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Background: Tandem mass spectrometry-based database searching is currently the main method for protein
identification in shotgun proteomics. The explosive growth of protein and peptide databases, which is a result
of genome translations, enzymatic digestions, and post-translational modifications (PTMs), is making computational
efficiency in database searching a serious challenge. Profile analysis shows that most search engines spend
50%-90% of their total time on the scoring module, and that the spectrum dot product (SDP) based scoring module
is the most widely used. As a general purpose and high performance parallel hardware, graphics processing units
(GPUs) are promising platforms for speeding up database searches in the protein identification process.

Results: We designed and implemented a parallel SDP-based scoring module on GPUs that exploits the efficient use
of GPU registers, constant memory and shared memory. Compared with the CPU-based version, we achieved a 30 to
60 times speedup using a single GPU. We also implemented our algorithm on a GPU cluster and achieved an approximately

Conclusions: Our GPU-based SDP algorithm can significantly improve the speed of the scoring module in mass
spectrometry-based protein identification. The algorithm can be easily implemented in many database search engines such
as XITandem, SEQUEST, and pFind. A software tool implementing this algorithm is available at http://www.comp.hkbu.edu.

Background

High-throughput tandem mass spectrometry (referred to
hereafter as MS/MS) based protein identification is a
powerful method in proteomics [1]. It enables large-scale
analysis of the protein sequence and PTMs with high sen-
sitivity, accuracy, and throughput [2-6]. Among the MS/
MS data analysis methods, protein database search ap-
proaches, such as Mascot [7], SEQUEST [8], pFind [9-11],
X!Tandem [12], OMSSA [13], and Phenyx [14], have been
the most widely used. Although much research has been
devoted to improving the method’s effectiveness by de-
signing new scoring and validating algorithms, creating ef-
ficient database search engines is a serious challenge for a
number of reasons.
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First, the number of entries in a protein sequence data-
base increases continuously. Take, for example, IPL. Human,
in which the number of proteins increased by almost a
third between v3.22 and v3.49 [15]. Second, if semi- or
non-specific digestion is considered, as it increasingly is, it
will lead to 10 or 100 times more digested peptides, re-
spectively, in the database, than if only specific digestion is
considered. Third, post-translational modifications (PTMs)
generate exponentially more modified peptides. Until re-
cently, over 900 types of PTMs existed in the Unimod pro-
tein modification for mass spectrometry [1]. If we choose
ten common variable PTMs and limit the number of
modification sites in a peptide to no more than five,
the number of tryptic peptides of the human proteome
will be increased over 1000 times. At the same time,
the generation speed of the mass spectrometers has
been steadily increasing.

As all of the algorithms in a database search engine cal-
culate the similarity between the experimental MS/MS
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and the theoretical candidate MS/MS generated from the
protein (peptide) database, one of the direct results of the
above increases is the large scale of the scoring calcula-
tion, which is the most computing intensive and time con-
suming stage in the whole flow of protein identification.
Profiling analysis shows that the scoring module takes
around 50-90% of the total identification time in both
pFind and X!Tandem. Thus, speeding up the scoring mod-
ule is a promising method to increase the efficiency of
protein identification.

Recent studies on efficiency focus on decreasing the
redundant scoring operations and parallelizing the scor-
ing module. Some studies adopted indexing techniques
to avoid unnecessary scoring. Li and Chi systematically
explored the effect of indexing techniques and designed
an inverted index strategy for protein identification [15].
Edwards and Lippert considered the problem of redun-
dant peptides and peptide-spectrum matching and used
a suffix tree index [16]. Tang adopted peptide and b/y ions
indices [17]. Dutta and Chen used the nearest neighbor
search to improve peptide-spectrum matching [18]. At the
same time, most of the popular peptide and protein search
engines use parallel computing technology. SEQUEST
adopted a parallel virtual machine (PVM) to build its clus-
ter system [19], whereas Mascot and Phenyx used a mes-
sage passing interface (MPI). X!Tandem has two parallel
strategies [20,21]. These systems have been integrated into
higher-level application frameworks, such as web ser-
vices, grids [22], or even cloud computing. Halligan
has migrated X!Tandem and OMSSA to the Amazon
cloud computing platform [23]. In addition, some re-
cent systems used new hardware to increase the paral-
lelizing of the scoring module. Bogdan and Dandass
use a field-programmable gate array (FPGA) [24]. Hussong
used a single graphics processing unit (GPU) to speed up
the feature selection step [25]. Baumgardner implemented
a spectrum library search algorithm on a single GPU [26].
Milloy also adopted a single GPU to speedup database
spectral matching [27].

Recently, GPUs have become general purpose and high
performance parallel hardware and provided another prom-
ising platform for parallelizing the scoring function. GPUs
are dedicated hardware for manipulating computer graphics.
Due to the large demand for real-time computing and high-
definition 3D graphics, GPUs have evolved into highly paral-
lel many-core processors [28]. NVIDIA GTX580 is an
example of a typical GPU architecture. GTX580 has 16
streaming multiprocessors (SMs), and each SM has 32
scalar processors (SPs), resulting in a total of 512 proces-
sor cores. The SMs have a single-instruction multiple-
thread (SIMT) mode; at any given clock cycle, each SP
executes the same instruction, but operates on differ-
ent data. The recent advances in computing power in
GPUs have driven the development of general-purpose
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computing on GPUs (GPGPU), which have been used
to accelerate a wide range of applications [29-33].

Considering the independence of each scoring oper-
ation in a protein identification database search engine,
it is reasonable to parallelize the scoring module in an
SIMT architecture on a GPU or GPU cluster. To the best
of our knowledge, three studies [25-27], have attempted
to use GPUs to speed up peptide/protein identification.
Hussong et al. [25] focused on peak selection, while [26]
and [27] are dedicated on spectral library search. Mean-
while, few studies have discussed peptide/protein identifica-
tion on a GPU cluster. For this study, we choose one of the
most widely used scoring methods, spectral dot product
(SDP), which can be used directly or indirectly in X!Tandem,
pFind, SEQUEST, etc. We conduct systematic research to
design a parallel SDP-based scoring module for both a single
GPU and a GPU cluster, using a general purpose parallel
programming model, specifically, the Compute Unified
Device Architecture (CUDA).

Our first contribution is the design, implementation, and
evaluation of two different parallel SDP algorithms on a
GPU, based on the precursor mass distribution of the experi-
mental spectrum. The precursor mass distribution describes
the number of spectra in a group of preset consecutive mass
windows, and marks the windows as sparse or dense. For
the sparse mass windows, we use the GPU on-chip registers
to minimize the memory access latency. However, due to the
limited size of the on-chip registers, this method is not ap-
plicable to the dense mass windows. Consequently, we de-
sign a novel and highly efficient algorithm that treats the
experimental and theoretical spectra as two matrices, and
considers the scoring process as a matrix operation, and then
makes use of the GPU on-chip shared memory together
with the on-chip registers. Using both of the above two algo-
rithms, we achieve a 30 to 60 times speedup compared to
the serial version on a single CPU.

Our second contribution is the adoption of a GPU cluster
for protein identification that uses a novel pre-calculation
strategy to balance the workload on each node and to de-
crease the communication costs between the master node
and worker nodes. We consider the operation number of
each scoring process between the theoretical and experi-
mental spectra as the basic task, divide the mass range into
sub-mass ranges where the number of the basic operation
in each sub-range is almost the same, and then dispatch
the task to the sub-range. In the end, we obtain a favorable
speedup on our GPU cluster that contains eight Nvidia
GTX580 GPUs with a total of 4096 processing cores.

Results

All the experiments were conducted on a GPU cluster that
included one master node (muOl) and four computing
nodes (Fermi.1-4), as shown in Figure 1 and Table 1. All of
the nodes had a Xeon E5620 CPU performing at 2.4 GHz,
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Figure 1 GPU cluster architecture. A GPU cluster has one master (mu01) and four computing nodes (Fermi.1-4). All of the nodes have a
XeonE5620, and perform at 240 GHZ with two GeForce GTX580. The GTX580 has 512 cores, performs at 1.54 GHz, and has 1.54GB global
memory with a peak bandwidth of 192.4 GB/sec. All of the nodes are connected by the GIGABIT line, and mu01 is connected to the Internet.

and two NVidia GeForce GTX580 cards. Each GTX580
had 512 cores, performing at 1.54 GHz and with a peak
memory bandwidth of 192.4 GB/sec. The CPU-based pro-
grams were developed by C++ language, and the GPU-
based program used CUDA 4.2.

We performed three experiments to show the speedup
effect, using the searching parameters in Table 2. The MS/
MS data in Exp.1 were downloaded from a previously re-
ported dataset [34], generated from QSTAR instrument.
This dataset was used to evaluate the performance of the
target-decoy approach, which was one of the most classic
and important works for the evaluation of peptide identifi-
cation results. In Exp.2, the MS/MS data were generated by
another liquid chromatography/tandem mass spectrometry
(LC/MS/MS) experiment that analyzed a mixture of hu-
man serum proteins. In Exp.3, the MS/MS data and search-
ing parameters were the same as Exp.1, but were searched
against UniProtKB/Swiss-Prot (2013.05.15) database.

We mainly considered the scale of the spectra and
protein database to test the speed, while Exp.1, Exp.2
and Exp.3 could be considered as small, large and medium
computing scale respectively. We also considered the
mass distribution of the matched spectrum-peptide, which
was a concern when we designed the speedup algorithm,
and analyzed in the next section: SDP on a single GPU.

SDP on a single GPU
We first performed the experiment on X!Tandem
(win.2011.12.01) and pFind (V2.6.0) using the Fermi.1

Table 1 GPU cluster specifications

Node Mu01 Fermil-4
GPU N/A 2% GTX580
CPU 2 X XeonE5620(2.40GHZ)/5.86GT/12 M/1066
Memory 6 X 4G Registered ECC 1333 MHz DDR3

Others 1% 1000G 3.5inch SATA, 2 x 1000 M Ethernet

(Xeon E5620 CPU). Both X!Tandem and pFind versions
were serial and single thread program adopting CPU only.
The running time results were shown in Table 3. In Exp.1,
X!Tandem spent 45 minutes in total, of which 26 minutes
were for the scoring function, namely “dot()” in the source
code, which computed the SDP and occupied 58% of the
total time. Similarly, pFind used 18 out of 22 minutes,

Table 2 Database searching parameters

Exp. 1 Instrument QSTAR
Spectra 46195 DTA files
Database Yeast (13434 proteins, target + reversed)
Enzyme Trypsin (max missed cleavage sites = 2)
Tolerance Precursor: 0.2 Da; Fragment: 0.2 Da
Modifications Fixed: Carbamidomethylation (C)
Variable: Oxidation (M), Phosphorylation
STV
Exp. 2 Instrument LTQ
Spectra 43493 DTA files
Database IPL.HUman v3.49 ( 148034 protein,
target + reversed)
Enzyme Trypsin (max missed cleavage sites = 2)
Tolerance Precursor: 3 Da; Fragment: 0.5 Da
Modifications Fixed: Carbamidomethylation (C)
Variable: Oxidation (M), Phosphorylation
STV
Exp.3 Instrument QSTAR
Spectra 46195 DTA files
Database UniprotKB/Swiss-Prot (540171 proteins)
Enzyme Trypsin (max missed cleavage sites = 2)
Tolerance Precursor: 0.2 Da; Fragment: 0.2 Da

Modifications Fixed: Carbamidomethylation (C)

Variable: Oxidation (M), Phosphorylation
STV




Li et al. BMC Bioinformatics 2014, 15:121
http://www.biomedcentral.com/1471-2105/15/121

Table 3 Time usage of database searching (minutes)

Search engines Time distribution Exp.1 Exp.2 Exp.3

XITandem Total time 45 10M 253
Scoring time 24 566 138
Scoring time percentage  54% 56% 55%

pFind Total time 22 601 132
Scoring time 18 530 107

Scoring time percentage  82% 89% 81%

Note: pFind and X!Tandem both use a one-step mode.

which was 82% of the total time, on the scoring function
“ksdp()”. The time distribution in Exp.2 shared the same
characteristics, and demonstrated the potential for in-
creasing efficiency by parallelizing the scoring module.
It is also worth pointing out that many optimization
methods can be used to speed up the modules other
than the scoring module [14,16-18]. Our work is com-
plementary to those methods.

We implemented single thread/process CPU SDP ver-
sion Algorithm 1, and serially executed on the Fermi.l.
We also implemented single GPU SDP version Algorithm
2 and 3, and executed on the Fermi.l. Ignoring the time of
reading database and spectra files for all the algorithms, the
speedup from a single GPU (Fermi.1) varied from thirty to
sixty-five, as shown in Table 4. Exp.1 achieved a 31 times
speedup, Exp.2 achieved a 65 times speedup, Exp.3 achieved
a 29 times speedup. The speedup effect resulted from
the parallel scoring and memory access optimization.

We implemented these two algorithms on the GPU
with the following strategy. First, we calculated the pre-
cursor mass distribution of the experimental spectra,
and counted the spectra number in a consecutive group
of 1 Da mass windows from 300 Da to 4000 Da, like
300 ~ 301 Da, 301~302 Da, ..., and 3999 ~ 4000 Da.
Second, we divided the mass window into two categor-
ies: if the number of experimental spectra was not larger
than a preset threshold number in a mass window, then
it was a sparse window; otherwise it was a dense window.
Take Exp.1 as an example. The threshold was set to two and
8.3% of the mass windows are sparse. For dense windows,
the average number of experimental spectra was twenty-
one. Third, we adopted Algorithm 2 to handle sparse win-
dows and used Algorithm 3 to handle dense windows.

Algorithm 2 exploited the on-chip registers, to decrease
the memory access latency. On GTX580, each SM has

Table 4 Speedup effect of SDP using a single GPU

Search engines Exp. 1 Exp. 2 Exp.3
CPU 968 s 32587 s 5529 s
GPU 35s 502 s 191 s

Speedup 27 65 29

Note: in Exp.1, threshold is set to 1, whereas in Exp. 2, threshold is set to 2.
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32,768 registers, and registers have 32 bits. Each theoretical
spectrum need around 16 registers on average, in Exp.1.
We can infer that each SM could store around 2,048 spec-
tra, and 16 SM could deal with 32,768 experimental spec-
tra on the register. In addition, Algorithm 2 stored the
experimental spectra on the texture memory, which used a
cache mechanism to decrease the memory access latency.
Algorithm 2 also put the index file for the theoretical
and experimental spectra mating on the constant memory
to further decrease the reading latency. Consequently,
Algorithm 2 read the theoretical spectra from global mem-
ory only once; then it read experimental spectra from global
memory also once, and read from texture less than thresh-
old times from global memory, which was two in Exp.1 and
one in Exp.2; then it loaded theoretical spectra into the
register, and calculated the score of these experimental
spectra. We presented the idea in detail in Algorithm 2.

For the experimental spectrum in the dense mass win-
dow, Algorithm 2 will not work because there are not
enough registers. Instead, we designed Algorithm 3 to
adopt a shared memory that is larger than the registers; the
reading latency is also much better than reading from the
global memory. Algorithm 3 considered the spectrum in
the dense mass window as a matrix, and loaded the theor-
etical spectrum matrix, tile by tile, into the shared memory.
Thus it accessed the global memory only once for each
theoretical spectrum. Consequently, on average, Algorithm
3 read both the experimental and theoretical spectra from
global memory once. If we still use the Algorithm 2 here,
we would read the theoretical spectrum from local mem-
ory, for 21 times in Exp.1. on average. Besides, Algorithm 3
also used the constant memory for the index file.

To illustrate the utility of our mixed design strategy, we
also compared the speedup effect of adopting Algorithm 2
or Algorithm 3 alone. In Exp.2, Algorithm 2 spent
8,427 seconds while Algorithm 3 spent 936 seconds.
Both were not as efficient as the mixed strategy. Be-
sides, Algorithm 2 performed much worse when it had
to reading from the local and global memory multiple
times, since the reading latency of local and global
memory is much longer than that of the register. On
the other hand, Algorithm 3 mainly made use of the
shared memory, whose reading latency is small than
local and global memory, and a little longer than the
register when we avoided the banking conflict. In the
Methods section, we showed how Algorithm 3 made
the most use of the shared memory.

SDP on the GPU cluster

We designed two parallel SDP algorithms: one adopted
CPUs alone, namely CPU Cluster version, while the other
one adopted both CPUs and GPUs, namely GPU cluster
version. We divided the parallel SDP algorithm into two
steps: in the step 1, we assigned a sub task to one
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computing node and prepared the database and spectra in
each node; in the step 2, we calculated the SDP in each
node on its own task. We designed a pre-calculation strat-
egy for the task assignment, adopted algorithm 1 for cal-
culating the SDP on the CPU cluster, and used Algorithm
2 and 3 for calculating the SDP on the GPU cluster.

In the experiment, we copied all the databases and
spectra in each node (Fermil-4) first, calculated the sub
task on mu01, sent messages (MPI) to each node, and
calculated the SDP. As shown in Table 5, the speedup of
the GPU cluster version, compared with CPU cluster
version, varied from thirty to seventy times. The speedup
came from both of the two steps. In the step 1 for pre-
calculation, we got eight times speedup in Exp.1, and
thirty times in Exp.2. In the step 2 for SDP calculation,
we got 35 times speedup in Exp.l, and 71 times in
Exp.2, resulting from the same reason in the previous sec-
tion, SDP on the single GPU. The time consumption of
step 1 was less than 10% in the CPU cluster versions, and
the direct reason of the above speedup came from the sec-
ond step. On the other hand, the strategy in step 1 created
a promising overflow balance and achieved a favorable
speedup in both the CPU- and GPU-cluster versions,
compared to the single node version, as shown in Table 6.

The pre-calculation strategy first calculated the oper-
ation numbers of each scoring between the experimental-
and theoretical- spectrum in the mass window, where any
addition or multiplication was considered to be one oper-
ation. The result of Exp.1 was shown in Figure 2. The
Methods section presented the detailed calculation algo-
rithm. Based on this operation distribution, the work can
be equally divided into Ng mass ranges, where Ng stood
for the number of GPUs in our cluster. In each mass
range, each GPU got nearly the same work, and this en-
sured a good workload balance. The cost of our strategy
was the calculation of operation number, which was nearly
the same as the workflow of protein identification before
the scoring stage. The time consumption is around 4% of
the scoring time in the CPU version, and 6 ~ 10% in the
GPU version. Obviously, the more GPU nodes we adopt,
the lower cost this strategy achieves.

Normally, the strategy for the cluster is based on the
spectrum. The master node sends a preset number of
spectra to each worker; if one worker has finished its
spectra, then the worker asks for the next group from

Table 5 Speedup effect of SDP using the GPU cluster
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the master node. However, the amount of work on each
worker node might be significantly different. In Exp.1,
the experimental spectrum in the precursor mass win-
dow with 1105.5 ~ 1105.6 Da, scored with 3157 theoret-
ical spectra, whereas the experimental spectrum with
precursor mass 522.3 ~ 522.4 Da scored with 23 theoret-
ical spectra. Another more careful strategy is based on
the scoring number of each spectrum; each worker deals
with the same number of the scoring process. However,
different scoring process could have very different opera-
tions. For example, assuming peaks are fully matched,
the SDP operation number is 20 for a matched spectrum
pair with 5 hit peaks, whereas the number is 200 for a
matched spectrum pair with 50 hit peaks. As a result,
the above methods do not balance the workload on each
worker very well. The communication between the mas-
ter and the worker is also higher than in our strategy.

Results and discussion

GPU-SDP does not compromise on the accuracy, and
can be easily integrated into many search engines. Be-
sides, it can also be very easily enhanced to support
other similar scoring methods, such as XCorr, KSDP,
or other probability-based methods. In the future, we
will implement a complete GPU cluster-based search
engine for protein identification, and the estimated ini-
tial effect could be seen in Additional file 1.

Conclusions

In this study, we present a novel GPU-based scoring
method, and design and implement a SDP-based scoring
module on a GPU platform. We achieve an approximate
30 to 60 times speedup on a single GPU node, relative
to a serial CPU version, and a favorable speedup effect
with a GPU cluster with four nodes.

Methods

The basic notations are as follows: T'and C are the the-
oretical spectra set and the experimental spectra set; T;
and C; are the i-th element in T and C, stores the m/z
values, and are described as vector T;=[t; ;, ¢; 2,..., ti nil
and C;=1[c¢; 1, ¢ 2 ..., ¢ nel, where N; and N, are the
number of different 71/z values; and ¢ ; ; and ¢ ; ; are the
j-th m/z value in the MS/MS spectrum; T’ and C’; are
also the i-th element in 7T and C, stores the intensity

Search Exp. 1 Exp. 2 Exp. 3

engines Scoring Pre-calculation Scoring Pre-calculation Scoring Pre-calculation
CPU-cluster 273's 14 s 8991 s 242's 1568s 94 s
GPU-cluster 135 35 136's 8s 62's 5s

speedup 21 5 66 30 25 19

Note: we use one CPU and one GPU in each node of the cluster.
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Table 6 Speedup effect of the pre-calculation strategy in Exp.2

Node CPU-cluster GPU-cluster

number Scoring Pre-calculation Speedup percentage Scoring Pre-calculation Speedup percentage
one 32587 s 242's 502's 8s

two 17997 s 89.3% 279 s 87.4%

three 121535 87.6% 178 s 89.9%

four 8991 s 88.2% 136's 87.1%

Note: speedup percentage equals to: one scoring time/ (N node scoring time + pre calculation time)/N.

values, and are described as vector 17 =[t; ;, ;2 ...,
Ui n and C=[c 4, € 2 -y € Nl Where £ ; and ¢ ;
are the j-th intensity value in the MS/MS spectrum.

The workflow of the scoring module contains three
steps, as shown in Algorithm 1. First, line 1 and 2 per-
form the theoretical and experimental spectrum
matching. For each theoretical spectrum 7} the algo-
rithm will search all of the experimental spectra whose
precursor masses are in the peptide’s precursor mass
window and will get C". We adopt the spectrum hash
indexing technology presented in our previous study
[15] to find the matched spectrum in O(1) complexity,
where the cost of the indexing is O(|C|).

Second, lines 4—7 conduct the peak matching of each
matched theoretical and experimental spectrum pair.
For each peak in the theoretical spectrum, the algorithm

will search for the first matched peak in the experi-
mental spectrum and get 7%= [t} ;, £} 5 ..., t’; n] and
Ci=Ici 1 ¢i2 ..., i N, where N is the number of
matched peaks, and ¢ ; and c’; ; are the intensity of
the j-th matched peak (¢; ; and ¢’; ; could also be val-
ued as 1). We again adopt the spectrum peak hash index-
ing technology from our previous study [15] to find the
matched peak in O(1) complexity. The cost of the index-
ing is O(N,), and the complexity of the peak matching is
O(N: + Ny.

Third, lines 6, inside the second step, computes the
SDP value by the matched peaks for each matched the-
oretical and experimental spectrum pair. The SDP value
is defined as Equation (1), where N is the number of hit
peaks. Based on the above three steps, the whole com-
putation complexity is O(|C| + | T]|C’|( N + Ny)).

Algorithm 1: CPU-based SDP

//input: the group theoretical and experimental

// spectrum vectors

//output: the top one score of each experimental

// spectrum

// C": the matched experimental spectra of the

/I theoretical spectra by precursor

/'t m, t'i m: the m/z and intensity value of the m_th
//element of a theoretical spectrum 7;

/' ¢j n, €; »: the m/z and intensity value of the n_th
//element of a experimental spectrum C;

l.foreach 7;in T

2. hash search C, got C’

3. foreach C;inC"

4 for each ¢; ,,in T;

5. hash search t; ,,in C;, got ¢; ,
6. SDP_Score +=t'; yx ' »

7. end of for

Max_Score = Max(SDP_Score, Max Score)

8.
9. end of for
10.end of for
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Operation Number

600,000,000
500,000,000 -
400,000,000 -
300,000,000
200,000,000
100,000,000

Figure 2 The number of operations in each 0.1 Da mass window, from 300 Da-4000 Da, in Exp. 1. The x-axis stands for the mass range;
divide the mass range, from 300 Da to 4000 Da, into 36000 equal-sized 0.1 Da mass windows. The y-axis stands for the operation number between

the experimental and theoretical spectrum in each mass window.

N
SDP =< T},C;>=> lici (1)

SDP on the single GPU

In the CUDA model, the GPU is considered a coproces-
sor that is capable of executing a large number of
threads in parallel. The GPU threads are organized into
thread blocks, and each block of threads is executed con-
currently on one streaming multiprocessor (SM). Each SM
has four different types of on-chip memory, namely regis-
ters, shared memory, constant cache, and texture cache
[31]. Constant cache and texture cache are both read-only
memories shared by all of the scalar processors (SPs). Off-
chip memories, such as local memory and global memory,
have more space but relatively long access latency, usually
400 to 600 clock cycles [35]. The properties of the different
types of memory are summarized in [35,36]. In general, the
scarce registers and shared memory should be carefully used
to amortize the global memory latency cost.

Our first SDP algorithm on a GPU is written so that
each thread deals with one theoretical spectrum, scoring
with its entire matched experimental spectrum, as shown
is Algorithm 2. The differences between Algorithms 1 and
2 are as follows. First, Algorithm 2 unfolds the first for in
Algorithm 1, by assigning each theoretical spectrum to a
thread, which decreases the time consumption signifi-
cantly as many threads are working in parallel. Second,
Algorithm 2 merges the peak matching and SDP calcula-
tion steps to decrease the space for the variable.

Algorithm 2: GPU-based SDP

1. i=thread Id,

2. hash search C, got C i

3. foreach Cjin C’

4. for each #; ,, in T;

5. hash search t; ,, in C;, got c; ,
6. SDP_Score +=t'i yx i »

7. end of for

8. end of for

When implementing Algorithm 2, we first copy the
theoretical spectrum to the global memory, then store
the experimental spectrum on the texture memory and
put the spectrum index file on the constant memory.
We notice that when the spectrum dataset is small,
including the total number and the spectrum length,
we can use the on-chip register for the experimental
spectrum and other variables. As Algorithm 2 reads a
theoretical spectrum | C’| times, where | C'| stands
for the number of theoretical spectra scoring the ex-
perimental spectrum, reading from the register can
significantly reduce the reading latency. We illustrate
the effect in detail in the Results section.

However, the problem in the implementation of
Algorithm 2 is the limited size of the registers. In fact,
users are not allowed to fully control the registers, and can
only adopt registers when the data size is small enough. As
the size and length of the spectrum grows, the data cannot
be loaded into the registers and are instead stored in local
memory or global memory, which increases the reading
latency and decreases the performance significantly.

In each mass tolerance window, a group of experimen-
tal spectra will score with a group of theoretical spectra.
Take Exp.1 as an example. On average, 14,880 theoret-
ical spectra will score with 21 experimental spectra in a
one Dalton mass window with a range of 300 ~ 4000 Da.
Thus, the theoretical and experimental spectra could be
considered two matrixes, theo[|T*|][Nt] and expe[N](|
C’|], the result score could be denoted as Scor[|T"|][|
C’|], and the score calculation process could share a
similar flow as the matrix multiplication. Based on
this observation, we design Algorithm 3 for a dense
mass, using registers and shared memory together.

As shown in Algorithm 3, each of the mass window
matrixes theo[|T'|][N], expe[N.][|C’|], and Scor[|T|][|
C'|] are partitioned into TH x TW, TW x TH, and TH x
TW tiles, respectively, where N, and N, are the maximal
length of the experimental and theoretical spectra. TH
and TW are preset values, which could be the integral
multiple number of the thread number in a half GPU
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warp, 16, 32 or 64, to make the best use of the GPU
warp mechanism. The resources of the GPU are parti-
tioned as follows: the grid has (|C'|/TW) x (|T'|/TH)
blocks, the ID of which is noted by blockldx.y (by in
Figure 3) and blockldx.x (bx in Figure 3); and each
block has TH x TDimY threads, the ID of which is
noted by threadldx.y (ty in Figure 3) and threadldx.x
(tx in Figure 3). The computing task is dispatched as
follows: each block calculates TDimY tiles in the Scor,
which is noted as SR[TH][TW x TDimY]; then each
thread computes a column of SR. For each thread, indexT
points to the right position of the theoretical spectrum,
which contains the following three parts as shown in line
4: theo is the beginning address of the theoretical spectrum;
as the height of the theo is divided by TH, blockldx.y x
TH x N, is the address of the corresponding block; and
threadldx.y x N, adding threadldx.x is the offset address
inside the block.

In line 5, indexC points to the right position in the experi-
mental spectrum, which also has three parts: expe is the be-
ginning address of the current spectrum; blockldx.x x TW
points to the corresponding block address, as the width of
the experimental spectrum is divided by TW; and threadldyx.
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y x blockDim.x adding threadldx.x points to the address of
the current thread inside the block. Obviously, the threads
in one block would access the experimental spectrum
in continuous addresses, which is also called coalesced
accessing. indexR is calculated in the same way as in
line 6 using the beginning address of the result, the row
address, and the offset address inside the block for the
current thread.

In the loop from line 11 to 16, the algorithm loads a tile
of data from the global memory to the shared memory,
and computes the SDP score saved in TResult, which is
stored on the on-chip registers; the loop ends when the
whole row has been calculated. Line 17 waits for all of the
threads to finish their work. Line 18 writes the distance
back from TResult to SR. The details are shown in
Figure 3, which takes the process of calculating a Scor
[TH][TW x TDimY] as an example. It is equal to theo
[TH][N,] x expe[N ][TW x TDimY] and the sequence
is the following. Load the first tile (in blue) from the
theo into the shared memory; score the blue tile in
the theo with the blue tile in the expe, which is stored
in the texture memory; accumulate the temporary re-
sults in TResult, whose initial value is zero; then load

Spectra

have all been accessed.

Experimental

Theoretical Spectra

T A
Result
TILE WIDTH
TILE WIDTH
2 - ~ TILE_WIDTH
+——p +-— >

I ] W
SR o —
:[ @)
=

'8 | - ﬁ

. T

Figure 3 The computing process in a dense mass window. The figure shows the calculation in one dense mass window. The result is a Scor
[THI[TW x TDimY], which is equal to theo[THIIN,] x expe[NJ[TW x TDimY]. Load the first tile (in blue) from the theo into the shared memory; score
the blue tile in the theo with the blue tile in the expe, which is stored in the texture memory; accumulate the temporary results into TResult,
whose initial value is zero; then repeat loading the next tile (in orange), scoring and accumulating, until theo[THI[N,] and expe[NJ[TW x TDimY]

TILE_HIGH

TILE_HIGH
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the next tile (in orange), and continue scoring and ac-
cumulating until theo[TH][N,] and expe[N_.][TW x
TDimY] have been all accessed.

Algorithm-3:-SDP based -on-the-shared memoryv-of the-GPUZ

/-TH TW:-theheight, -and the-width ofthetile;
//-thread:-the-dimensions-of the block;
/l-grid--the-dimensions-of thegrid;

/l“indexTpoints-to the corresponding theoretical -spectrum;
/l"indexC points-to-thecormresponding -experimental - spectrum;
/l“indexR pointsto-thecorresponding result;

HBL-tL -bD:-stand for-blockldx. - threadldx.-and blockDim
/I-SMData:-storesthe tilein-shared memorv;-
/I-TResult:-stores-the temp-score-in the registers;
//-SR:-storesthe-score-in-global ‘memorv;
/l-Alast:-the-upper-bound addressof the spectrum;
//-CTile:-the row pointed by-indexT,-thelengthis-TW-<-TDim¥;
//"The-theoretical spectrum-is-on the texture;

1+ TH+—I6,-TW-«—-16,-TDimY~—-2;

2 +dim thread(TH,-TDimY),

3.+ dim grid-(&-TW,-»/-TH).

4 - indexT-=-expe-+-bLyx TH*N¢+-tLy = Ne+-tl x.

5.+ indexC—=-theo-+-blx = TW-+-tlyx-bD.x+1l x.

6.+ ndexR=-Scor-+-bly-xTHxk-+-blxx-TW-+-tLyx-bD.x+-tlx.
T +SMData[TW][TH]in-shared memory;

8 -+ TResult| TW]-in Tegisters;

9 -+ Alast-«—indexT—+-Ny,

10.+do

11.4{

12 +---Load data from-global-memory-toSMData;

13 +—-indexT-is-added by TW-

nin-SMDatd
154 TResult[i] +=-peakMatch&dot(SMdata(i],- CTile)
164} while-(indexT<-Alast),
17+ syncthreads();
18 +Writet - TResulit-back to:Scor;

The main purpose of Algorithm 3 is to decrease the global memory only once, the same as Algorithm 2. The
global memory access time and latency by loading the key feature of Algorithm 3 is how efficiently it accesses
theoretical spectrum into the shared memory, tile by tile.  the global memory and shared memory; this is achieved
Thus, Algorithm 3 reads each theoretical spectrum from by adopting coalescing reading that accesses sixteen
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continuous addresses for the threads in a half warp to
avoid the bank conflict.

SDP on the GPU cluster

On the GPU cluster, as each node could adopt
Algorithm 2 and 3, the main concern is how to dispatch
the work to each node and achieve a high workload bal-
ance. We design a new complete pre-calculation strategy
to make each node work on nearly the same task. In this
strategy, we first run the workflow of protein identifica-
tion before the scoring stage to get experimental and
theoretical matching results. These results tell us how
many peptides each spectrum will score with, as shown
in Algorithm 4, line 1-4.

Second, in line 5 of Algorithm 4, we calculate the op-
eration number for each SDP scoring in the following
way: d, + d, + hitcount x 2, where d, and d, are the di-
mension of the experimental and theoretical spectra,
and hitcount is the number of hit peaks. d, + d; stands
for the peak matching step in Algorithm 2, and hit-
count x 2 stands for the dot product step in Algorithm
2. As a result, we get the operation number for each
mass range, such as one Dalton, from 300 Dalton to
4000 Dalton, based on the experimental and theoret-
ical precursor mass, matching results, and each SDP
operation.

Algorithm 4: GPU-based pre-calculation strategy
/[Min: the minimum mass, set to 300 Da;
//Max:the maximum mass, set to 4000 Da;
//Win: the range of each mass window, set to 1 Da;
//Oper [(Max-Min)/ Win]: the array stores the operation
/mumber of in each mass window;
i = thread_lId,
hash search C, got C :
for each C;in C’

hash search t, in C;, got HitCou

Oper[Cy.mass-Min]+=T;.len+C;.len+2xHitCou ;
end of for

AR e

Third, we dispatch the task by mass range and give
each node the same amount of work. As shown in
Algorithm 5, line 1-3 calculate the total number of op-
erations; line 4 gets the average number of operations
on each GPU node; line 5-10 travers the Oper array;
when the temporal summary of operation exceeds the
average number WorkerOper, Algorithm 5 call Algorithm
2 or 3, to deal with the current mass range, which is
Operlp] to Operl[Kk].

The overhead of the pre-calculation strategy is also
very low, as shown in the Results section. After the
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calculation, the master node only transfers data to the
computing node once, and this lowers the communica-
tion cost.

Algorithm 5: CPU-based Master strategy

//sum: the total number of operations in the scoring process;
//WorkerNum: the number of nodes in the GPU cluster;
//WorkerOper: the number of operations in each node;
//sum’: the temp total number of each mass range;

//j: the current ID of the GPU node;

/Ip: the lower bound of mass range in Oper array;

//k: the higher bound of mass range in Oper array;
//CallWorker: call the node, work with Oper|p] to Oper[k]
1. for each i in Oper

2. sum += Oper|i] ;
3. end of for
4. WorkerOper = sum/WorkerNum;

5. for each kin Oper

6. sum’ += Oper[k] »

7 if sum’ > WorkerOper

8. CallWorker(j++, Oper|p], Oper[k]);
9. sum’=0,p =k,

10. end of if

11. end of for
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Additional file 1: Initial accelerating effect of the peptide
identification search engine using GPUs.
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