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Abstract

Background: Complex designs are common in (observational) clinical studies. Sequencing data for such studies are
produced more and more often, implying challenges for the analysis, such as excess of zeros, presence of random
effects and multi-parameter inference. Moreover, when sample sizes are small, inference is likely to be too liberal
when, in a Bayesian setting, applying a non-appropriate prior or to lack power when not carefully borrowing
information across features.

Results: We show on microRNA sequencing data from a clinical cancer study how our software ShrinkBayes
tackles the aforementioned challenges. In addition, we illustrate its comparatively good performance on
multi-parameter inference for groups using a data-based simulation. Finally, in the small sample size setting, we
demonstrate its high power and improved FDR estimation by use of Gaussian mixture priors that include a point mass.

Conclusion: ShrinkBayes is a versatile software package for the analysis of count-based sequencing data, which
is particularly useful for studies with small sample sizes or complex designs.
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Background
Following the surge of count-based sequencing data, a
plethora of software packages for differential expression
analysis of such data has emerged [1]. Many of these
methods are limited in use due to restrictions on the
study design, the model and inference like a) 2- or K-
group comparisons only; b) no random effects; c) no
explicit solution for excess of zeros and d) no multi-
parameter inference. We introduced ShrinkBayes as
a versatile analysis method which allows generalized lin-
ear mixed models and zero-inflation and with, due to its
multi-parameter shrinkage options, good reproducibility
and power characteristics [2]. This paper illustrates the
R-package ShrinkBayes on a challenging microRNA
sequencing (miRseq) colon tumor-plus-metastasis study.
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In addition, we automated the use of mixture priors con-
taining a spike, leading to improved FDR-based inference.
Finally, we extend the class of admitted priors with mix-
tures of a multivariate point mass and a Gaussian product
density to allow for powerful multi-parameter inference.

Implementation
Shrinkage
ShrinkBayes applies Integrated Nested Laplace
Approximation, INLA [3], in combination with Empirical
Bayes principles to provide shrunken parameter estimates
and inference. In a Bayesian setting, multi-parameter
shrinkage is effectuated by estimating hyper-parameters
of priors. The core of ShrinkBayes is iterative estima-
tion of priors: each prior is fit to the point-wise empirical
mean of the marginal posteriors of those parameters
θi, i = 1, . . . , p = # features, that correspond to the
prior [2]. Shrinkage is known to be potentially beneficial
for dispersion parameters, but may be as important for
parameters of interest to accomplish better inference [2]
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and for nuisance parameters to reduce their impact when
unimportant [4].
A typical ShrinkBayes analysis consists of the fol-

lowing modules: a) Iterative Empirical Bayes estimation of
multiple priors which need to obey the parametric forms
included in INLA; b) Fitting of the full model and the
null model; c) Updating one prior resulting from a) to a
non-parametric or mixture prior to allow for for more
flexibility and/or better inferential properties; d) Updating
the posteriors of the corresponding parameters; e) Com-
puting summary statistics including estimates of lfdr and
(B)FDR. The steps are detailed in the Example section.
Below we discuss novel implementations and methods
with respect to [2].

Setting
The setting is a generalized linear model. Let j = 1, . . . , n
denote independent samples, Yij be the data for feature
i and sample j, F be the likelihood model (e.g. (zero-
inflated) negative binomial) with mean μij and hyper-
parameters γ i and g() a link-function. Here, γ i contains
distribution parameters that are not linked to covariates,
e.g. zero-inflation and over-dispersion. Then,

Yij =d F(μij, γ i)

g(μij) = Xα
j αi + Xβ

j β i,
(1)

where β i = (βi1, . . . ,βiK ) denotes the parameter(s) for
which (joint) inference is desired, while αi contains all the
other regression parameters, including the intercept. In
addition, Xα

j (Xβ
j ) denotes the jth row of the design matrix

restricted to those columns of this matrix that are relevant
for αi (β i).

Priors
ShrinkBayes inherits much of its flexibility from
the INLA R-package, including its ability to deal with
arbitrary designs and random effects. INLA, however,
requires use of specific parametric priors. Since the prior
may be crucial for inference in a multiple testing set-
ting, we extended the class of admissible priors to non-
parametric and parametric mixture priors [2].
ShrinkBayes was praised for its power and versatil-

ity, but also criticized for its poor FDR estimation in case
of a point null-hypothesis for one parameter (so β i = βi),
H0i : βi = 0 against H1i : βi �= 0 [1]. Here, we resolve this
issue. In [1], a smooth non-parametric prior was used for
βi, which does not suitH0i. To promote more suitable pri-
ors, we simplified application of parametricmixture priors
with a spike on zero by automating multi-grid parameter
estimation of such priors, and increased their flexibility by
allowing non-equal mixture proportions for negative and
positive effects. Moreover, we implemented a mixture of
a spike and a smooth non-parametric component (SpNP

prior). For the Results, we focus on the Spike-Gauss-Gauss
(SPGG) and SpNP priors:

SpGG = p0δ(0) + p−1N(−μ, τ 2) + p1N(μ, τ 2)

‘Spike-Gauss-Gauss’ (2)

SpNP = p0δ(0) + (1 − p0)FNP

‘Spike-Nonparametric’, (3)

where δ() is the dirac delta function, i.e. a spike. The spike
is essential, because it allows the posteriors to have non-
zero mass on the null-hypothesis, βi = 0, hence accom-
modating selection. The smooth parts of both these priors
allow asymmetry between under and overexpression. All
parameters are determined by maximizing the total (log-)
marginal likelihood (i.e. the sum of marginal likelihoods
over all features). This maximization is explicit for the
parametric SpGG prior, whereas FNP is obtained by the
iterative marginal procedure [2] with the restriction that
it contains maximally one mode on both the negative and
positive half-plane. The restriction helps to identify FNP
together with p0. In words, given a current proposal for p0
and FNP the iterative procedure proposes a new estimate
of p0 and FNP by fitting the SpNP prior to the point-wise
empirical mean (over features i = 1, . . . , p) of the cur-
rent posteriors π(βi|Yi), where the fit needs to respect the
aforementioned restriction. Any reasonable starting value
of p0 (we use 0.8) and FNP (we use a sufficiently vague cen-
tral Gaussian, e.g.N(0, 5)) can be used and convergence is
checked by assessing the total (log-)marginal likelihood.
ShrinkBayes allows for other parametric priors,

such as the ‘Spike-Gauss’ (SpG) and the ‘Spike-and-Slab’
(SpSlab). Both are mixtures of a point mass and a cen-
tral Gaussian distribution, but the first has a data-adaptive
variance fitted with the same direct maximization pro-
cedure as for the SpGG prior, whereas the latter has a
prescribed large variance. Both alternatives are discussed
in more detail in the Additional file 1.

Multi-parameter inference
Multi-parameter inference is desirable when the parame-
ters represent multiple groups or covariates with a similar
interpretation. In a frequentist setting, this is often done
by likelihood-ratio tests. Below we discuss the Bayesian
counterpart. Suppose one aims at testing H0i : β i = 0
against H1i : β i �= 0 in a linear model M(β i), which
also includes response Yi, covariatesX and, possibly, addi-
tional parameters λi. Refer to the full modelM1 = M(β i)
when β i is unconstrained and the null modelM0 = M(0).
Traditionally, comparison of two models is done by com-
putation of the Bayes Factor (BF). However, in a multiple
testing setting a good threshold for BF requires knowing
p0, the proportion of true null models (see [5], Ch. 5).
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Then, thresholding for BF is directly linked to local fdr,
which simply equals

lfdr = π0 = P(M0|Yi)

= p0ML(Yi;M0)

p0ML(Yi;M0) + (1 − p0)ML(Yi;M1)
,

(4)

whereML(Yi;M0) andML(Yi;M1) are themarginal like-
lihoods under M0 and M1, respectively. On its turn, lfdr
determines BFDR(t,Yi) = E[ lfdr|lfdr < t] : the mean of
all local fdrs smaller than t. Given its analogous interpre-
tation to ordinary FDR [6] we prefer to define threshold t
using BFDR(t,Yi) rather than lfdr. In any case, we need to
compute ML(Yi;M0),ML(Yi;M1) and p0.
The marginal likelihoods ML(Yi;M0) and ML(Yi;M1)

are conveniently supplied by INLA from the two separate
fits of the models M0 and M1. Finally, p0 is determined
by our iterative joint procedure [2], which determines the
value of p0 (along with other parameters) that maximizes
the total (log-)marginal likelihood with respect to prior:

p(β i) = p0δ(β i = 0) + (1 − p0)
K∏

k=1
N(0, σk ;βik), (5)

hence a mixture of a multivariate point-mass (δ(β = 0))
and a Gaussian product density for the regression param-
eters β i = (βi1, . . . ,βiK ). In particular when the true
p0 is large, the total (log-)marginal likelihood may con-
tain ridges and/or multiple modalities with respect to the
parameters of (5). For example, when the true p0 is large a
prior (5) with small p̂0 and small values of σk may also fit
rather well. To counter this, we use the constraint p0 ≥ 0.5
(which is realistic in most cases) and use a large default
starting value of p0 (0.8). Moreover, iteration is stopped
when the total (log-)marginal likelihood decreases by less
than 0.1% to avoid ‘walking on a ridge’.

Additional changes
In addition to the improved implementation of spike-
priors and themulti-parameter inference, ShrinkBayes
versions 2.3 and higher contain a number of novelties and
changes compared to version 1.6, which corresponds to
[2]. In particular, it is faster, because convergence of the
parameters of the prior(s) is assessed in terms of total
marginal likelihood instead of on the separate parameters.
The new version also allows to approximate marginal like-
lihood for a null model from the results of the full model
using the Savage-Dickey approximation [7]. This is partic-
ulary convenient for contrasts for which a null-model can
not be defined without the use of constraints. Additional
file 1, Section 2, contains more details and a full list
of changes.

Results
Priors
To study which of the priors performs best in terms of
FDR estimation and power, we compared them on simu-
lated data sets, including those in [1].

Results on simulations for various effect size distributions
The true effect size distribution, i.e. the true generating
distribution of the parameter of interest, may have impact
on what prior performs best. Hence, we study several
effect size distributions, including a Gamma, t, Uniform
and Gaussian mixture (see Additional file 1, Section 1).
We compared performance of the SpGG, SpNP, SpG and
SpSlab priors in terms of accuracy of FDR estimation,
area-under-the-curve (AUC), number of detections and
absence of detections when H0i is true for all features
(p0 = 1). From the results (Additional file 1, Section 1)
we conclude that SpGG and SpNP lead to accurate esti-
mates of FDR and are very competitive in terms of power,
whereas SpSlab is often too conservative; SpG generally
performs well except for the (asymmetric) Gamma dis-
tribution for which it is less powerful than SpGG and
SpNP. In the case p0 = 1, none of the prior returns a
significant result at BFDR ≤ 0.1, but the SpGG prior
performs best in the sense that it produces the highest
BFDRs.

Results on simulations in [1]
Next, we report results of ShrinkBayes with the SpGG
and SpNP priors on simulations in [1], which compared
several methods, including ShrinkBayes (referred to as
ShrinkSeq), on a variety of data sets. ShrinkBayes
was used with a smooth non-parametric prior (NP), so not
containing a spike. The number of features equals 12500.
We focus on data sets where counts are exclusively gen-
erated from the negative binomial. Moreover, we report
results on the symmetric cases (in terms of up- and down-
regulation) only (B20002000, p0 = 0.64 and B625

625, p0 = 0.9),
because for the asymmetric cases the normalization pro-
cedure used in [1] introduces artificial differential signal
for the non-differential features.We do include a case with
outliers which contains, on average, 5% outliers for 10%
of the features (S625625). For sample sizes we focus on n =
N/2 = 5, 10, because the ShrinkBayes results reported
in [1] were relatively worse for those sample sizes.
Table 1 contains the results on FDR estimation. Note

that the target FDR equals 0.05 here, in order to be consis-
tent with [1]. We observe that ShrinkBayes with SpGG
or SpNP is still liberal, but the results are much better than
those for the NP prior. In fact, when comparing the results
of Table 1 with those in Figure four of [1], we observe
that ShrinkBayes has improved from the worse to at
least average in terms of FDR estimation. In particular,
for the data sets with outliers it outperforms 5/6 (4/6)
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Table 1 FDR results for target FDR=0.05

Data set n = N/2 SpGG SpNP NP∗

B20002000 5 0.085 0.078 0.29

B20002000 10 0.079 0.071 0.29

B625625 5 0.115 0.115 0.37

B625625 10 0.083 0.081 0.38

S625625 5 0.111 0.108 0.38

S625625 10 0.119 0.117 0.40

∗ : as reported in [1].

[n = 5(10)] of the other methods that are based on count
distributions.
Table 2 contains the results on AUC. Again, we observe

a uniform improvement when using ShrinkBayes with
SpGG or SpNP instead of NP. Strikingly, ShrinkBayes
with both SpGG and SpNP generally outperforms all the
other methods reported in [1] when it comes to AUC.

Multi-parameter inference: data-based simulation
We compare our solution for multi-parameter inference
to the likelihood-ratio tests that are implemented in the
popular RNAseq data analysis programs edgeR [8] and
DESeq [9]. We believe such a comparison is most mean-
ingful and fair when the data is simulated in a relevant and
realistic way, preferably avoiding distributional assump-
tions as much as possible. Therefore, we generated the
data in three steps. First, we create a realistic null data set:
we simply re-sample 3*5 ‘observations’ from our miRseq
data set, independently for each of the 2060 features.
Hence, per feature 5 observations are generated from the
same empirical distribution for each of the 3 groups. Next,
modest filtering on the number of non-zeros is applied,
because this is recommended for the use of edgeR and
DESeq: at least 3 non-zeros should be present. Finally, we
need a realistic effect size distribution for the features. To
avoid parametric assumptions this is estimated by FNP, the
smooth component of the SpNP prior (3), for the groups
in the miRseq study (organs). We create 20% differential
features by sampling independently from FNP for groups 2

Table 2 Area-under-the-curves

Data set n = N/2 SpGG SpNP NP∗ Best∗

B20002000 5 0.897 0.898 0.85 0.87

B20002000 10 0.949 0.951 0.91 0.93

B625625 5 0.874 0.879 0.82 0.87

B625625 10 0.937 0.940 0.88 0.93

S625625 5 0.866 0.871 0.81 0.85

S625625 10 0.923 0.927 0.87 0.92

∗ : as reported in [1]. Best∗ : Highest AUC of all other methods reported in [1].

and 3 and multiplying the respective counts by the expo-
nentiated sampled effect sizes. This entire simulation was
repeated 10 times.
We analyzed the simulated data sets using

ShrinkBayes, edgeR, DESeq and a simple nonpara-
metric Kruskal-Wallis test. In addition, the old version
of ShrinkBayes was applied with a smooth nonpara-
metric prior and an a posteriori multiple comparison of
the 3 groups, as suggested in [2]. Figure 1 shows the ROC
curves, as averaged over the 10 repeats, for False Positive
Rate (FPR) smaller than 0.05. We focus on this FPR range,
because when using F̂DR ≤ 0.1 as a selection criterion,
all 5 methods produce sets of significant features with
FPR ≤ 0.05. ShrinkBayes seems somewhat superior
to edgeR across the entire range, while it is competi-
tive with DESeq. Possibly due to the smoothness of the
prior ShrinkBayes,Old performs a little bit better
in terms of ranking than ShrinkBayes for very small
FPR, but becomes inferior for larger values. The latter
may be caused by loss of power when using a multiple
comparison approach in a K-group setting. Surprisingly,
the Kruskal-Wallis test seems to be very competitive,
although it also loses power for larger values of the FPR.
ROC curves, however, only allow comparison of the

rankings. In practice, the actual selection is most impor-
tant. Table 3 shows the results summarized over the
10 repeats when using F̂DR ≤ 0.1 as selection crite-
rion. Note that for all p-value-based methods we use the
Benjamini-Hochberg FDR correction, which is appropri-
ate here given the independent sampling per feature in
our simulated data set. BFDR is used as an estimate of
FDR in the ShrinkBayes setting. True FDR is evalu-
ated on the selected sets by simply dividing the number
of false positives by the total number of positives. Here,
the differences are much clearer: the Kruskal-Wallis test
is useless in this setting, because it does not select any-
thing. ShrinkBayes,Old selects toomuch at a too high
true FDR, probably due to the smooth prior, as discussed
before. DESeq and ShrinkBayes produce better true
FDRs (with the DESeq ones more variable), but, on aver-
age, ShrinkBayes detects almost four times as many
features. edgeR selects more, but is both more liberal and
more variable. In fact, as can be inferred from the ROC
curves, ShrinkBayes would achieve a smaller true FDR
with the same number of detections as edgeR.
Note that ShrinkBayes is still liberal in the sense that

it underestimates true FDR. This is probably due to the
data not being generated from a specific parametric dis-
tribution. In particular, we observed that the data contains
outliers for some features. Dedicated detection of such
outliers can certainly reduce the number of false positives.
A simple, heuristic, practical alternative is to addition-
ally require for selection the corresponding uncorrected
Kruskal-Wallis p-value to be smaller than 0.05. Then,
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Figure 1 ROC curves for multi-parameter inference: mean False Positive Rate (FPR; x-axis) vs mean True Positive Rate (TPR; y-axis), as
averaged over 10 repeats of the data-based simulation, which consists of 3 groups with 5 counts for≈ 2000 features.

power of a parametric approach like ShrinkBayes,
which is essential in amultiple testing setting, is combined
with the robustness of a nonparametric test. In this case,
the median true FDR drops from 0.171 to 0.134 (target
equals 0.1), while detecting 32 features on average instead
of 37.4.

Example: analysis of miRseq count data
Data
We applied ShrinkBayes to a challenging data set. The
data set contains miRseq counts of 2060 miRNAs (3p-
and 5p-variants) for 55 resections from primary colon
tumors (P) and corresponding metastases (M) coded by
the covariate PM. In addition, several other covariates

Table 3 Number of detections (mean and standard
deviation) at target FDR = 0.1 and true FDR for the set of
detections (median and IQR: interquartile range)

Method # Detections True FDR
mean (sd) Median (IQR)

ShrinkBayes 37.4 (4.60) 0.171 (0.072)

ShrinkBayes, Old 132.1 (15.3) 0.509 (0.038)

edgeR 58.8 (12.9) 0.258 (0.120)

DESeq 10.4 (3.75) 0.191 (0.178)

Kruskal-Wallis 0 (0) NA

Results are summaries from 10 repeats of the simulated data sets.

are available: indiv: most individuals correspond to 2
samples (one for P, M), but some have multiple mea-
surements for M, because the metastasis occurred at
multiple locations; organ: organ where the metastasis
occurred; time: binary, indicating whether resections of
the primary tumor and the metastasis were at different
dates; chemo: binary, indicating whether chemotherapy
was applied in between the resections. In addition to
other software, ShrinkBayes provides two important
extra features to correctly analyze these data: it explicitly
accounts for excess of zeros and allows for random effects
(here indiv). Both are important for appropriate infer-
ence. In addition, we demonstrate here that joint inference
for related parameters like those corresponding to organ
is feasible. Note that separate inference for each organ has
limited power due to the small number of samples per
organ. We focus on the statistical analysis. Preprocess-
ing is described in the Additional file 1, Section 3, which
also contains annotated R-code for the entire analysis,
including inferences for organ and the P-M contrast.

Analysis
The analysis consists of the following steps: 1) Likeli-
hood specification for the counts, here the zero-inflated
negative binomial one; 2a) Specification of the regression
model. Here, the model M is the linear model with fixed
effects PM, time, chemo and organ plus random effect
indiv; 2b) Specification of the null-model M0: as M,
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without organ; 3) Choice of parameters to shrink. Here,
all fixed parameters plus the over-dispersion parameter of
the negative binomial.
4) Estimation of priors for the purpose of shrinkage.

Standard priors (Gaussian and inverse-Gamma) are used
for all parameters, except for the inferential variable,
organ, for which the multivariate mixture prior (5) is
used; 5) Computation of posteriors under models M and
M0, given the prior parameters; 6) Combination of the
two posteriors to one given the parameters of the mix-
ture prior; 7) Compute local and Bayesian false discovery
rates (lfdr; BFDR). The most complex steps, 4) to 7), are
completely automated including setting of tested defaults,
which allows users with little experience in Bayesian
computing to apply ShrinkBayes. The joint mixture
prior is discussed above; other technical details are given
in [2].

Discoveries
At BFDR = 0.10, we discovered 43 miRs for which organ
is associated to expression in the metastasis. Figure 2
shows two posteriors of contrasts βik − βi	, k > 	, which
help to explain differential or non-differential miR expres-
sion. For example, for the significant differential miR,
which corresponds to the left display of Figure 2, differ-
ences are largest between organs 0 and 3 on one side
and organs 1 and 2 on the other. To accommodate users,
ShrinkBayes contains functions to easily produce such
posterior plots and also summary tables. Importantly, the
estimate of p0 in (5) is large, p̂0 = 0.92, which implies
strong shrinkage of organ effects towards zero, render-
ing more ‘degrees of freedom’ and hence more power
for other inferences. This is another strong aspect of
ShrinkBayes: in studies with relatively few samples,
multi-parameter shrinkage helps to increase power for a

particular parameter of interest [4]. The idea of jointly
shrinking multiple parameters was recently also adopted
in [10], although their approach currently applies to K-
group comparisons only.

Discussion
For the choice of prior, we recommend to use the SpGG
prior when inference on a parameter equalling zero is
desired, because of its uniformly good performance in
terms of FDR estimation and power. The SpNP prior is
a good alternative which may be attractive in extremely
small sample size settings for which the flexible shape
of the non-parametric component is important (see also
[4]). When using an interval null-hypothesis, H0i : |βi| <

δ, inclusion of a spike is less relevant, so smooth (non-
parametric) priors generally suffice.
Given the good performance of the SpGG prior in a

univariate setting, it may be good to extend (5) to the
multivariate analogue of the SpGG prior: a mixture of a
multivariate point mass and a two-component Gaussian
mixture product density. However, while this is concep-
tually feasible, it may be computationally cumbersome,
because it would require combining several different fits
from INLA under combinations of the components of the
mixture.
Although ShrinkBayes is much more efficient that

MCMC-based methods, it is computationally more
demanding than frequentist counterparts like edgeR [8]
and DESeq [9]. As an indication: the data example above
(on approx 2,000 features) runs in approximately 30 min-
utes on 6 cpus of a Linux-cluster, whereas approximately
6 hours would be required for 100,000 features. For
extremely large data sets, ShrinkBayes provides quick
pre-screen functions, application of which potentially
reduces computing time by a large factor.
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Figure 2 Posterior densities and joint null-probability (pi0All) of 6 contrasts βik − βi�, k > �, representing loge-fold expression differences
(x-axis) between 4 organs, for a significant miR (left) and non-significant miR (right).
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We focused on sequencing count data for fairly com-
plex designs. To our knowledge, extensively validated data
are still not available for such studies, which hampers a
thorough comparison between methods. Even when such
a data set would be available, it is uncertain to what extent
conclusions from one data set could be extrapolated to
others, because the relative performance of a method may
depend on many aspects such as the proportion of out-
liers and zero counts and/or the presence of multiple noise
levels (e.g. within and between individuals). We empha-
size that ShrinkBayes is currently the only RNAseq
analysis method that can deal with the latter, by allow-
ing random and mixed effects models, concepts that are
widely accepted and used in other fields of statistical data
analysis.
For simple designs, ShrinkBayes can be useful as

well, in particular due to its good reproducibility, as shown
for publicly available RNAseq data in [2]. ShrinkBayes
also applies to Gaussian data, like mRNA microarray data
or high-throughput RNA interference screens [4]. Use is
similar, as illustrated in the ShrinkBayes R-vignette,
which also contains additional examples on count data.

Conclusion
We illustrated the versatility of ShrinkBayes on a data
set which reflects a level of complexity that is common in
clinical practice. With the decrease of costs for sequenc-
ing, we are likely to encounter such complex data sets
frequently in the near future and ShrinkBayes provides
the means and power to analyze these.

Availability and requirements
Project name: ShrinkBayes
Project home page: http://www.few.vu.nl/~mavdwiel/
ShrinkBayes.html
Operating system: Platform independent (developed on
Linux)
Programming language: R
Other requirements: R (>= 3.0.1); R-packages: INLA,
from http://www.r-inla.org and snowfall, VGAM,
mclust, logcondens, Iso from CRAN
Licence: GNU GPL

Additional file

Additional file 1: Supplementary Material. It contains: additional
simulation results, a list of changes of the software with respect to previous
versions, details on the Savage-Dickey approximation for marginal
likelihood and extensive R-code for the miRseq example.
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