El Allali and Rose BMC Bioinformatics 2013, 14(Suppl 9):56
http://www.biomedcentral.com/1471-2105/14/59/56

BMC
Bioinformatics

MGC: a metagenomic gene caller

Achraf El Allali’, John R Rose”

From 8th International Symposium on Bioinformatics Research and Applications (ISBRA"12)
Dallas, TX, USA. 21-23 May 2012

Abstract

Background: Computational gene finding algorithms have proven their robustness in identifying genes in
complete genomes. However, metagenomic sequencing has presented new challenges due to the incomplete and
fragmented nature of the data. During the last few years, attempts have been made to extract complete and
incomplete open reading frames (ORFs) directly from short reads and identify the coding ORFs, bypassing other
challenging tasks such as the assembly of the metagenome.

Results: In this paper we introduce a metagenomics gene caller (MGC) which is an improvement over the state-
of-the-art prediction algorithm Orphelia. Orphelia uses a two-stage machine learning approach and computes a
model that classifies extracted ORFs from fragmented sequences. We hypothesise and demonstrate evidence that
sequences need separate models based on their local GC-content in order to avoid the noise introduced to a
single model computed with sequences from the entire GC spectrum. We have also added two amino-acid
features based on the benefit of amino-acid usage shown in our previous research. Our algorithm is able to
predict genes and translation initiation sites (TIS) more accurately than Orphelia which uses a single model.

Conclusions: Learning separate models for several pre-defined GC-content regions as opposed to a single model
approach improves the performance of the neural network as demonstrated by the experimental results presented
in this paper. The inclusion of amino-acid usage features also helps improve the overall accuracy of our algorithm.

training models in machine learning based gene finders.

MGC's improvement sets the ground for further investigation into the use of GC-content to separate data for

Background

In cultured microbes, the shotgun sequences that result
from sequencing the full genome come from a single
clone which makes the assembly and annotation of the
genome manageable. In metagenomics, the uncultured
microbes are sampled directly from their environment.
Next generation sequencing (NGS) used in metage-
nomics results in a much larger amount of data than
traditional sequencing. However, the resulting sequences
are noisy, partial and most importantly, may come from
thousands of different species. Therefore, the assembly
and annotation of the large metagenomics data present
more challenges. Several methods have shown promising
results and efficiency in assembling metagenomic data
[3,4]. However these methods are designed for single

* Correspondence: eachraf@gmail.com; rose@cec.sc.edu
Department of Computer Science and Engineering, University of South
Carolina, 315 Main Street. Columbia, SC 29208, USA

(BioMVed Central

genomes. Consequently they don’t work well in cases
where there are multiple species present as is the case
in environmental samples. One way to deal with these
difficulties is to bypass assembly and go directly to find-
ing genes.

New methods are being developed to predict genes
specifically in metagenomics. The best known methods
in this field are MetaGene [5], Orphelia [1], and Frag-
GeneScan [7]. MetaGene uses a similar approach to
GeneMark.hmm [6] which takes into account the GC-
content sensitive monocodon and dicodon models com-
puted from fully annotated genomes. Once MetaGene
extracts all the possible open reading frames (ORFs) pre-
sent in the fragments, it uses statistical models computed
from fully annotated genomes to score the fragments.
The next step uses a dynamic programing algorithm that
combines the previous score with the ORF length, the
distance between the ORF and its neighbor, and the

© 2013 El Allali and Rose; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:eachraf@gmail.com
mailto:rose@cec.sc.edu
http://creativecommons.org/licenses/by/2.0

El Allali and Rose BMC Bioinformatics 2013, 14(Suppl 9):56
http://www.biomedcentral.com/1471-2105/14/59/56

distance between the translation initiation start (TIS) and
the left-most start codon. The goal of the dynamic pro-
graming algorithm is to select the final set of ORFs by
resolving the overlap between ORFs. The scoring system
is based on the log-odds ratios of observed frequency in
coding ORFs and observed frequency in random ORFs.
Two models are used by MetaGene, one for bacteria and
one for archaea. These are automatically selected based
on the outcome of a pre-defined domain classification
method during the classification. MetaGene has been
tested on randomly sampled fragments of size 700 bp
from 12 annotated whole genomes. The results show the
ability of MetaGene to predict genes with high sensitivity
and slightly lower specificity. Orphelia obtains better per-
formance than MetaGene by using a two-stage machine
learning approach. The first stage builds linear discrimi-
nants for monocodon and dicodon usage as well as the
TIS features extracted from the ORFs. This step linearly
extracts features from the high dimensional features
obtained from the codon usage and the TIS information,
reducing each usage to a single feature. The next stage
combines the features obtained from the linear discrimi-
nants as well as length and GC-content features using a
non-linear neural network which produces the probabil-
ity that a given ORF encodes a protein. Finally, Orphelia
deploys a post-processing algorithm which uses probabil-
ities from its scoring scheme in order to resolve the over-
lap. Orphelia is tested in a similar way to MetaGene,
however more extensive experiments have been con-
ducted including studying the effect of different fragment
lengths, the accuracy of the program in predicting the
TIS as well as complete vs. incomplete prediction cap-
ability of the program.

FragGeneScan is an algorithm based on hidden Mar-
kov models (HMM) capable of predicting genes in both
complete genomes and metagenomic fragments [7]. The
algorithm combines codon usage, sequence patterns for
start/stop codons and sequencing error models using
HMMs. The Viterbi algorithm is used to decide the best
path of hidden states that generates the observed
nucleotide fragment. The accuracy of FragGeneScan in
short reads was compared to that of MetaGene. For
simulated 700 bp reads with no sequencing error, Frag-
GeneScan and MetaGene achieve comparable perfor-
mance [7]. However, for shorter reads and reads with
sequencing errors, FragGeneScan shows consistently
better performance over MetaGene [7].

In this paper we introduce a new metagenomics gene
caller called MGC which is based on a two-stage
machine learning approach similar to that of the state-
of-the-art program Orphelia [1]. MGC learns separate
models for several pre-defined GC ranges as opposed to
the single model approach used by Orphelia and applies
the appropriate model to each fragment based on its

Page 2 of 10

GC-content. Chan and Stolfo [8] investigated model
combination for machine learning classification and
showed that models learned from disjoint partitions of a
dataset outperform a single model learned from the
entire dataset. Separating the training data by GC-
content provides MGC with mutually exclusive parti-
tions of the data in order to train multiple models.

We use GC-content to partition the training dataset for
our two-stage machine learning approach. The use of
GC-content for this purpose is inspired by the causal
relationship between nucleotide bias and amino acid
composition. Singer and Hickey [9] demonstrated that
nucleotide bias can have a dramatic effect on the amino
acid composition of the encoded proteins, they showed
that GC-poor genomes have proteins that are rich in
the FYMINK amino acids and GC-rich genomes have
proteins that are rich in the GARP amino acids. This
effect is not only present in complete genomes but it is
also valid for individual genes. Singer and Hickey [9]
identified genes common between a GC-rich genome
(B. burgdorferi) and a GC-poor genome (M. tuberculosis)
and measured the synonymous nucleotide frequencies
and amino acid contents of each gene. While there was
no overlap in the synonymous GC-contents of these two
genomes, some overlap in the amino acid proportions of
the encoded proteins exists. However, no overlap in the
amino acid proportions of the encoded proteins in the
common genes was found, the GARP/FYMINK ratio in
the M. tuberculosis homolog was higher than the ratio of
the corresponding gene in B. burgdorferi. Separating the
models by GC-content can ensure that both composi-
tions are accounted for instead of combining them into
one model.

GC-content influences codon usage which in turn
influences the amino acid usage. Lightfield et al. [10]
have shown that across bacterial Phyla, distantly-related
genomes with similar genomic GC-content have similar
patterns of amino acid usage. They examined codon
usage patterns and were able to predict protein amino
acid content as a function of genomic GC-content. Light-
field et al. [10] demonstrated that use of amino acids
encoded by GC-rich codons increased by approximately
1% for each 10% increase in genomic GC-content, the
opposite was also true for GC-poor codons. Separating
GC-contents into several GC ranges will ensure that the
different linear discriminants can separate the codon and
amino acid usage more precisely.

Another effect of GC-content is its link to the length
of the genes. GC-rich genes in prokaryotes tend to be
the longest while GC-poor genes tend to be the shortest
[11]. The longer the gene is, the more candidate TIS
codons the ribosome encounters. Unlike the ribosome,
models find it hard to pick the correct TIS from a large
number of candidates especially when they are close to

El Allali and Rose BMC Bioinformatics 2013, 14(Suppl 9):56
http://www.biomedcentral.com/1471-2105/14/59/56

each other. In addition to the number of candidate TIS
codons, these candidates share most of the TIS window
used to compute the features. Having separate models
for genes that have a large number of start codons will
ensure that the subtle difference between the candidates
is learned by the non-linear neural networks.

In addition to separating the models by GC-content,
MGC uses two amino acid features motivated by the bene-
fit that these features have demonstrated in our previous
research [2]. The use of amino acid composition as a pro-
tein feature is an early discovery. Amino acid bias has
been used in several identification problems such as gene
expression [12], protein identification [13], family classifi-
cation [14] and protein secondary structure prediction
[15]. For example, Misawa and Kikuno have found that
the effect of amino acid composition on gene expression is
stronger than that of the codon composition [12]. In a sur-
vey of codon and amino acid frequency bias in microbial
genomes, Merkl found that optimizing translational effi-
ciency has an effect on biased amino acid composition
[16]. If a cell requires certain proteins in large quantities
then the amino acids that consumes less energy during
translation appear more frequently [16]. This bias is not
adequately represented by GC content or codon usage.
We hypothesise that amino acid usage provides our mod-
els with species-specific differences caused by protein
synthesis energy constraints.

Methods

Datasets

We use the same two datasets used by Orphelia, one for
training the neural network models and a second one for
testing the MGC algorithm. The first dataset consists of
131 fully sequenced Bacterial and Archael genomes and
their corresponding gene annotations obtained from
GenBank [17] and the second dataset is comprised of ten
Bacterial and three Archael genomes. Hoff et al. [18] list
all the genomes used for training the Orphelia neural
network in the supplementary materials of their paper
and all genomes used for testing in Table 1 of their publi-
cation. The n-fold coverage for a genome is defined as
the amount of sampled DNA that is equal in total length
to n-times as the length of the original genome complete
sequence. Fragments of 700 bp are randomly excised to
create a 1-fold genome coverage for each genome in the
training dataset and a 5-fold coverage for each genome in
the testing dataset.

Two additional training datasets (different from the
neural network training data) are used for the preproces-
sing step required in feature extraction. The first dataset
is used for preprocessing the codon usage as described in
the next section. Sequences are randomly sampled to cre-
ate a 0.5-fold genome coverage. Annotated genes serve as
positive examples (~ 1.9 x 10° examples) and the longest

Page 3 of 10

ORF in each non-coding ORF-set serve as the negative
examples (= 2.8 x 10° examples). The second dataset is
used to preprocess the TIS feature which will be
described in the next section. Symmetric windows of
60 bp around the TIS of the previously selected genes in
the first dataset serve as positive examples (~ 1.9 x 10°
examples) while similar windows around the remaining
start codons forming the ORF-set of each gene serve as
negative examples (~ 5.6 x 10° examples).

OREFs are then extracted from all the fragments and
divided into coding and non-coding ORFs based on the
annotation of the genome. Two different types of ORFs
are obtained. The ORFs that have both the start codon
(either ATG, CTG, GTG or TTG) and the stop codon
(either TAG, TGA or TAA) are referred to as complete
ORFs. Incomplete ORFs are missing the upstream end,
the downstream end or both in which case the ORF
spans the entire fragment length without any start or
stop codons being present. The addition of the incom-
plete ORFs notion is necessary since the ORFs present in
fragments often stretch beyond these fragments making
the standard ORF (complete ORFs) definition insuffi-
cient. In this paper, we refer to complete and incomplete
OREFs simply as ORFs. Only ORFs with a minimal length
of 60 bp are considered in both training and testing.
Figure 1 illustrates the different locations of an ORF in a
fragment. In addition to their DNA sequences, all the
extracted ORF sequences are translated into the equiva-
lent amino-acid sequences (for coding) and pseudo-
amino-acid sequences (for non-coding).

In order to train the neural network, ORFs are
extracted from the neural network training dataset and
divided into positive and negative examples. ORFs from
annotated genes serve as the positive examples (= 2.6 x
10° examples) while one randomly selected ORF out of
each non-coding ORF-set make up the negative exam-
ples (= 4.5 x 10° examples).

The MGC algorithm

MGC is a metagenomic gene caller based on a two-stage
machine learning approach similar to that of the state-
of-the-art program Orphelia [1]. The first stage consists
of linear discriminants that reduce a high dimensional
feature space into a smaller one. For example, the linear
discriminant for the dicodon usage reduces the 4096
dicodon frequencies into a single feature. However,
these features are not linear across the entire GC spec-
trum. GC-content has a direct effect on codon and
amino acid usages which means that fragments with
similar GC-content should have similar features. There-
fore, building different linear discriminants for each GC
range will result in a better linear combination of the
feature space which will better characterize the coding
class.

El Allali and Rose BMC Bioinformatics 2013, 14(Suppl 9):56
http://www.biomedcentral.com/1471-2105/14/59/56

Page 4 of 10

1
I D D o I> B
2
] 1>
3
DT> |
4
|
D3 o> D3

codons.

Figure 1 Delineation of the possible ORF positions within the forward strand of a fragment. The fragment is depicted by the outside box
and gray bars represent possible ORFs. Candidate translation initiation sites are represented by green pentagons and red squares indicate stop

Several linear discriminants are trained based on GC-
content ranges. First the training data is split into GC
ranges which are defined so that the number of training
sequences in all these ranges is the same. For example,
we first split the GC spectrum into ranges where each
partition contains 10% of the sequences in the training
data, then we use the data from each range to create all
the necessary discriminants to compute the features.
Step 1 in Figure 2 illustrates the linear discriminant
stage of MGC for a particular GC range and shows all
nine features used in the second stage of the MGC
algorithm.

For each GC range we obtain a model using features
computed from all the sequences in the training dataset
that have GC-content within the GC range. The same GC
ranges used to compute the linear discriminants are used
to build the neural network models. Different partitionings
by GC-content are used to study the effect of the GC
range size on the performance of MGC. In this paper we
investigate the outcome of MGC models trained by par-
tioning the training data into 10%, 5% and 2.5% ranges.
For the remaining of this paper, we refer to these ranges
as the 10%, 5% and 2.5% GC ranges.

Once the models are trained, all possible complete and
incomplete ORFs are extracted from the input fragment
and their corresponding features are extracted using the
same linear discriminant step used for training. Based on
the GC-content of the fragment, the corresponding
neural network model is used to score the ORF. The out-
put of the neural network is the approximation of the
posterior probability that the ORF is coding. Step 2 in
Figure 2 illustrates the neural network model. Once all
input ORFs are scored by the neural networks, the same

greedy algorithm used by Orphelia is deployed to resolve
the overlap between all candidate ORFs that have a prob-
ability greater than 0.5. Given the candidate list © for a
particular fragment containing all ORFs i with probability
P; >0.5, Algorithm 1 describes the selection scheme used
to generate the final list : of genes. The maximum
allowed overlap is 0,,,,, = 60 bp which is the minimal
gene length considered for prediction. A more reasonable
overlap would be 45 bp which is believed to be the maxi-
mum overlap for bacterial genes. We use the same over-
lap used by Orphelia for comparison reason. However,
the overlap is a variable that the user can change.
Algorithm 1 The final candidate selection
while ¢ is nonempty do

Find i,,,, = argmax; P; with respect to all ORFs i
ine

Move OREF i,,,, from ¢ to ¢

Remove all the ORFs in ¢ that overlap with ORF
imax Dy more than o,,,,

end while

Features

In order to train the models in MGC we use the nine fea-
tures (monoamino-acid discriminant, diamino-acid discri-
minant, monocodon discriminant, dicodon discriminant,
two TIS features, two length features and the GC-content).
Similarly to standard discriminant codon features, the
amino discriminant features are derived from amino acid
usage. The monoamino-acid usage is based on the 21 (20
amino-acids plus “STOP”) amino-acid frequencies that
represent the occurrences of successive single amino-acids
in the training sequences while the diamino-acid usage is
derived from the 21> diamino-acid frequencies which

El Allali and Rose BMC Bioinformatics 2013, 14(Suppl 9):56
http://www.biomedcentral.com/1471-2105/14/59/56

Page 5 of 10

Fragment

_

Figure 2 MGC’s scoring scheme. The figure illustrates MGC’s scoring scheme. The first steps computes six features from the ORF based on
the corresponding linear discriminant. Three additional features are computed directly from the ORF. The neural network model from the
corresponding GC range is used to combine features from the previous step in order to compute a final gene probability.

represent the occurrences of successive half-overlapping
amino acid tuples in the training sequences. Linear discri-
minant analysis based on the monoamino and diamino-
acid usage is then used to reduce this high dimensional
space to two features. The linear discriminants w4 and
wp, for the amino-acid features are described by the fol-
lowing equations:

WpA = (XMAX{AA +)»n[)ilxMAyM (1)

wpa = (XpaXha + Anl) ' Xpayp 2

Where X ;4 and Xp, represent the monoamino and
diamino-acid usage respectively, A is the regularization
parameter and y,; and yp represent the sequence labels
for the data points in X4 and Xpu respectively
(yi, € {—1, 1} represents whether sequence i is a positive

example (y,, = 1) or a negative example (y,, = —1)). The
linear discriminants for codon features are computed
similarly. The monoamino-acid and diamino-acid fea-
tures are then obtained simply as x = wp4 - X34 and
X = Wpya + Xpa respectively.

Neural networks

The resulting nine features for all the training examples in
each GC range are combined in a non-linear fashion using
a neural network. The output of each network is the pos-
terior probability of an ORF encoding a protein. We use a
standard multilayer perceptron to train the MGC models.
This is similar to Orphelia [1] with the exception that we
have two more features, and we are training models that
are GC range specific. For each GC range we obtain a
model using features computed from all the sequences in
the training dataset that have GC-content within the GC

El Allali and Rose BMC Bioinformatics 2013, 14(Suppl 9):56
http://www.biomedcentral.com/1471-2105/14/59/56

range. The same GC ranges used to compute the linear
discriminants are used to build the neural network mod-
els. Different splits by GC-content were used to study the
effect of the GC range size on the performance of MGC.
In this paper, the MGC models were trained using the
10%, 5% and 2.5% ranges.

The neural network used by Orphelia [18] consists of
standard multilayer perceptrons with one layer of k hid-
den nodes and a single logistic output function is used
to train the neural network model. While the classifica-
tion is setup as a binary classification with labels y;, = 1
for coding and y; = 0 for noncoding, the output of the
neural network is considered an approximation of the
posterior probability of the coding class which is used in
the final step to select the final ORFs. The k hidden
activations z; for a given input feature vector x are:

zi = tanh(w! - x + b}). 3)

where w! are input weight vectors and b} are the bias
parameters.

The prediction function based on weight vector w,
and bias b, is

1
1+exp(—w,-z—b,)

8(2) = (4)
where z is a vector containing all the z; vectors.

The output of the trained network f(x;;0)Vi € (1..N)
is computed by minimizing the objective function E(6)
in equation 5 where x; represent the training examples,
N is the number of training examples, the weight and
bias parameters are referred to by the vector ¢ and the
matrix A contains the regularization parameters.

N
E(©) =Y (f(xi0) —y)* + 6740, (5)

i=1
The regularization matrix A = diag(al, ..., al, a2, ...,
a2, a3, ..., a3, a4) requires four strictly positive hyper-

parameters ai, a,, as, a4 for separate scaling of the para-
meters w}, b}, w,, b,. Hoff et al. [18] use the evidence
framework for the adaptation of hyperparameters. This
framework is introduced by MacKay [19] and is based
on a Gaussian approximation of the posterior distribu-
tion of network weights. This evidence-based adaptation
of the hyperparameters is incorporated into the network
training and uses the same training points.

In order to minimize the objective function in equa-
tion 5, a scaled conjugate gradient scheme is used as
implemented in the NETLAB toolbox [20]. The hyper-
parameters are all initially set to 0.001 and the weight
and bias parameters are randomly initialized based on a
standard normal distribution. The training scheme is
iterated 50 times where each iteration consists of 50

Page 6 of 10

gradient steps followed by two hyperparameter adapta-
tion steps.

For example if we consider the 10% GC ranges, MGC
computes 10 models using the training sequences from
each GC range. Let 8;, where j € 1..10, denote the
resulting neural network model for a given GC range ;.
Training the model 6; is similar to training the single
model 0 as described above and using only the training
examples that have GC-content within the GC range ;.
The network output for a given test sample x; is com-
puted as flx; 0;) = P;, where the GC-content of the frag-
ment that contains Xx; is within the GC range ;.

Results and discussion

Performance measures

The performance of MGC is measured using the sensi-
tivity and specificity measures which evaluate the cap-
ability of detecting annotated genes and the reliability of
the gene predictions respectively. The performance mea-
sures are computed for predicted genes in fragments
with length 700 bp from 10 random replications of 10
bacterial and 3 archaeal genomes based on their Gen-
Bank [17] annotations.

In order to measure the performance of the neural
network Hoff et al. [18] use the sensitivity and specifi-
city measures in equations 6 and 7 to measure the cap-
ability of detecting annotated genes and the reliability of
gene predictions respectively. TPy, is the number of
ORFs that match at least 60 bp on an annotated gene in
the same reading-frame, while FN,,,, is the number of
overlooked genes and FP,,,, refers to the number of
predicted ORFs that do not match the annotation. For
comparison reasons we follow the same use of the posi-
tive likelihood score as a measure of specificity, this
score does not take into account the number of true
negatives and is used by metagenomic gene finders such
as Orphelia, FragGeneScan, and MetaGene.

TP gene

Sens = .
TP gene T FN gene

(6)

TP, gene

Spec = .
TP gene t FP gene

7)

The harmonic mean is also used to provide a compo-
site of the sensitivity and specificity:

. 2 x Sens x Spec
HarmonicMean =

8
Sens + Spec ®

The accuracy of TIS was measured using the TIS cor-
rectness measure in equation 9. This measure is used
because the traditional sensitivity and specificity mea-
sures are not suitable for measuring TIS prediction

El Allali and Rose BMC Bioinformatics 2013, 14(Suppl 9):56
http://www.biomedcentral.com/1471-2105/14/59/56

performance since they measure the performance of the
gene prediction rather than the TIS accuracy.

TPr;s refers to the correctly predicted TIS within a
subset of TPy, predictions that have an annotated TIS
within the fragment, the latter is referred to as TP.=.

TP
TIScorrectness = 1S

. 9
TPgene* ©)

Results

Table 1 shows the sensitivity, specificity and harmonic
mean scores of MGC predictions based on models built
from 10%, 5% and 2.5% GC ranges respectively. The har-
monic mean score is a composite measure of sensitivity
and specificity [18]. Models built from the 10% GC ranges
have an average harmonic mean of 91.44% with an average
standard deviation of 0.15%. The 5% and 2.5% GC ranges
have a slightly lower harmonic mean than the 10% ranges.
Their average harmonic means are 91.32% and 90.61%
respectively, and the average standard deviations for both
ranges are 0.15%. Based on these results we select the 10%
range for comparison with existing methods. Both Orphe-
lia and FragGeneScan outperform MetaGene [7,18]. Con-
sequently, we compare MGC'’s performance to that of
Orphelia and FragGeneScan.

Table 2 shows a comparison between MGC, Orphelia,
and FragGeneScan using the testing dataset described
earlier in this paper. The MGC algorithm is run using
the 10% GC range models. The results show that both
MGC and Orphelia achieve better performance than

Table 1 MGC performance by GC ranges.

Page 7 of 10

FragGeneScan across all accuracy scores. Therefore we
will focus on comparing MGC and Orphelia. The aver-
age harmonic mean for MGC is 91.44% and the average
standard standard deviation of the harmonic mean is
0.15%, while the average harmonic mean for Orphelia is
81.73% with an average standard deviation of 0.2%. We
observe that MGC'’s improvement over Orphelia is both
in sensitivity (8.87% on average) and in specificity
(10.68% on average) measures. Orphelia was originally
compared to MetaGene in Hoff et. al [1], where it was
shown that Orphelia has an average of 4.6% specificity
gain and a 3.8% sensitivity loss compared to MetaGene
based on the same test species used in our comparison.
However, the overall performance measured by the har-
monic mean was very similar between Orphelia and
MetaGene. In the case of MGC, both aggregate perfor-
mance measures have improved and the harmonic mean
shows an improvement of 9.71% on average over the
results of Orphelia.

Predicting the correct TIS is very important and chal-
lenging in conventional as well as metagenomic gene
finding. This is crucial to the subsequent experimental
steps in the metagenomic pipeline. MGC employs linear
discriminant TIS-models in order to identify the correct
TIS. The accuracy of this prediction can be measured
using the TIS correctness score as described in the pre-
vious section. Table 3 shows a comparison of TIS cor-
rectness scores between MGC and Orphelia.

TIS correctness measure is computed from a subset of
the predicted genes with an annotated TIS. Direct com-
parison of the two methods based on this measure is

Model Ranges 10% Ranges

5% Ranges 2.5% Ranges

Genomes Sp Sn H.M Sp Sn H.M Sp Sn H.M

M. jannaschii 97.1940.12 92.63+0.19 9485+0.13 97.240.14+ 9278+0.18 94.85+0.11 97.10£0.10 92.67+0.18 94.84+0.12
A. fulgidus 95.04+0.14 83.87+0.18 89.11£0.11 94950.16+ 83.75£021 89.00+0.15 9430+£0.18 8441+022 89.08+0.14
B. subtilis 96.68+0.13 88.06+0.17 92.1740.12 96.63+0.12 88.03+0.18 92.13+£0.14 96.20+009 87.81+0.13 91.82+0.09
B. aphidicola 98.01£0.19 91.11+£037 9443+023 98.00+0.17 90.82+039 94274025 97.89+022 90.54+034 94.07+0.22
W. endosymbiont 88.25+0.35 87.85+0.17 88.05+0.24 8794029+ 8799+024 87974023 87.39+026 88.15+0.18 87.77+0.21
N. pharaonis 9528+0.12 85.79+020 9029+0.14 9491+0.11 8529+030 89.84+0.19 9441+0.13 81.60+026 87.54+0.17
E. coli 9647+0.08 87.73+0.16 91924008 9644+009 87.65+0.14 91.84+0.07 9566+009 86.64+0.14 90.93+0.09
H. pylori 97774014 89.70+022 9356+0.17 9781+0.10 8959+0.19 93.52+0.14 9773009 8896+0.23 93.14+0.16
P. aeruginosa 96.16£0.09 91.70+0.11 93.88+0.08 9593+009 9153+£009 93.67+007 95724008 89.17+0.13 9233+0.09
C. tepidum 9342+0.14 79.08+024 8565+0.18 93.33+0.15 79.04+0.19 85.59+0.14 9237+0.14 77.94+0.18 84.54+0.14
B. pseudomallei 94.7940.13 87.84+0.25 91.18+£0.18 9446+0.12 87594024 9090+0.16 93.99+0.13 85.86+0.19 89.74+0.15
C. jeikeium 96.13£0.11 87.70+023 91.72+0.17 9581+008 87.53+023 9148+0.15 85.02+0.14 95.56+0.26 89.98+0.20
P. marinus 97714011 8792+020 9255+0.12 97.57+0.13 8828+020 92.69+0.14 8804+0.14 9747+024 9251+0.13
Average 95.51 87.76 9144 9537 87.67 9132 94.97 86.70 90.61

Average S.D. 0.14 0.20 0.15 0.14 0.21 0.15 0.14 0.21 0.15

This table presents the gene prediction performance of MGC using the 10%, 5% and 2.5% models. Sensitivity (Sn), Specificity (Sp) and Harmonic Mean (H.M)
scores are measured on 700 bp randomly excited fragments from each test genome to 5-fold coverage and repeated 10 times.

El Allali and Rose BMC Bioinformatics 2013, 14(Suppl 9):56
http://www.biomedcentral.com/1471-2105/14/59/56

Table 2 MGC versus Orphelia and FragGeneScan.

Page 8 of 10

Methods MGC Orphelia FragGeneScan

Genomes Sp Sn H.M Sp Sn H.M Sp Sn H.M

M. jannaschii 97.19+0.12 92.63+0.19 94.85+0.13 9520+£0.17 9046+0.16 92.77£0.14 76.03+022 90.35+033 8257+0.19
A. fulgidus 95.04+0.14 84.13+023 89.31+0.15 8857+0.21 80.58+0.17 8438+0.16 52.58+03 75.86+0.31 62.11£0.29
B. subtilis 96.68+0.13 88.06+0.17 92.17+0.12 8891+0.12 83.45+0.11 86.10£0.09 6647+025 7898+022 72.19+0.23
B. aphidicola 98.01£0.19 91.11+037 94.43+023 9554+0.28 8940+033 9237+022 8091+056 92.2+0.32 86.19+0.34
W. endosymbiont ~ 88.25+0.35 87.85+0.17 88.05+024 86.24+039 83.79+0.31 84.99+£0.27 71.44+049 7124054 71.34+045
N. pharaonis 95.28+0.12 85.79+020 90.29+0.14 7599+0.34 68.74+034 7217£033 52.89+037 63.62+034 57.76+£0.36
E. coli 96.47+008 87.73+0.16 91.92+008 8599+0.18 80.79+0.16 8331+0.16 62.57+0.2 7493+0.19 68.19+0.15
H. pylori 97.77+0.14 89.70+022 93.56+0.17 94.17+020 8899+022 91.50+020 72.76+035 87.54+039 7947+0.32
P. aeruginosa 96.16:009 91.70+0.11 93.88+008 71214020 6840+0.18 69.78+0.19 56.17£0.3 63.46+0.3 59.59+0.29
C. tepidum 93.42+0.14 79.08+0.24 85.65+0.18 7751+£0.22 66.95+0.23 71.85+0.21 5087£036 6559+022 57.3+0.29
B. pseudomallei 94.79+0.13 87.84+025 91.18+0.18 69.54+0.31 64.79+0.22 67.08+026 51.34+0.2 5569+0.27 53.42+0.22
C. jeikeium 96.13+0.11 87.70+0.23 91.72+0.17 79524022 7423+023 76.79+022 6541+028 72.78+03 68.9+0.26
P. marinus 97.71+£0.11 87.92+020 92.55+0.12 94414020 8498+024 8945+020 7548+04 8849+032 81471033
Average 95.51 87.76 91.44 84.83 78.89 81.73 64.22 7544 69.27
Average S.D. 0.14 0.20 0.15 0.23 0.22 0.20 033 0.31 0.29

This table compares the prediction performance of MGC, Orphelia [1] and FragGeneScan [7]. Sensitivity (Sn), Specificity (Sp) and Harmonic Mean (H.M) scores are

derived identically to Table 1.

difficult since they predict a different number of genes.
Nonetheless, we notice that the improvement of the TIS
correctness is comparable to that of the sensitivity and
specificity measures. Specifically, we observe that the
average TIS correctness of our algorithm is 11.39%
higher than that of Orphelia.

Table 3 TIS accuracy comparison between MGC and
Orphelia.

MGC Orphelia

Genomes TiScorrectness TiIScorrectness
M. jannaschii 64.12 £ 0.84 51.03 £ 085
A. fulgidus 66.26 = 0.39 51.10 £ 060
B. subtilis 6547 £ 0.22 5885 £ 0.25
B. aphidicola 84.15 £ 0.70 6530 = 144
W. endosymbiont 72.06 + 081 6341 £ 094
N. pharaonis 7146 £ 035 5943 + 0.63
E. coli 7274 £ 027 64.24 = 0.35
H. pylori 68.55 £ 0.71 60.37 £ 0.71
P. aeruginosa 68.86 + 042 61.09 + 0.35
C. tepidum 69.49 £ 0.65 5393 £ 071
B. pseudomallei 67.85 + 046 56.11 + 0.69
C. jeikeium 7133 £ 0.69 60.29 = 0.57
P. marinus 7118 £ 037 6832 + 0.38
Average 70.89 59.50
Average S.D. 0.53 0.68

TIScorrectness scores are measured on 700 bp randomly excited fragments
from each test genome to 5-fold coverage and repeated 10 times.

Discussion

The results show the improvement of MGC in perfor-
mance over that of Orphelia. We hypothesized that learn-
ing separate models for several pre-defined GC-content
regions as opposed to the single model approach used by
Orphelia would improve the performance of the neural
network. The current results support this hypothesis. The
5% GC range models exhibit an improvement around 1%
on average than that of the 2.5% GC range models. The
10% GC range models also exhibit a slight improvement
over the 5% GC range models. However this result is
within the standard deviation. Thus, there is no need to
investigate models for smaller GC ranges to prove the
benefit of having multiple models versus a single model.
However, it would be useful to compute other models
based on larger GC ranges in order to investigate and find
better partitions of the GC spectrum.

MGC outperforms Orphelia in TIS prediction accuracy.
Evaluating TIS recognition is hampered by the fact that
we must rely on published annotations, many of which are
generated automatically and have not been fully verified.
This is a well recognized problem in traditional gene
annotation.

The Orphelia algorithm was tested on different frag-
ment sizes by building models for fragments ranging
from 200 bp to 500 bp with increments of 20 bp. Hoff
et al. recommend using the 700 bp model for all frag-
ments greater than 300 bp, while fragments ranging from
200 bp to 300 bp should be run using the 300 bp model
[1]. According to a recent metagenomics survey by Tho-
mas et al. [21] the 454/Roche and the Illumina/Solexa

El Allali and Rose BMC Bioinformatics 2013, 14(Suppl 9):56
http://www.biomedcentral.com/1471-2105/14/59/56

systems are the most commonly used systems. While the
[lumina/Solexa system produce shorter reads, the aver-
age read length for 454/Roche technology ranges
between 600 and 800 bp [21]. MGC’s 700 bp models are
sufficient for longer reads such as 454/Roche reads. We
are currently developing 300 bp models in order to han-
dle shorter reads such as those from the llumina/Solexa
system.

Conclusion

In this paper we show that learning separate models for
several pre-defined GC-content regions as opposed to
the single model approach used by Orphelia lead to an
improvement of performance. We also show that the
amino-acid usage helps to improve the overall accuracy
of the gene finder. In the future, we plan to evaluate
models based on different GC ranges. We also plan to
use ensemble techniques to combine the ORF probabil-
ities from overlapping models in order to improve the
predictions of MGC. This hypothesis is based on the
empirical observation of Hansen and Krogh [22] that
the error of an ensemble is the average error of each
ensemble members minus a measure of the disagree-
ment between each members. This suggests that the
ensemble is always better than the individual average
performance.

In our experiments, we have used simulated data
derived from fully sequenced genomes. We plan to
study the effect of sequencing errors on the prediction
performance by simulating data with different error
rates. Three types of errors can occur in all sequencing
techniques: substitution, insertion, and deletion of one
or more nucleotides during the reading process. Since
we rely on codon and amino acid features to predict
genes, any insertion or deletion will shift the frame of
the sequence and thus alter the codon and amino acid
compositions. In addition to evaluating MGC’s predic-
tion ability on sequences with these types of errors. We
need to develop a way to compensate for the frame
shifts, otherwise we will not be able to classify erroneous
fragments. FragGeneScan currently shows the best per-
formance for reads with errors. Once we address error
modeling in MGC, we plan to compare our results with
those of FragGeneScan.

Authors’ contributions

AE and JR conceived of the project. AE designed and implemented the
work. JR helped in the design and provided expert input. Both authors read
and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work is supported by the National Science Foundation under Grant No.
DBI-0959427.

Page 9 of 10

This article has been published as part of BMC Bioinformatics Volume 14
Supplement 9, 2013: Selected articles from the 8th International Symposium
on Bioinformatics Research and Applications (ISBRA'12). The full contents of
the supplement are available online at http://www.biomedcentral.com/
bmcbioinformatics/supplements/14/59.

Declarations
Publication of this article was funded by the authors.

Published: 28 June 2013

References

1. Hoff KJ, Lingner T, Meinicke P, Tech M: Orphelia: predicting genes in
metagenomic sequencing reads. Nucleic acids research 2009, 37(Web
Server)W101-5 [http://www.ncbi.nlm.nih.gov/pubmed/19429689].

2. Allali AE, Rose JR: MIM: A Species Independent Approach for Classifying
Coding and Non-Coding DNA Sequences in Bacterial and Archaeal
Genomes. £ngineering and Technology 2010, 411-418.

3. Chaisson MJ, Pevzner PA: Short read fragment assembly of bacterial
genomes. Genome Research 2008, 18(2):324-330.

4. Butler J, MacCallum |, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES,
Nusbaum C, Jaffe DB: ALLPATHS: De novo assembly of whole-genome
shotgun microreads. Genome Research 2008, 18(5):810-820 [http://www.
ncbi.nim.nih.gov/pubmed/18340039].

5. Noguchi H, Park J, Takagi T: MetaGene: prokaryotic gene finding from
environmental genome shotgun sequences. Nucleic Acids Research 2006,
34(19):5623-5630 [http://www.ncbi.nim.nih.gov/pubmed/17028096].

6. Borodovsky M, Mills R, Besemer J, Lomsadze A: Prokaryotic gene
prediction using GeneMark and GeneMark.hmm. Current protocols in
bioinformatics editoral board Andreas D Baxevanis et al 2003 [http://www.
ncbi.nlm.nih.gov/pubmed/18428700], Chapter 4:Unit4.5.

7. Rho M, Tang H, Ye Y: FragGeneScan: predicting genes in short and error-
prone reads. Nucleic Acids Research 2010, 38(20):e191.

8. Chan PK, Stolfo SJ: A comparative evaluation of voting and meta-learning
on partitioned data. Proc 12th International Conference on Machine Learning
Morgan Kaufmann; 1995, 90-98 [http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.47.7713].

9. Singer GA, Hickey DA: Nucleotide bias causes a genomewide bias in the
amino acid composition of proteins. Molecular Biology and Evolution 2000,
17(11):1581-1588 [http://www.ncbi.nlm.nih.gov/pubmed/11070046].

10. Lightfield J, Fram NR, Ely B: Across Bacterial Phyla, Distantly-Related
Genomes with Similar Genomic GC Content Have Similar Patterns of
Amino Acid Usage. PLoS ONE 2011, 6(3):12.

11. Oliver JL, Marin A: A relationship between GC content and coding-
sequence length. Journal of Molecular Evolution 1996, 43(3):216-223.

12. Misawa K, Kikuno RF: Relationship between amino acid composition and
gene expression in the mouse genome. BMC research notes 2011, 4:20.

13. Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX,
Gooley AA, Hughes G, Humphery-Smith |, Williams KL, Hochstrasser DF:
From proteins to proteomes: large scale protein identification by two-
dimensional electrophoresis and amino acid analysis. Biotechnology NY
1996, 14:61-65.

14. Hobohm U, Sander C: A sequence property approach to searching
protein databases. Journal of Molecular Biology 1995, 251(3):390-399.

15. Guruprasad K, Reddy BV, Pandit MW: Correlation between stability of a
protein and its dipeptide composition: a novel approach for predicting
in vivo stability of a protein from its primary sequence. Protein
Engineering 1990, 4(2):155-161.

16. Merkl R: A survey of codon and amino acid frequency bias in microbial
genomes focusing on translational efficiency. Journal of Molecular
Evolution 2003, 57(4):453-466.

17. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL: GenBank:
update. Nucleic Acids Research 2004, 32(Database):D23-D26 [http://www.
ncbi.nlm.nih.gov/pubmed/14681350].

18. Hoff KJ, Tech M, Lingner T, Daniel R, Morgenstern B, Meinicke P: Gene
prediction in metagenomic fragments: a large scale machine learning
approach. BMC bioinformatics 2008, 9:217 [http://www.ncbi.nlm.nih.gov/
pubmed/18442389].

19. MacKay DJC: A Practical Bayesian Framework for Backpropagation
Networks. Neural Computation 1992, 4(3):448-472 [http://www.
mitpressjournals.org/doi/abs/10.1162/neco.1992.4.3.448].

http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S9
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S9
http://www.ncbi.nlm.nih.gov/pubmed/19429689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19429689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19429689
http://www.ncbi.nlm.nih.gov/pubmed/18083777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18083777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18340039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18340039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18340039
http://www.ncbi.nlm.nih.gov/pubmed/18340039
http://www.ncbi.nlm.nih.gov/pubmed/17028096?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17028096?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17028096
http://www.ncbi.nlm.nih.gov/pubmed/18428700
http://www.ncbi.nlm.nih.gov/pubmed/18428700
http://www.ncbi.nlm.nih.gov/pubmed/20805240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20805240?dopt=Abstract
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.7713
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.7713
http://www.ncbi.nlm.nih.gov/pubmed/11070046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11070046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11070046
http://www.ncbi.nlm.nih.gov/pubmed/21423704?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21423704?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21423704?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8703087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8703087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21272306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21272306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9636313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9636313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7650738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7650738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2075190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2075190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2075190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14708578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14708578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681350
http://www.ncbi.nlm.nih.gov/pubmed/14681350
http://www.ncbi.nlm.nih.gov/pubmed/18442389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18442389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18442389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18442389
http://www.ncbi.nlm.nih.gov/pubmed/18442389
http://www.mitpressjournals.org/doi/abs/10.1162/neco.1992.4.3.448
http://www.mitpressjournals.org/doi/abs/10.1162/neco.1992.4.3.448

El Allali and Rose BMC Bioinformatics 2013, 14(Suppl 9):56 Page 10 of 10
http://www.biomedcentral.com/1471-2105/14/59/56

20. Nabney I: NETLAB: algorithms for pattern recognition (Google eBook) Springer;
2002 [http://www.springer.com/computer/ai/book/978-1-85233-440-6).

21. Thomas T, Gilbert J, Meyer F: Metagenomics - a guide from sampling to
data analysis. Microbial Informatics and Experimentation 2012, 2:3 [http://
www.microbialinformaticsj.com/content/2/1/3].

22. Hansen JV, Krogh A: A general method for combining predictors tested
on protein secondary structure prediction. Artificial Neural Networks in
Medicine and Biology 2000, 259-264 [http:/link.springer.com/chapter/
10.1007%2F978-1-4471-0513-8_39].

doi:10.1186/1471-2105-14-59-56
Cite this article as: EI Allali and Rose: MGC: a metagenomic gene caller.
BMC Bioinformatics 2013 14(Suppl 9):Sé.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at (-
www.biomedcentral.com/submit BiolVed Central

http://www.springer.com/computer/ai/book/978-1-85233-440-6
http://www.ncbi.nlm.nih.gov/pubmed/22587947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22587947?dopt=Abstract
http://www.microbialinformaticsj.com/content/2/1/3
http://www.microbialinformaticsj.com/content/2/1/3
http://link.springer.com/chapter/10.1007%2F978-1-4471-0513-8_39
http://link.springer.com/chapter/10.1007%2F978-1-4471-0513-8_39

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Datasets
	The MGC algorithm
	Features
	Neural networks

	Results and discussion
	Performance measures

	Results
	Discussion
	Conclusion
	Authors’ contributions
	Competing interests
	Acknowledgements
	Declarations
	References

