandem repeats of every possible length
amounts to O(n2).
Algorithm 2 Identify tandem repeats of length p
Input: An Ep−1-pair: class Cf (p − 1), a factor f corre-

sponding to Cp−1

Output: All the Ep-pairs derived from the input
1: Function Create-Equiv-Class(Cf (p − 1), f)
2: for each (i, πi (f)) Î Cf(p − 1) do
3: l ¬ 0
4: for each sjÎ X [i + p − 1] do
5: fj¬ fsj

6: πi (fj) ¬ πi (f) × πi + p − 1(sj)
7: while πi+l

(
fj
) ≥ 1

k do
8: add(i + l, πi+l(j)) to Cfj (p)
9: l ¬ l +1
10: if l > 1 then
11: S ← S ∪ (

i, fj, l
)

12: for each j do
13: if |Cfj (p)| = 1 then
14: delete Cfj (p)
15: else
16: add (Cfj(p), fj) to Ep
17: return Ep
Theorem 1 The all-tandem-repeats problem can be

solved in O(n2) time.

Experimental results
To verify the running time of our algorithm, we imple-
mented the algorithm, programmed in C++, for locat-
ing all the tandem repeats in a given weighted
sequence. The experiment environment is a Intel
Core2 Duo CPU P8700 2.5GHz system, with 2GB of
RAM, under the Microsoft Windows XP operating sys-
tem (SP2).
In our experiments, the family of SR (serine/arginine

rich) proteins SC35 across species and alleles was
used. We transformed the alignment of the sequences
[23] to a weighted sequence as the input data. Firstly,
we fixed the presence probability threshold to be a
small constant, then simply tested the performance of
the algorithm with respect to the size of the weighted
sequence, denoted by n. In this case, set the constant
1/k = 0.01. Figure 1 demonstrates the running time
curve of our algorithm with respect to n. It is easily
observed that, the algorithm runs in O(n2) time as
expected.
As we stated before, our algorithms is heavily dependent

on the presence probability. We then fixed the size of the
input weighted sequence to be 400, and executed our algo-
rithm considering different presence probabilities. Figure 2
gives the time consumption of the the algorithm with
respect to the presence probability 1/k. Clearly, the run-
ning time grows exponentially as the probability threshold
gets smaller.

Figure 1 Time consumption with respect to n.

Zhang et al. BMC Bioinformatics 2013, 14(Suppl 8):S2
http://www.biomedcentral.com/1471-2105/14/S8/S2

Page 5 of 7

Conclusions
The paper investigated the tandem repeats arisen in
weighted sequences. As opposed to the non-weighted
version, the uncertainty of weighted sequences and the
presence probability of every character in the sequence
must be considered. We devised efficient algorithm for
identify all the tandem repeats in a weighted sequence,
which operates in O(n2) time.
Note that if |Σ| are sufficiently large, the total number

of repeats might be very huge. In the worst case, i.e.
each character of Σ appears at every position of the
weighted sequence, the total number of repeats of a
weighted sequence can be exponential, that is O(|Σ|n).
This fact of considering equivalence-classes of positions
seems to lead to a quadratic algorithm. If |Σ| is rela-
tively small, and the number of weighted positions in
the weighted sequence is bounded, the algorithm
appears to be running in O(n2) time as expected.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work is supported by National Key Technology R&D Program(Grant No:
2012BAI34B01).

Declarations
The authors declare that funding for publication of the article was
sponsored by National Key Technology R&D Program.
This article has been published as part of BMC Bioinformatics Volume 14
Supplement 8, 2013: Proceedings of the 2012 International Conference on
Intelligent Computing (ICIC 2012). The full contents of the supplement are

available online at http://www.biomedcentral.com/bmcbioinformatics/
supplements/14/S8.

Author details
1College of Computer Science and Technology, Zhejiang University of
Technology, Hangzhou, Zhejiang 310023, China. 2Corresponding author.
College of Computer Science and Engineering, Zhejiang University,
Hangzhou, Zhejiang 310027, China. 3Department of Computer Science,
King’s College London Strand, London WC2R 2LS, England.

Published: 9 May 2013

References
1. Gusfield D: Algorithms on Strings, Trees and Sequences: Computer

Science and Computational Biology. Cambridge University Press; 1997.
2. The Human Genome Project(HGP). [http://http;//www.nbgri.nih.gov/HGP/].
3. Ohno S: Repeats of base oligomers as the primordial coding sequences

of the primeval earth and their vestiges in modern genes. Journal of
Molecular Evolution 1984, 20:313-321.

4. Campuzano V, Montermini L, Molto MD, et al: Friedreichs ataxiaautosomal
recessive disease caused by an intronic gaa triplet repeat
expansionScience. 1996, 271:1423-1427.

5. Mayer C, Leese F, Tollrian R: Genome-wide analysis of tandem repeats
in Daphnia pulex - a comparative approach. BMC Genomics 2010,
11:277.

6. Crochemore M: An Optimal Algorithm for Computing the Repetitions in
a Word. Information Processing Letter 1981, 12(5):244-250.

7. Main MG, Lorentz RJ: An O(nlngn) algorithm for finding all repetitions in
a stringJournal of Algorithms. 1984, 5:422-432.

8. Apostolico A, Prepamta FP: Optimal off-line detection of repetitions in a
stringTheoretical Computer Science. 1983, 22:297-315.

9. Grossi R, Italiano GF: Suffix trees and their Applications in String
AlgorithmsInProc 1st South American Workshop on String Processing
(WSP1993). 1993, 57-76.

10. Manber U, Myers G: Suffix arrays: a new method for on-Line string
searches, SIAM Journal on Computing. 1993, 22(5):935-948.

11. Stoye J, Gusfield D: Simple and flexible detection of contiguous repeats
using a suffix treeInFarachM. Springer, Berlin;, CPM98LNCS
1998:1448:140-152.

Figure 2 Time consumption with respect to the threshold 1 / k.

Zhang et al. BMC Bioinformatics 2013, 14(Suppl 8):S2
http://www.biomedcentral.com/1471-2105/14/S8/S2

Page 6 of 7

http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S8
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S8
http://http;//www.nbgri.nih.gov/HGP/
http://www.ncbi.nlm.nih.gov/pubmed/6439885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6439885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8596916?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8596916?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8596916?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20433735?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20433735?dopt=Abstract

12. Franêk F, Smyth WF, Tang Y: Computing All Repeats Using Suffix Arrays.
Journal of Automata, Languages and Combinatorics 2003, 8(4):579-591.

13. Iliopoulos CS, Makris C, Panagis Y, Perdikuri K, Theodoridis E, Tsakalidis A:
Efficient Algorithms for Handling Molecular Weighted Sequences. IFIP
Theoretical Computer Science 2004, 147:265-278.

14. Iliopoulos CS, Mouchard L, Perdikuri K, Tsakalidis A: Computing the
repetitions in a weighted sequence. Proc of the 8th Prague Stringology
Conference (PSC 2003) 2003, 91-98.

15. Christodoulakis M, Iliopoulos CS, Mouchard L, Perdikuri K, Tsakalidis A,
Tsichlas K: Computation of repetitions and regularities on biological
weighted sequences. Journal of Computational Biology 2006,
13(6):1214C-1231.

16. Christodoulakis M, Iliopoulos CS, Perdikuri K, Tsichlas K: Searching the
regularities in weighted sequences. Proc of the International Conference of
Computational Methods in Science and Engineering, Lecture Series on
Computer and Computational Sciences Springer Verlag; 2004, 701-704.

17. Huang DS, Zhao XM, Huang GB, Cheung YM: Classifying protein
sequences using hydropathy blocks, Pattern Recognition. 2006,
39(12):2293-2300.

18. Xia JF, Zhao XM, Song JN, Huang DS: APIS: accurate prediction of hot
spots in protein interfaces by combining protrusion index with solvent
accessibility. BMC Bioinformatics 2010, 11(174):1-14.

19. You ZH, Lei YK, Huang DS, Zhou XB: Using manifold embedding for
assessing and predicting protein interactions from high-throughput
experimental data. Bioinformatics 2010, 26(21):2744-2751.

20. Zheng CH, Huang DS, Zhang L, Kong XZ: Tumor clustering using non-
negative matrix factorization with gene selection. IEEE Transactions on
Information Technology in Biomedicine 2009, 13(4):599-607.

21. Wang SL, Zhu YH, Jia W, Huang DS: Robust classification method of
tumor subtype by using correlation filters. IEEE/ACM Transactions on
Computational Biology and Bioinformatics 1012, 9(2):580-591.

22. Zhang H, Guo Q, Iliopoulos CS: Loose and strict repeats in weighted
sequences. Protein and Peptide Letters. 2010, 17(9):1136-1142.

23. European Bioinformatics Institute (EMBL-EBI): ClustalW. [http://www.ebi.ac.
uk/clustalw].

doi:10.1186/1471-2105-14-S8-S2
Cite this article as: Zhang et al.: Locating tandem repeats in weighted
sequences in proteins. BMC Bioinformatics 2013 14(Suppl 8):S2.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Zhang et al. BMC Bioinformatics 2013, 14(Suppl 8):S2
http://www.biomedcentral.com/1471-2105/14/S8/S2

Page 7 of 7

http://www.ncbi.nlm.nih.gov/pubmed/16901238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16901238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20377884?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20377884?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20377884?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20817744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20817744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20817744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19369170?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19369170?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22025761?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22025761?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20509856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20509856?dopt=Abstract
http://www.ebi.ac.uk/clustalw
http://www.ebi.ac.uk/clustalw

	Abstract
	Introduction
	Preliminaries
	The all-tandem-repeats problem
	Our algorithm
	Experimental results
	Conclusions
	Competing interests
	Acknowledgements
	Declarations
	Author details
	References

