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Abstract

Background: The Kruskal-Wallis test is a popular non-parametric statistical test for identifying expression quantitative
trait loci (eQTLs) from genome-wide data due to its robustness against variations in the underlying genetic model and
expression trait distribution, but testing billions of marker-trait combinations one-by-one can become computationally
prohibitive.

Results: We developed kruX, an algorithm implemented in Matlab, Python and R that uses matrix multiplications to
simultaneously calculate the Kruskal-Wallis test statistic for several millions of marker-trait combinations at once. KruX
is more than ten thousand times faster than computing associations one-by-one on a typical human dataset. We used

linear associations.

kruX and a dataset of more than 500k SNPs and 20k expression traits measured in 102 human blood samples to
compare eQTLs detected by the Kruskal-Wallis test to eQTLs detected by the parametric ANOVA and linear model
methods. We found that the Kruskal-Wallis test is more robust against data outliers and heterogeneous genotype
group sizes and detects a higher proportion of non-linear associations, but is more conservative for calling additive

Conclusion: kruX enables the use of robust non-parametric methods for massive eQTL mapping without the need
for a high-performance computing infrastructure and is freely available from http://krux.googlecode.com.
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Background

Genome-wide association studies have identified hun-
dreds of DNA variants associated to complex traits includ-
ing disease in human alone [1]. To understand how these
variants affect disease risk, genotype and organismal phe-
notype data are integrated with intermediate molecular
phenotypes to reconstruct disease networks [2]. A first
step in this procedure is to identify DNA variants that
underpin variations in expression levels (eQTLs) of tran-
scripts [3], proteins [4] or metabolites [5]. As modern
technologies routinely produce genotype and expression
data for a million or more single-nucleotide polymor-
phisms (SNPs) and ten-thousands of molecular abun-
dance traits in a single experiment, often repeated across
multiple cell or tissue types, the number of statistical
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tests to be performed when testing each SNP for associ-
ation to each trait is huge. Furthermore, multiple testing
correction requires all tests to be repeated several times
on permuted data to generate an empirical null distribu-
tion. Despite being trivially parallelisable, the computa-
tional burden of testing SNP-trait associations one-by-one
quickly becomes prohibitive.

Recently a new approach (“matrix-eQTL”) was devel-
oped which uses the fact that the test statistics for the
additive linear regression and ANOVA models can be
expressed as multiplications between rescaled genotype
and expression data matrices, thereby realising a dra-
matic speed-up compared to traditional QTL-mapping
algorithms [6]. A limitation of these models is their
assumption that the expression data is always nor-
mally distributed within each genotype group. For this
reason, QTL and eQTL studies have frequently used
non-parametric methods which are more robust against

© 2014 Qi et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://

creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://krux.googlecode.com
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Qi et al. BMC Bioinformatics 2014, 15:11
http://www.biomedcentral.com/1471-2105/15/11

variations in the underlying genetic model and trait dis-
tribution [7,8]. In particular, the non-parametric Kruskal-
Wallis one-way analysis of variance [9] does not assume
normal distributions and reports small P-values if the
median of at least one genotype group is significantly
different from the others [8].

Here we report a matrix-based algorithm (“kruX”),
implemented in Matlab, Python and R, to simultaneously
calculate the Kruskal-Wallis test statistics for several mil-
lions of SNP-trait pairs at once that is more than ten
thousand times faster than calculating them one-by-one
on a human test dataset with more than 500,000 SNPs
and 20,000 expression traits. Additional benefits of kruX
include the explicit handling of missing values in both
genotype and expression data and the support of genetic
markers with any number of alleles, including variable
allele numbers within a single dataset.

Implementation

Input data

KruX takes as input genotype values of M genetic mark-
ers and expression levels of N transcripts, proteins or
metabolites in K individuals, organised in an M x K
genotype matrix G and N x K expression data matrix
D. Genetic markers take values 0,1, ..., £, where £ is the
maximum number of alleles (¢ = 2 for biallelic mark-
ers), while molecular traits take continuous values. We
use built-in functions of Matlab, Python and R to convert
the expression data matrix D to a matrix R of data ranks,
ranked independently over each row (i.e. molecular trait).
KruX assumes that the input expression data has been
adjusted for covariates if it is necessary to do so [10,11]
and all data quality control has been performed.

Calculation of the Kruskal-Wallis test statistic by matrix
multiplication

The genotype matrix G is first converted to sparse logi-
cal index matrices I; of the same size, where I;(m, k) =
1 if G(m,k) = i and O otherwise (i = 0,...,¢). Next
observe that the 1 x M vector N; with entries N;(m) =
Zle I;(m, k) and N x M matrices S; with entries

K
Sitnm) = Y ROLOLom k) = (R 1T ) ), (1)
k=1

are respectively the number of individuals and the sum of
ranks for the nth trait in the ith genotype group of the mth
marker. We can then calculate an N x M matrix S with
entries

12 X"’: S; (1, m)>

Stmm) = kT 1 N;(m)

—-3K+1, (2
i=
using efficient vectorised operations. If none of the rows
in D contain ties, then each entry S(n,m) equals the
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Kruskal-Wallis test statistic for testing trait # against
marker m [9]. For markers with less than the maximum of
£ genotype values, 0/0 division will result in NaN columns
in the intermediate matrices with entries S; (1, m1)2 /N;(m)
for the empty genotype groups. By replacing all NaN’s
by zeros before making the sum in eq. (2), the corre-
sponding entries in S will be the correct statistics for a
test with fewer than ¢ degrees of freedom. Thus we need
£ + 1 matrix multiplications and the associated element-
wise operations to calculate the test statistic values for all
marker-trait combinations.

P-value calculation and empirical FDR correction

KruX takes as input a P-value threshold P, calculates
the corresponding test statistic thresholds for d degrees
of freedom (d = 1,...,£ — 1), and identifies the entries
in S which exceed the appropriate threshold value. For
these entries only a P-value is calculated using the x? dis-
tribution. Empirical false-discovery rate (FDR) values are
computed by repeating the P-value calculation (with the
same P.) multiple times on data where the columns of the
expression data ranks are randomly permuted. The FDR
value for any value P < P is defined as the ratio of the
average number of associations with P < P in the ran-
domised data to the number of associations with P’ < P
in the real data.

Handling missing values

When data values are missing for some marker or trait, all
test statistics for that marker or trait need to be adjusted
for a smaller number of observations. For the expression
data, missing values are easily handled since the ranking
algorithms will give NaN’s the highest rank. By setting the
entries corresponding to missing values in D to zero in R,
eq. (1) still produces the correct sums of ranks, while the
matrix multiplication

K

(Z 17 ) (mm) = Y Z(n, k) Lim, k) = Ni(n, m),

k=1

where Z is the N x K matrix with Z(n, k) = 0 whenever
D(n,k) = NaN and 1 otherwise, produces the corrected
number of individuals in the ith group of the mth marker
for the nth trait. Replacing the constant K in eq. (2)
by a N x M matrix K where K(n, m) is the number of
non-missing samples for trait # and performing element-
wise division and substraction operations then gives the
correct test statistic for all pairs.

Handling missing genotype data is less easy because the
expression ranks that need to be adjusted are specific to
each marker-trait combination (e.g if a marker has a miss-
ing value where a trait has rank r1, then all samples with
ranks r = r; + 1,...,K need to be lowered by 1). KruX
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uses the fact that missing genotype values are generally
due to sample quality and therefore patterns of missing
values are often repeated among markers. For each unique
missing value pattern, a new genotype matrix for all mark-
ers with that pattern and a new expression data matrix
with the corresponding samples removed are constructed
to calculate the test statistics for all affected marker
gene combinations. Missing genotype data increases the
computational cost of the algorithm considerably and
it is recommended to limit the number of missing val-
ues by only considering markers with a sufficiently high
call rate.

Handling tied data

In the presence of tied observations, the statistic in eq. (2)
T

needs to be divided by a factor 1 — gj, where the sum-
mation is over all groups of ties and T = > — ¢ for each
group of ties, with ¢ the number of tied data in the group
[9]. The factor T is automatically computed for each trait
during the ranking step and the matrix S is therefore easily
corrected using element-wise matrix operations (Matlab
version only). Whereas ties are usually rare in standard
gene expression datasets, the ability to handle tied data
expands the scope of kruX to count-based, discretised or

qualitative data types.

Data slicing

Since kruX needs to create intermediate matrices of size
N x M, where N is the number of traits and M the number
of markers, which do not usually fit into memory for large
datasets, kruX supports the use of data ‘slices’ to divide the
complete data into manageable chunks. In typical appli-
cations, the number of markers is one or two orders of
magnitude larger than the number of traits. Therefore
the default behaviour of kruX is to keep the expression
data as a single matrix and simultaneously test all traits
against subsets of markers. The user can provide either
a slice size and kruX will process marker blocks of this
size serially, or a slice size and initial marker and kruX
will process a single slice starting from that marker. The
latter option allows trivial parallelisation across multiple
processors.

Results and discussion

Validation data

To test kruX we provide example analysis scripts and
a small anonymised dataset of 2,000 randomly selected
genes and markers from 100 randomly selected yeast
segregants [12]. Here we describe an application of kruX
on a human dataset of 19,610 genes and 530,222 SNP
markers measured in 102 whole blood samples from
the Stockholm Atherosclerosis Gene Expression (STAGE)
study [13]. All SNPs in the dataset had minor allele
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frequency greater than 5%, no missing values and proba-
bility to be in Hardy-Weinberg equilibrium greater than
1076,

kruX is exact and fast

We first confirmed that kruX produces the same results
as testing marker-trait combinations one-by-one using the
built-in Kruskal-Wallis functions to verify the correctness
of our implementations. To test the performance of kruX
we divided the genotype data into slices of variable size
and extrapolated the total run time from running a sin-
gle genotype data slice against all expression traits and
multiplying by the number of slices needed to cover the
entire set of 530,222 SNPs. The total run time rapidly
decreases until a genotype slice contains about 1,000 SNPs
and stays almost constant thereafter. On a laptop with 8
GB RAM, the limit is reached at around 3,000 SNPs per
slice after which run time sharply increases again due to
memory limitations (Figure 1). We therefore recommend
a genotype slice size of around 2,000 markers, resulting
for this dataset in around 250 separate jobs, which will
take around 2,500 seconds (42 minutes) when run serially
on a single processor. By comparison, the total extrap-
olated run time when computing all 19,610 x 530,222
associations one-by-one using the built-in Kruskal-Wallis
function on the same hardware as in Figure 1 are respec-
tively 4.8 - 107 (256 GB, 2.20 GHz server) and 2.6 - 107
(8 GB, 2.70 GHz laptop) seconds such that kruX is respec-
tively 17,000 and 11,000 times faster on this particular
dataset. On the same dataset and hardware, the compara-
tively simpler matrix operations for the parametric tests in
matrix-eQTL took respectively 5 minutes (linear model)
and 7.4 minutes (ANOVA model).

The Kruskal-Wallis test is more conservative than
corresponding parametric tests

Next we compared the output of kruX and matrix-eQTL’s
parametric ANOVA and linear model (henceforth called
“ANOVA” and “linear”) methods. The Kruskal-Wallis test
is more conservative than the ANOVA and linear meth-
ods, i.e. it has a higher nominal P-value for almost all
marker-trait combinations (Figure 2). Since random data
will be subjected to the same biases, nominal P-values
cannot be directly compared to assess significance. We
therefore performed empirical FDR correction for multi-
ple testing using three randomly permuted datasets (cf.
Implementation). Surprisingly, after FDR correction only
a limited number of associations remained for ANOVA
even at an FDR threshold of 30%, whereas the number
of associations detected by kruX and the linear method
was comparable (Figure 3(a)). Detailed analysis showed
that this is due to pairing of SNPs with rare homozygous
minor alleles (one or two samples) to genes with outlier
expression levels, resulting in extremely low P-values for
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Figure 1 kruX runtime on STAGE data. Total extrapolated single-CPU run time in seconds for the Matlab implementation of kruX for different
numbers of SNP markers per data slice (see main text for details). Green squares are times on a high-memory server with 256 GB RAM and 2.20 GHz
processor and red circles are times on a laptop with 8 GB RAM and 2.70 GHz processor. The insert shows the continuation of the green squares upto

a slice size of 10,000 markers.
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the ANOVA method in real as well as randomised data
(see also below). To reduce the incidence of chance asso-
ciations between singleton genotype groups and outlying
expression values in the ANOVA method we repeated
the empirical FDR correction, this time keeping only
marker-trait combinations within 1Mbp of each other
(“cis-eQTLs”). At an FDR threshold of 10% the number
of significant cis-eQTL-gene pairs is indeed comparable

between the three methods, with a large proportion of
pairs detected by all three of them (Figure 3(b)).

The Kruskal-Wallis test is more robust and detects more
non-linear associations

We classified eQTL-gene pairs as “skewed group sizes”
(smallest genotype group less than 5 elements), non-
skewed “non-linear” [median of heterozygous and

(a) kruXvs. ANOVA
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Figure 2 Comparison of kruX vs. parametric ANOVA and linear models. Comparison of nominal non-parametric P-values calculated by kruX vs.
parametric ANOVA (a) and linear models (b), showing all cis-acting eQTL-gene pairs with P < 1073 detected by both methods (blue dots) and by
only one of the methods (red crosses). The black line indicates the line with slope y = x.

(b) kruX vs. linear model
70




Qi et al. BMC Bioinformatics 2014, 15:11 Page 5of 7
http://www.biomedcentral.com/1471-2105/15/11

(a) overlap kruX vs. ANOVA vs. linear model (all eQTL) (b) overlap kruX vs. ANOVA vs. linear model (cis-eQTL)

1663

I kruX [ ]ANOVA [ Linear O rux W ANovA (N Lineer
Figure 3 Comparison of kruX vs. parametric ANOVA and linear models. Comparison of all eQTL-gene pairs (FDR=30%) (a) and all cis-acting
eQTL-gene pairs (FDR=10%) (b) after empirical FDR correction between kruX (blue lower left set), parametric ANOVA (yellow upper set), and linear
models (red lower right set).

homozygous samples significantly different (Wilcoxon identified by all three methods, compared to the ANOVA
rank sum P < 0.05)] and non-skewed “other” (all others).  and linear methods (Figure 4 and Figure 5(a-b)). Of the
Cis-associations identified exclusively by the Kruskal- 701 associations exclusively identified using the paramet-
Wallis test are more often non-linear and the overall ric ANOVA method, 657 (94%) had skewed group sizes,
distribution of eQTL-types is more similar to associations  including 426 (61%) with a singleton genotype group
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Figure 4 Relative proportions of eQTL types. Relative proportion of eQTL-types for cis-eQTLs common to all 3 methods and specific to each
method; white (bottom), skewed genotype group sizes; yellow (middle), non-linear eQTLs; red (top), others. The absolute number of eQTLs in each
group is 7,193 (Common), 1,663 (kruX), 701 (ANOVA) and 5,102 (Linear), cf. Figure 3(b).
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Figure 5 Representative examples of eQTL associations. (a-b) Non-linear associations. kruX identifies more non-linear relations where the
gene expression level of the heterozygous samples lies outside the typical range of the homozygous samples (a) or where one allele has a
dominant effect on the gene expression level (b). (c-d) Problematic associations. Parametric ANOVA gives high significance to spurious
associations for genes with outlying expression samples that coincide with singleton genotype groups (). Associations with skewed genotype
group sizes where the model assumptions are difficult to ascertain achieve high significance using linear models (d).

(the aforementioned ‘outliers’, cf. Figure 5(c)). The asso-
ciations exclusively identified by the linear method also
contained a much higher proportion of SNPs with skewed
group sizes than the corresponding kruX associations
(36% vs. 23%) and, as expected, a reduced number of non-
linear associations (Figure 4 and Figure 5(d)).

Conclusions

We have developed kruX, a software tool that uses
matrix multiplications to simultaneously calculate the
Kruskal-Wallis test statistics for millions of marker-trait
combinations in a single operation, thereby realising a dra-
matic speed-up compared to calculating the test statistics



Qi et al. BMC Bioinformatics 2014, 15:11
http://www.biomedcentral.com/1471-2105/15/11

one-by-one. The availability of a fast method to identify
eQTL associations using a non-parametric test allowed us
to assess in more detail how differences in model assump-
tions compared to parametric methods lead to differences
in identified eQTLs. Our results on a typical human
dataset indicate that the the parametric ANOVA method
is highly sensitive to the presence of outlying gene expres-
sion values and SNPs with singleton genotype groups.
We caution against its use without prior filtering of such
outliers. Linear models reported the highest number of
eQTL associations after empirical FDR correction. These
are understandably biased towards additive linear associ-
ations and were also sensitive to the presence of skewed
genotype group sizes, albeit to a much lesser extent than
the parametric ANOVA method. The Kruskal-Wallis test
on the other hand is robust against data outliers and het-
erogeneous genotype group sizes and detects a higher
proportion of non-linear associations, but it is more con-
servative for calling additive linear associations than linear
models, even after FDR correction.

In summary, kruX enables the use of non-parametric
methods for massive eQTL mapping without the need for
a high-performance computing infrastructure.

Availability and requirements

e Project name: kruX

¢ Project home page: http://krux.googlecode.com

e Operating systems: Platform independent
Programming language: Matlab, R, Python
Other requirements: None
License: GNU GPL v3
Any restrictions to use by non-academics: None
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