Carson et al. BMIC Bioinformatics 2014, 15:125
http://www.biomedcentral.com/1471-2105/15/125

BMC
Bioinformatics

METHODOLOGY ARTICLE Open Access

Effective filtering strategies to improve data
quality from population-based whole exome

sequencing studies

Andrew R Carson'", Erin N Smith'", Hiroko Matsui', Sigrid K Braekkan®?, Kristen Jepsen', John-Bjarne Hansen?

14,5,6%

and Kelly A Frazer

Abstract

99.5% of discordant genotypes.

analyses.

Background: Genotypes generated in next generation sequencing studies contain errors which can significantly
impact the power to detect signals in common and rare variant association tests. These genotyping errors are not
explicitly filtered by the standard GATK Variant Quality Score Recalibration (VQSR) tool and thus remain a source of
errors in whole exome sequencing (WES) projects that follow GATK's recommended best practices. Therefore,
additional data filtering methods are required to effectively remove these errors before performing association
analyses with complex phenotypes. Here we empirically derive thresholds for genotype and variant filters that,
when used in conjunction with the VQSR tool, achieve higher data quality than when using VQSR alone.

Results: The detailed filtering strategies improve the concordance of sequenced genotypes with array genotypes
from 99.33% to 99.77%; improve the percent of discordant genotypes removed from 10.5% to 69.5%; and improve
the Ti/Tv ratio from 2.63 to 2.75. We also demonstrate that managing batch effects by separating samples based on
different target capture and sequencing chemistry protocols results in a final data set containing 40.9% more
high-quality variants. In addition, imputation is an important component of WES studies and is used to estimate
common variant genotypes to generate additional markers for association analyses. As such, we demonstrate
filtering methods for imputed data that improve genotype concordance from 79.3% to 99.8% while removing

Conclusions: The described filtering methods are advantageous for large population-based WES studies designed
to identify common and rare variation associated with complex diseases. Compared to data processed through
standard practices, these strategies result in substantially higher quality data for common and rare association
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Background

Whole exome sequencing (WES) is rapidly becoming the
preferred method of analysis to study the genetic basis of
disease in large cohorts of patient and control samples.
WES studies examine the roles of both rare and common
variants and, thus, have a distinct advantage over array-
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based technologies which generally focus on common var-
iants. While common variants typically have modest effect
sizes, rare variants, especially those in coding regions, can
have larger effect sizes with greater potential to influence
disease [1-6]. WES has been successfully utilized in nu-
merous studies to identify functional mutations in Men-
delian and rare diseases as well as cancer, where small
numbers of variants with large effects sizes are expected
to be the major contributors to the disease [7-16]. In con-
trast to these disorders, where few samples may be suffi-
cient to reveal causative mutations, the detection of
associated variants in complex disorders requires larger
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cohorts to adequately detect associations in common vari-
ants with weak effects sizes and to identify sufficient num-
bers of rare variants to achieve adequate power to detect
association using burden and collapsing methods [17-19].
While WES sequencing studies have many advantages
over array-based analyses, they are also susceptible to
higher levels of genotyping errors [20-23]. These errors
are generated throughout the sequencing process, espe-
cially at sites with low coverage or variants with low
minor allele frequency (MAF). While population-based
variant callers, such as the Genome Analysis Toolkit
(GATK) [24], have improved the accuracy of genotypes
for low frequency variants, they perform poorly when
identifying singletons and doubletons [25]. Therefore,
rare variants have a high heterozygote to homozygote
error rate. Alternatively, as the MAF increases, homozy-
gote to heterozygote errors increase in likelihood.
Genotype errors affect both common variant (single
marker) association tests as well as rare variants collaps-
ing association methods [26]. Non-differential errors
(with equal error rates in cases and controls) generally
don't affect type I errors in association analyses, but they
do significantly decrease statistical power [25]. In fact,
heterozygote to homozygote errors markedly decrease
power, with the minimum sample size required to ob-
serve statistical significance increasing to infinity as the
MAF of the variant drops to zero [27,28]. Thus, rare
variant association tests, which collapse genotypes from
multiple variants with very low MAFs into single
markers, are particularly sensitive to this type of geno-
typing error. Therefore, applying stringent filtering
methods to improve the accuracy of genotypes and vari-
ants is essential for achieving the variant calling accuracy
in large WES datasets required to precisely detect sig-
nals in rare variant collapsing association tests [25,26].
Software suites, such as the GATK [24], have been de-
signed to manage large-scale sequencing projects.
GATK’s best practices includes a variant filtering step
following Variant Quality Score Recalibration (VQSR).
This “VQSR filter” uses annotation metrics, such as
quality by depth, mapping quality, variant position
within reads and strand bias, from “true” variants (vari-
ants found in HapMap phase 3 release 3) to generate an
adaptive error model. It then applies this model to the
remaining variants to calculate a probability that each
variant is real. Using this recalibrated quality score, users
can filter lower quality variants. GATK recommends
choosing a threshold that maintains 99% sensitivity for
the “true” variants. However, recent studies have shown
that unvalidated variants remain in datasets after follow-
ing GATK’s best practices including VQSR and filtration
[29]. In addition, the VQSR filter does not explicitly filter
genotypes, allowing low quality genotypes generated at
variant sites that pass the VQSR filter to persist in the
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VQSR filtered dataset. These low quality genotypes are a
major source of errors in sequencing studies, signifi-
cantly lowering the power in downstream association
analyses. Lastly, GATK also notes that VQSR works best
for WES with a minimum of 30 samples, indicating a
need for appropriate thresholds that can function out-
side of VQSR. Overall, GATK filtering has limitations;
GATK documentation itself recommends the implemen-
tation of additional dataset specific filters after VQSR
filtration.

Along with sequenced variants, recent WES studies
[30,31] have employed imputation methods to calculate
the genotypes of common variants to use as additional
markers in association analyses. Importantly, imputation
expands the investigation beyond the exome and allows
for the identification of quantitative trait loci within ad-
jacent non-coding enhancer and other regulatory se-
quences which are known to harbor important variants
influencing disease [32]. However, these imputation
methods can generate inaccurate genotypes [33,34].
Again, these genotype errors decrease the statistical
power to detect associations with complex disorders
[35]. To date, no standard filtering methods have been
established for genotypes imputed from WES data.

Here we describe effective data filtering methods that,
when implemented between the GATK variant calling
and VQSR filtering steps, improve the sequenced and
imputed single nucleotide variant (SNV) quality in large-
scale WES genetic studies. We focus on showing im-
provements compared to GATK’s Best Practices because
a recent publication has shown that GATK is the best
variant caller for general NGS analyses [36]. While filter-
ing to improve the quality of insertion and deletion
(indel) variants is also important, here we focus only on
SNVs. We evaluate VQSR and prospective novel filters
by calculating the non-reference concordance with an al-
ternate dataset generated by genotyping 10 individuals
using the Illumina HumanExome BeadChip, which con-
tains >240,000 predominantly exonic markers. We also
evaluated the ratio of transitions to transversions (Ti/Tv)
in the identified SNVs. While Ti/Tv ratios are only an
approximate measure of quality, higher Ti/Tv ratios are
associated with lower false positives, with high quality
exome variant datasets expecting to have Ti/Tv ratios
between 2.8 and 3.0 [37-39]. We established filtering cri-
teria by investigating quality metrics at both the geno-
type and variant levels. GATK variant calling generates
genotype-level quality metrics including depth of data
(DP) and genotype quality (GQ). DP values represent
the number of reads passing quality control used to cal-
culate the genotype at a specific site in a specific sample,
with higher values for DP generally leading to more ac-
curate genotype calls. GQ is a Phred-scaled value repre-
senting the confidence that the called genotype is the
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true genotype. Again, higher values reflect more accur-
ate genotype calls.

In addition to improving the genotype qualities, we hy-
pothesized that further variant filtration could improve
the quality of the variants dataset. While VQSR uses vari-
ous annotation values, including quality by depth, map-
ping quality, variant position within reads and strand bias,
to recalibrate the quality score before filtering, it does not
use Hardy-Weinberg equilibrium (HWE), average geno-
type quality or “call rate” (the % of samples with a non-
missing genotype) to filter out low quality variants. HWE,
quality, and call rate, are common metrics used for filter-
ing variants from genotyping arrays. As such, establishing
thresholds for these variant metrics may have correspond-
ing utility in sequencing studies.

Due to the rapid development of sample preparation
and sequencing technologies, large WES studies often
generate data in sample batches using different versions
of target capture and/or sequencing reagents. This cre-
ates data heterogeneity among the samples due to differ-
ences in sequencing coverage and can result in distinct
variant qualities and call rates between batches. Thus,
we investigated the importance of separating WES sam-
ples into batches and determined that this is a critical
step to perform prior to filtering in order to achieve the
highest quality variant dataset.

These methods appreciably improve data quality, com-
pared to data filtered on VQSR alone, by removing more
discordant genotypes, leading to a higher non-reference
genotype concordance, and improving the Ti/Tv ratio.
Application of these filters results in a significantly im-
proved large-scale WES dataset. By removing non-
differential errors, these filters theoretically increase the
power to identify rare variants [25] underlying the gen-
etic basis of complex diseases.

Results

Exome sequencing, variant calling and standard GATK
VQSR filtering

As part of a large case-control study, we sequenced the
exomes of 920 samples from a Norwegian population to an
average depth of 100x in target regions, with an average of
82.5% of the target base pairs having at least 30x coverage.
Using GATK best practices v3 [24] we identified 573,074
SNVs (356,932 known, matching a variant in dbSNP Build
135, and 216,142 novel) with 404,907,261 genotypes (in-
cluding 362,659,468 homozygous reference and 42,247,793
non-reference gentoypes; the average variant has 707
samples with a non-missing genotype) in the 920 sam-
ples. Following VQSR filtering, 494,688 SNVs (323,791
known and 170,897 novel) and 352,729,725 genotypes
(318,551,885 homozygous reference and 34,177,840
non-reference genotypes; the average variant has 713
samples with a non-missing genotype) were retained.
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Quality of the unfiltered and VQSR filtered datasets

To assess the accuracy of the genotype calls, we genotyped
10 of the 920 samples using Illumina HumanExome
BeadChips, which assay >240,000 predominantly exonic
markers. From these, only high quality HumanExome
array genotypes passing a stringent filter (GCScore >
0.3) were considered. This resulted in 2,384,928 geno-
types with an average SNP call rate of 98.8% per sample.
Of these genotypes, 696,604 genotypes could be com-
pared with a corresponding genotype from the unfil-
tered WES dataset (Additional file 1).

We calculated the genotype concordance between the
sequencing calls and the exome array, where concordance
is defined as the percent of identical, or concordant, geno-
types out of the total number of compared genotypes. To
avoid artificially bolstering concordance by including
homozygous reference matches, we calculated concord-
ance separately for exome array homozygous reference ge-
notypes (n=622,516) and exome array non-reference
(heterozygous and homozygous alternate) genotypes (n =
74,088) (Additional file 1). Before applying any filters to
the WES dataset, the genotype concordance with exome
array non-reference genotypes was 99.26%. After applying
the VQSR filter, 99.33% of the remaining genotypes were
concordant (Table 1 and Additional file 1). Since the
VQSR filter identifies high quality variant loci, but does
not target specific genotypes, low quality genotypes re-
main in the WES dataset. For example, 11,453,170 low
depth genotypes (DP < 8) and 11,733,096 low quality ge-
notypes (GQ <20, corresponding to a >1% likelihood of
being an incorrect genotype call) remain in the dataset
after VQSR filtering (Additional file 2). Overall, the VQSR
filter removed 10.53% of the genotypes that were discord-
ant with the non-reference exome array genotypes while
removing 0.64% of the non-reference concordant geno-
types (Figure 1, Table 1 and Additional file 1).

In addition to genotype concordance, we also calcu-
lated the sensitivity and specificity of the WES genotyp-
ing using the exome array genotypes as the “gold
standard”. For this, we define true negatives (TN) as
identical homozygous reference genotype matches and
true positives (TP) as identical heterozygous or homozy-
gous alternate genotype matches. False negatives (FN)
are instances where the WES data is missing at least one
alternate allele, while false positives (FP) are instances
where the WES data has at least one extra alternate al-
lele (Additional file 3). From this calculation we observe
a sensitivity and specificity of 99.26% and 99.89%, re-
spectively, in the unfiltered WES dataset. These values
improve to 99.33% and 99.98% after the VQSR filter is
applied (Table 2 and Additional file 3).

To further evaluate the variant quality of these data-
sets, we measured their Ti/Tv ratios. The unfiltered vari-
ant dataset has a Ti/Tv of 2.25. After applying the VQSR
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Table 1 Genotype concordance between WES genotypes and exome array genotypes in 10 samples
Filters Number of Number of % of . % of
. concordant discordant
Genotype Variant ;oeﬁ]c;?:;t gd;(;(gd:;ﬁ Concordance genotypes genotypes
removed removed
None None 73,537 (621,855) 551 (661) 99.26% (99.89%) NA NA
None VQSR 73,069 (608,065) 493 (108) 99.33% (99.98%) 0.64% (2.22%) 10.53% (83.66%)
DP None 4 (611,606) 236 (627) 99.67% (99.90%) 1.95% (1.65%) 57.17% (5.14%)
GQ None 72,689 (610,682) 225 (460) 99.69% (99.92%) 15% (1.80%) 59.17% (30.41%)
DP & GQ None 71,986 (610,108) 220 (446) 99.70% (99.93%) % (1.89%) 60.07% (32.53%)
DP & GQ VQSR 71,552 (597,070) 168 (36) 99.77% (99.99%) 2.70% (3.99%) 69.51% (94.55%)

Non-reference genotypes are shown above reference genotypes in brackets.

Non-reference genotypes include genotypes that are heterozygous or homozygous alternate in the exome array. Reference genotypes include genotypes that are

homozygous reference in the exome array.
T Includes heterozygote to homozygous alternate mismatches.
(See Additional file 1).

filter, the Ti/Tv ratio improved to 2.53 (Figure 1). While
this is a significant improvement from the unfiltered
dataset, the Ti/Tv ratio of the VQSR filtered variants is
still below the expected ratio of 2.8 for high quality data-
sets. Based on these quality measurements, we posited
that implementing additional filtering methods in con-
junction with the standard VQSR filter would further
improve the quality of the final variant dataset at both
the genotype and variant levels.

Separating samples into batches prior to filtering
During the course of our research, we incorporated
technology improvements into our study design despite
knowing that different clustering and targeting protocols
would lead to batch effects caused by differences in fac-
tors such as target coverage (Additional file 4). During
our study, the Illumina TruSeq PE Cluster Kit improved
from version 2 (93 samples) to version 3 (827 samples),
and the Agilent SureSelect target enrichment improved
from the 50 Mb kit (813 samples) to V4 kit (107 sam-
ples). As discussed later, we determined that separating
samples into batches prior to filtering resulted in a
higher quality variant dataset. We separated our samples
into six different sample sets (see Methods) before filter-
ing each batch in parallel (Additional file 5). For simpli-
city, we present data statistics for the batch containing
the largest number of samples (batch 4: 688 samples).
Batch 4 contained 448,862 unfiltered SNVs (288,200
known and 160,662 novel) with 304,124,594 genotypes
(272,602,882 homozygous reference and 31,521,712 non-
reference genotypes; the average variant has 678 samples
with a non-missing genotype) in the 688 samples. The
VQSR filter removed 12.5% of these variants, with
392,826 SNVs remaining (261,570 known and 131,256
novel). At these VQSR filtered sites, 88.3% of the geno-
types were retained (268,632,214 total genotypes with
242,868,311 homozygous reference and 25,763,903 non-
reference genotypes; the average variant having 684

samples with a non-missing genotype). All 10 of the
samples used for genotype concordance are present in
batch 4. Therefore, the genotype concordance remains
the same as the values presented for the entire dataset
(Table 1). In contrast, the Ti/Tv calculation is now based
on a smaller number of SNVs; thus, batch 4 has a differ-
ent Ti/Tv ratio than the ratio presented for all 920 sam-
ples. In this batch, the unfiltered variant dataset has a
Ti/Tv of 2.39 (1.93 novel and 2.71 known), while the
VQSR filtered dataset has a Ti/Tv ratio of 2.63 (2.21
novel and 2.88 known) (Table 2).

Filtering low quality genotypes improves concordance

To evaluate how DP and GQ filters would affect con-
cordance rates, we calculated genotype concordance at
increasing DP and GQ thresholds and plotted the per-
cent of discordant genotypes removed versus the percent
of concordant retained for non-reference array geno-
types (Figure 2A, Additional files 6, 7 and 8). We observed
that as quality thresholds increased, genotype concord-
ance, sensitivity, and specificity also increased before even-
tually reaching a plateau (Figure 2 and Additional file 6).
At this plateau, increasing thresholds continued to remove
variants without yielding concordance improvements. We
chose a filtering threshold for each metric that was not
based on this threshold, but that theoretically provided
greater than 99% confidence for a genotype. For DP, we
selected a minimum threshold of eight reads, correspond-
ing to a 2 x (1/2)® chance (<1%) that a biallelic variant
would appear to be monoallelic by random chance, as-
suming a two-tailed binomial model where each allele of a
biallelic variant has a 50% chance of being in each read.
For GQ, we selected a minimum threshold of 20, corre-
sponding to a Phred quality score with 99% accuracy. To
see how different combinations of DP and GQ thresholds
affect the genotype concordance, see Additional files 7
and 8.
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(See figure on previous page.)

Figure 1 Summary of methods and improved data quality from genotype and variant filters. A) Left panel illustrates the standard filtering
method (left side) compared to the proposed genotype and variant filtering method (right side) for sequencing data. Right panel illustrates the
method used for genotype and variant filtering of imputed data. The quality metrics resulting from standard filtering (blue box), proposed
genotype and variant filters (orange boxes), and a combination of these methods (green box) are compared to the quality of the unfiltered data
(grey boxes). B) Quantitative comparisons of quality improvement are depicted for both sequencing and imputation filters at both genotype

(% of discordant genotypes removed and % concordance) and variant (Ti/Tv and R?) levels. Box colors match the boxes in A).

After applying these genotype filters to the unfil-
tered data, we compared our results to the quality of
unfiltered and VQSR filtered genotypes (Tables 1
and 2, Figure 2C, Additional files 1 and 3). When
combined, the DP and GQ genotype filters improved
the non-reference genotype concordance to 99.70%
after removing 60.1% of the non-reference discordant
genotypes. These filters also improve the sensitivity
and specificity to 99.50% and 99.93%, respectively.
When the VQSR filter is applied subsequent to the
DP and GQ genotype filters, further improvement is
observed, with 69.5% of the non-reference discordant
genotypes removed, a concordance of 99.77%, a sensi-
tivity of 99.62% and a specificity of 99.99% (Figure 1,
Additional files 1 and 3).

Applying these DP and GQ genotype filters to the 688
samples in the batch 4 dataset removes 7.5% of the non-
reference genotypes (2,361,951 of 31,521,712 non-reference
genotypes and 15,564,172 of 272,602,882 reference ge-
notypes; Additional file 5). If we extrapolate the ob-
served concordance improvement to all the variants in
all 688 samples from batch 4, we would expect to reduce
the number of discordant non-reference genotypes
in the entire filtered dataset by >60% (from ~233,261
to ~87,479 genotypes).

Filtering low quality variants improves the Ti/Tv ratio

To examine whether filters based on HWE, variant qual-
ity or call rate can meaningfully improve the variant data
quality, we measured their effect on variant quality by
examining changes in genotype concordance (Additional

file 9) and in the Ti/Tv ratio at different filtering thresh-
olds (Table 3 and Figure 3). As a proxy for variant qual-
ity, we calculated the average GQ value for each variant
(sum of the individual genotype GQ values divided by
the number of genotypes at a variant site).

First, we filtered out 11,855 variants (2.6% of the ori-
ginal variants) that significantly deviated from HWE
(p £0.05 after Bonferonni correction). Since such a small
number of variants are removed, we only observe a
slight increase in the Ti/Tv ratio (from 2.39 to 2.40;
Table 3). This improvement is due to a significant en-
richment in the filtering for the removal of Tv variants
over Ti variants (P = 1.42x10%!; Table 3 and Additional
file 10). In addition, we see a slight improvement in
non-reference concordance (0.02% improvement before
applying the VQSR filter; Additional file 9). The HWE
filter removes more FPs (299 of 446 before VQSR filter-
ing and 11 of 36 after VQSR filtering) than FNs (22 of
220 before VQSR filtering and 7 of 168 after VQSR fil-
tering; Additional file 9). Overall, we observed a slight
improvement in Ti/Tv, concordance, sensitivity and spe-
cificity following HWE filtering that suggests that this
generally standard quality filter may be applicable to se-
quencing projects that will be tested for association.

We next calculated Ti/Tv ratios at different filtering
thresholds to determine whether average GQ (Figure 3A)
or call rate (Figure 3B) filters can improve variant qual-
ity. We contrasted the Ti/Tv improvement against the
sensitivity for detecting “true” variants (variants found in
HapMap phase 3 release 3; the same dataset utilized by
VQSR to establish sensitivity tranches in GATK best

Table 2 Sensitivity and specificity of WES genotypes for exome array genotypes in 10 samples

Filters itivi ifici

Genotype Variant ™ ™ is PN 1?:/"(‘_7_';2’:'\3") fﬁ;:;;‘?"c'::tg)
None None 73,537 621,855 661 551 99.26% 99.89%
None VQSR 73,069 608,065 108 493 99.33% 99.98%
DP None 72,104 611,606 627 236 99.67% 99.90%
GQ None 72,689 610,682 460 225 99.69% 99.92%
DP & GQ None 71,986 610,108 446 220 99.70% 99.93%
DP & GQ VQSR 71,552 597,070 36 168 99.77% 99.99%

TP = exact match of non-reference genotype; Ref/Alt with Ref/Alt or Alt/Alt with Alt/Alt.

2TN = exact match of reference genotype; Ref/Ref with Ref/Ref.

3FP = additional alternate allele in WES genotype; Ref/Ref with Ref/Alt or Ref/Ref with Alt/Alt or Ref/Alt with Alt/Alt.
“FN = missing alternate allele in WES genotype; Ref/Alt with Ref/Ref or Alt/Alt with Ref/Ref or Alt/Alt with Ref/Alt.

(See Additional file 3).
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Figure 2 Improved concordance, sensitivity and specificity of
WES data using genotype filters. Plots illustrate the non-reference
concordance and sensitivity versus specificity between array and
sequencing genotypes for 10 samples. A) The percent of
non-reference discordant calls removed is plotted versus the percent
of non-reference concordant calls retained at increasing quality
thresholds. B) Sensitivity versus specificity is plotted at increasing
quality thresholds. For A) and B), blue line represents changing DP
thresholds and the red line represents change GQ thresholds.
Chosen filter thresholds (DP = 8 and GQ 2 20) are indicated by
points on these lines. C) Summarizes the effect that the chosen
genotype filters (both DP and GQ) have on non-reference
concordant and discordant genotype calls with and without the
VQSR filter.

practices). In addition, we also separated known from
novel variants. For average GQ (Figure 3A), improve-
ment begins at a threshold of 20 due to the fact that we
previously removed all genotypes with GQ < 20. Follow-
ing this, the Ti/Tv then quickly increased, most notably
in the novel variants, before reaching a plateau. In
addition, as we increased the average GQ threshold, the
number of true variants remaining dropped quickly. As
with the VQSR filter, we chose a sensitivity threshold of
99%, which corresponded to variants with an average
GQ =235. This captured the majority of the Ti/Tv in-
crease while sacrificing only a minimal percentage of the
true variants in the dataset. In total, the average GQ fil-
ter improved the overall Ti/Tv by 0.08 (2.39 to 2.47)
while only removing 7.4% of the original unfiltered vari-
ants (Table 3). Again, while this is only a slight improve-
ment in Ti/Tv, the filter is significantly biased towards
the removal of Tv variants (P = 1.13x1072%°; Table 3 and
Additional file 10). There is also a slight concurrent im-
provement in sensitivity and specificity (17 FPs and 1
EN removed; Additional file 9) that additionally suggests
this filter is advantageous when applied to this dataset.

As the call rate threshold was raised (Figure 3B), we
observed a gradual increase in Ti/Tv. This is accompan-
ied by a gradual drop in the number of true variants
until very high call rate thresholds are reached, where
the number of true variants dropped rapidly. To avoid
this rapid drop while maximizing the gain of Ti/Tv, we
chose to preserve a true variant threshold of 96%, which
corresponded to variants with call rates >88%. Again,
this significantly improved the overall Ti/Tv (from 2.39
to 2.51, P<10°%*), while only removing 11.4% of the
overall unfiltered variants (Table 3 and Additional file
10). In addition, this filter improved concordance by
0.02% while removing an additional 42 FPs and 13 FNs
(Additional file 9).

We observed that using a combination of HWE, aver-
age GQ and call rate variant filters provided a significant
increase in Ti/Tv (2.39 to 2.52) while removing 13.4%
of the unfiltered variants. Importantly, when the VQSR
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Table 3 Variant filtering of WES data improves Ti/Tv ratios
Filters Variants Number of.variants Ti/Tv p-value®
removed (% of unfiltered) Novel Known' Truth? All
None 0 448,862 (100%) 193 271 3.05 239 N/A
VQSR 56,036 392,826 (87.5%) 221 2.88 307 263 <103%
HWE 11,855 437,007 (97.4%) 193 273 306 240 142 x 107
Ave. GQ 33,083 415,779 (92.6%) 200 273 306 247 113 x 1072
Call Rate 51,117 397,745 (88.6%) 209 278 308 251 <103
Combined” 59,952 388,910 (86.6%) 2.09 2.80 3.09 252 <103
Combined” + VQSR 97,840 351,022 (78.2%) 238 296 310 275 <1077 (372 x 107%)°
VQSR + Combined” 92,091 356,771 (79.5%) 234 294 310 272 <103

Variants found in NCBI dbSNP Build 135.
*Variants found in HapMap phase 3 release 3.
“Combination of HWE, Ave. GQ and Call Rate filters.

?p-value based on a hypergeometric test of whether the removed variants were enriched for Tv over Ti vs. the unfiltered variant sets.
Pp-value based on a hypergeometric test of whether the variants that differed between Combined + VQSR variant sets and VQSR + Combined variant sets were

enriched for Tv over Ti.

filter is applied subsequent to these three variant filters,
we saw the greatest improvement of Ti/Tv (2.75) with a
concomitant loss of 21.8% of the variants (Figure 1,
Figure 3C and Table 3).

Order of filtering steps is important

We next determined the optimal order of implementing
our variant and VQSR filters to obtain the highest qual-
ity variant dataset. We compared the above order, which
applied VQSR filtering subsequent to our variant filters,
to an alternative filtering order, with VQSR filtering ap-
plied before our variant filters. In this alternative order,
fewer variants were removed (20.5% versus 21.8%), but
the resulting Ti/Tv was lower (2.72 versus 2.75; Table 3
and Figure 3C). To determine if this order consistently
improved the Ti/Tv ratios of the filtered variants, we also
compared the results from the different orders of filter-
ing on each of the other five batches (Additional file 11).
In each case, applying the VQSR filter after performing
the manual variant filters consistently resulted in a
higher filtered Ti/Tv ratio. In addition, we tested
whether the extra variants removed by this filtering
order were enriched for Tv variants (Additional file 11).
Again, in each case the extra variants removed by per-
forming VQSR filtering after the manual variant filters
were significantly enriched for Tv variants. Therefore,
applying VQSR filtering as the final step in our method
provided the highest quality variant dataset.

Batch effects cause data heterogeneity in large-scale
exome sequencing projects

Variant and genotype quality scores can differ depending
on the chemistry and sequencing protocols used to gen-
erate the data and will frequently result in batch effects
if these factors are not taken into account. To investigate
the effect that splitting the data into batches had on the

final variant dataset, we performed our quality control
steps with (“batched”) and without (“unbatched”) parti-
tioning the samples based on differences in their pro-
cessing (Table 4 and Additional file 5).

After filtering, the unbatched dataset contained
334,358 variants (227,202 known and 107,156 novel)
(Table 4). Since the target definitions changed between
the 50 Mb and V4 capture kits, some variants are “off
target” in one kit and are “on target” in the other. This
can lead to low quality variants being retained in the
unbatched filtered dataset, even though they would be
considered “off-target” in a subset of the batched data
and appropriately removed. We identified 2,304 such
variants in the unbatched filtered dataset.

The batched dataset contained 471,118 variants
(311,475 known and 159,643 novel) (Table 4). Of these
variants, 139,064 were not found in the unbatched data-
set. The vast majority (97.1%) of these batched-specific
variants were filtered out of the unbatched dataset dur-
ing the call rate filtration step. These 139,064 variants
had low call rates in some batches, but a high call rate
(=88%) in at least one batch. This call rate heterogeneity
between batches was primarily due to the use of differ-
ent target definitions in the two capture kits, but could
also be caused by any factor that affects depth of cover-
age in batches.

We determined the quality of the variants unique to
each dataset by measuring both their genotype concord-
ance and their Ti/Tv ratio. The variants unique to the
unbatched dataset were found to have a non-reference
genotype concordance of 91.39% (138 of 151 non-
reference genotypes from 111 variants intersecting the
array data; 853 of 857 concordant reference genotypes,
or 99.53%), while the non-reference genotype concord-
ance of the variants unique to the batched dataset was
much higher at 98.81% (1326 of 1342 non-reference
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Table 4 Splitting samples by batch (“batched”) retains more high quality variants

*

HWE Call rate' Ave.GQ* VQSR* Total
Number of variants filtered from “unbatched” dataset 14,209 197,540 0 26,967 238,716
Number of filtered variants found in “batched” 1,983 135,031 N/A 2,050 139,064
Ti/Tv of filtered variants found in “batched” 2.64 2.20 N/A 2.16 2.20
“Used - hwe in vcftools to remove variants with Bonferroni-corrected p-value < 0.05.
fUsed - geno in vcftools to remove variants with call rates < 88%.
*Used an awk command to remove variants with average GQ < 35.
*Filtered VQSR processed variants at the 99% sensitivity tranche.
genotypes from 4,984 variants intersecting the array data; We next filtered the dataset to remove non-

9462 of 9462 concordant reference genotypes, or 100%).
In addition, variants unique to the batched dataset had
a higher Ti/Tv ratio than the variants unique to the
unbatched dataset (2.20 versus 1.67). Overall, we deter-
mined that by batching samples prior to performing filter-
ing, we retained 40.9% more high quality variants
emphasizing the importance of accounting for target and
chemistry variation during variant and genotype filtration.

Imputation of common SNPs

Imputation methods utilize sequenced variants from
within the exome to calculate genotype likelihoods at
positions outside of the exome. We obtained imputed
genotypes at 9,711,915 variant sites in all 920 samples
using a combination of GATK and Beagle (see Methods).
However, since these imputed sites have little to no se-
quencing coverage, it is difficult to assess the accuracy
and quality of the resulting data. Therefore, we again
took advantage of the HumanExome array by calculating
imputed genotype concordance using 390,958 high qual-
ity (GCScore > 0.3) array genotypes (238,343 homozy-
gous reference and 152,615 non-reference) from 10 of
the samples.

Much like sequencing data, each imputed genotype is
given a corresponding GQ value, allowing us to assess
genotype quality at various GQ thresholds (Figure 4).
We observe that as the GQ threshold increased, the
non-reference concordance with the array genotypes in-
creased with a concomitant drop in the number of geno-
types remaining. To achieve a 99% confidence in the
genotype calls, we again set the threshold at GQ =20
(Figure 4A). This removed almost all of the discordant
genotypes (31,452 of 31,619 non-reference discordant
genotypes, or 99.5%; 9,765 of 9,811 reference discordant
genotypes, or 99.5%) and significantly improved the con-
cordance (non-reference: 79.3% to 99.8%; reference:
95.9% to 99.98%). However, unlike with the genotypes
obtained from sequencing, this removed a much larger
proportion of the genotypes (45.4% of the non-reference
genotypes and 17.3% of the reference genotypes), sug-
gesting that the unfiltered genotypes from imputation
contain more low quality genotypes than the unfiltered
genotypes from sequencing.

informative variants created by the GQ filtering step.
These included “monoallelic” variants, where all unfil-
tered genotypes are homozygous for the same allele, and
“no genotype” where all genotypes at a variant site were
removed by the GQ filter. From the imputed dataset,
2,625,290 (27.0%) of the variants were “monoallelic” and
4,680,753 (48.2%) were “no genotype” variants after ap-
plying the GQ filter. These “no genotype” variants were
imputed with low likelihoods, suggesting they were of
poor quality. This was confirmed by assessing the R? dis-
tribution for these variants (Figure 4B). Variants with no
genotypes passing the GQ threshold generally had a
lower R? value than variants with genotypes passing the
filter (average 0.06 vs 0.83). After removing all “monoal-
lelic” and “no genotype” variants, we retained 2,405,872
imputed variants (24.8% of the unfiltered data) with
1,371,079,415 high quality genotypes (954,090,448
homozygous reference and 416,988,967 non-reference
genotypes; the average variant has 859 samples with a
non-missing genotype).

Lastly, we compared the improvement in imputed data
quality using the GQ filter to using a simple R* cutoff.
Many genome-wide association studies use a hard cutoff
of R*>0.3 to filter imputed data [34]. However, this R?
filter removed fewer discordant genotypes (25,805 of
31,619, or 81.6%, of non-reference discordant genotypes
and 8,110 of 9,811, or 82.7%, of reference discordant ge-
notypes) and resulted in a lower concordance (94.7%
non-reference concordance and 99.2% reference con-
cordance) than using the GQ filter. Therefore, the qual-
ity improvement observed using the GQ filter is
superior to using a R*> 0.3 cutoff.

Discussion

We developed filters at both the genotype and variant
levels (Figure 1). For genotypes, we selected thresholds
for DP (=8 reads) and GQ (>20) to filter out genotypes
with <99% likelihood. We demonstrated that these thresh-
olds improve genotype quality by assessing the improve-
ment in genotype concordance with high quality array
genotypes. Both thresholds individually improved geno-
type concordance, with greater improvement when
combined (Figure 2C and Tables 1 and 2). Since these
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genotype quality thresholds were chosen to optimize
genotype probability (based on the quality metric and
independent of the actual data), these values can be ap-
plied universally to filter sequencing datasets. While
some researchers may prefer higher specificities
(coupled with a decreased sensitivity), the genotype
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concordance and sensitivity versus specificity curves
(Figures 2A and 2B) suggest that more stringent thresh-
olds may provide only very minor quality improvements
that are outweighed by a significant loss of genotypes.
For example, selecting for genotype likelihoods greater
than 99.9% (instead of 99%) would require thresholds of
DP > 11 and GQ =30, but would only increase overall
concordance by 0.0018% while removing an additional
1.14% of all genotypes. Therefore, to achieve a 99%
genotype likelihood, we recommend thresholds of DP >
8 and GQ =20 be chosen when this filtering method is
applied to sequencing studies.

We found that the DP and GQ filters made more of
an impact on non-reference calls than reference. The
VQSR filter was adept at removing FPs, which were pri-
marily non-reference calls at reference sites. However, it
performed worse when asked to remove reference calls
at non-reference sites, removing only 10.5% of FN calls.
By including the DP and GQ filters, the EN calls were
reduced by 69.5%. We also observed that non-reference
genotypes were preferentially affected in the imputed
data. For non-reference genotypes, the concordance was
initially poor (79.3%) and was improved to 99.8% with a
GQ filter. However, the same GQ filter only increased
the reference concordance from 95.9% to 99.98%. These
increases are relevant for rare variant association tests as
they rely on high accuracy at non-variant sites.

At the variant level, while we chose a universal thresh-
old for HWE (Bonferroni-corrected P < 0.05), we empir-
ically determined thresholds for average GQ (=35) and
call rate (=88%). Of these three filters, the most crucial
is the call rate filter, since it provided the largest quality
improvement (Ti/Tv increase from 2.39 to 2.51; Table 3).
While HWE and average GQ have less significant Ti/Tv
improvements, this is partially due to the smaller num-
ber of variants that are removed by these filters. While
these two filters have a smaller effect on the Ti/Tv ratio,
both filters remove a significantly larger proportion of
Tv variants than would be expected by chance (Table 3
and Additional file 10) and also improve the concord-
ance (Additional file 9). This suggests that they are both
beneficial to this filtering method. Since these thresholds
were empirically chosen to optimize Ti/Tv while minimiz-
ing the loss of “true” variants, researchers may prefer to
similarly determine these thresholds for their own datasets,
rather than relying on these specific thresholds. Therefore,
unlike the genotype filter thresholds, the variant filters
should not be universally applied, but can be empirically
determined using the methods that we have demonstrated.

We demonstrate the importance of grouping samples
into batches according to technical methodologies prior
to filtering for producing high quality variants without
sacrificing sensitivity. Differences in sequence depth
coverage between batches can lead to significant call rate
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differences. Since we recommended a call rate filter as
part of our method, these differences can lead to the re-
moval of variants with sufficient call rates in one batch
even if other batch call rates fall below the filtering
threshold. To illustrate the importance of separating
samples into batches, we demonstrated that 139,064
high quality variant (with 98.81% non-reference geno-
type concordance, 100% reference genotype concord-
ance, and 2.20 Ti/Tv ratio; Table 4) were lost from the
“batched” variant set when all 920 samples were filtered
together in an “unbatched” manner. Of these variants,
97.1% were removed by the call rate filter due to differ-
ences in call rates between batches caused by coverage
heterogeneity. Based on these results, separating batches
prior to filtering, then recombining variants before per-
forming downstream analyses is highly recommended.

We also demonstrated that the order of filtering has a
significant effect on the quality of the final variant dataset.
When VQSR is applied before our suggested filters, the Ti/
Tv was lower than when the same thresholds are applied
before running VQSR (Table 3). However, coupled with this
higher Ti/Tv (and implied increase in quality) was the loss
of an additional 1.3% of the unfiltered variants. Since many
downstream analyses, especially burden and collapsing ana-
lyses, benefit most from a highly specific dataset with low
levels of noise, we recommend running our suggested filters
prior to performing VQSR filtering.

Lastly, we showed that by filtering imputed genotypes
we significantly improved the concordance of the data.
In the same way as genotypes generated from sequen-
cing data were filtered, we selected a threshold that pro-
vides a genotype likelihood greater than 99% by filtering
for GQ > 20. This resulted in a compromise between an
increased accuracy (ie: higher genotype concordance)
and a minimized loss of genotypes (Figure 4) and can be
applied universally to any imputed dataset.

The methods described provide the highest utility for
rare variant association analyses. While genotyping er-
rors reduce the statistical power for common variants,
this decrease is more pronounced for variants with low
MAEF. Therefore, rare variant association tests, which
collapse multiple variants with low MAFs, are particu-
larly sensitive to genotyping errors and should benefit
the most from the described robust filtering methods.
Therefore, although large numbers of genotypes are re-
moved during filtering to improve the quality of the
dataset, the overall power to detect significance should
increase by removing these errors from the downstream
rare variant association analyses.

Conclusion

By utilizing the described processing and filtering method,
we were able to improve: 1) the quality of the genotypes -
99.77% non-reference concordance in the filtered dataset
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versus 99.26% non-reference concordance in the unfil-
tered genotypes and 99.33% non-reference concordanance
after VQSR filtering alone; 2) the Ti/Tv ratio of the final
variants - 2.75 in the filtered dataset versus 2.39 in the un-
filtered dataset and 2.63 in VQSR filtered dataset; and 3)
the number of variants identified - 471,118 “batched” vari-
ants versus 334,358 “unbatched” variants. In addition, we
improved the quality of genotypes from imputation -
99.8% non-reference concordance in the filtered geno-
types versus 79.3% non-reference concordance in the
unfiltered genotypes.

Our results demonstrate effective methods for improv-
ing the quality of WES data using easily implemented
and publically available tools. These methods are applic-
able to sequencing studies that identify germline
variants, but are not suitable for somatic mutation de-
tection. Additionally, these filters can be applied to stud-
ies that have less than 30 samples which cannot
optimally utilize GATK VQSR filtering. In these studies,
the genotype and variant filters described may have in-
creased utility since VQSR filtering may not sufficiently
improve the variant quality of the dataset.

Overall, the methods described represent significant
improvements over the standard practices for sequen-
cing data processing to decrease the number of errors
carried forward into association, burden and collapsing
analyses conducted in studies of complex diseases.

Methods

Sequencing and variant calling

The Tromse Study is a single center prospective follow-
up study with repeated health surveys of inhabitants in
the municipality of Tromse, Norway [40]. We sequenced
the exomes of 920 individuals from the fourth survey of
the Tromse Study (Tromse IV) conducted in 1994-95
[40]. DNA was isolated from whole blood and stored
at -70°C at the national CONOR biobank, located at the
HUNT Biobank in Levanger, Norway. Agilent SureSelect
50 Mb or V4 capture kits (813 and 107 samples, respect-
ively) were used to target exome regions (>21,000 genes
and >500 miRNA) from genomic DNA. Samples were
then multiplexed and sequenced on an Illumina HiSeq
2000, with density clusters generated using either the
[llumina TruSeq PE cluster kit v2-cBot-HS or v3-cBot-
HS (93 and 827 samples, respectively).

Paired-end 100 bp sequenced reads were mapped to
the human genome (hgl9 with unmapped and mito-
chondrial chromosomes removed) using BWA [41] with
default parameters for paired end alignment. Reads were
then processed (duplicates removed, reads realigned
around indels, and quality scores recalibrated) and vari-
ants called using a combination of Picard and GATK
(software version 1.6 and best practices v3) [24]. For the
“VQSR filter”, variant quality scores were recalibrated



Carson et al. BMIC Bioinformatics 2014, 15:125
http://www.biomedcentral.com/1471-2105/15/125

using VQSR and filtered at the recommended 99% sensi-
tivity tranche.

Human exome beadchip assay

Ten of the 920 samples were analyzed using the Illumina
Infinjum HD HumanExome BeadChip Assay. Samples
were processed according the manufacturer’s specifica-
tions. Genotypes were called using GenomeStudio
(v2011.1) using default cluster positions and filtered
for GenCall Score>0.30. Genotypes were converted
from Illumina TOP orientation to genome orientation
(hg19) using the HumanExome-12v1l_A files generated
through the Wellcome Trust Center for Human Gen-
etics (http://www.well.ox.ac.uk/~wrayner/strand/). Sites re-
ported as “Cautious Sites” (http://genome.sph.umich.edu/
wiki/Exome_Chip_Design#Cautious_Sites) were removed.

Separating samples into six batches

We grouped the 920 samples into six different batches to
account for the different target capture versions, sequen-
cing reagents, and sample DNA input quantities used dur-
ing the project’s sequencing phase (Additional file 12).
Batch 1 consists of 93 samples with sequencing data gen-
erated using the TruSeq PE cluster kit v2 and the Agilent
SureSelect 50 Mb capture kit. Next, 720 samples were se-
quenced using the improved TruSeq PE cluster kit v3
and the Agilent SureSelect 50 Mb capture kit. These
samples were split into three batches: 25 samples with low
input DNA (500 ng) (batch 2), seven samples with low
coverage that required resequencing (batch 3), and the
688 remaining samples (batch 4). Finally, 107 samples
were sequenced using both the improved TruSeq PE
cluster kit v3 and the improved Agilent SureSelect V4
capture kit. These samples were split into two batches
based on input DNA: seven with whole genome amplified
DNA (batch 5) and 100 with genomic DNA (batch 6).

Imputation at common SNPs

WES data was used to impute additional genotypes
using haplotypes from the European samples of the 1000
Genomes Project (301 unrelated individuals) following
the previously published methodology [42]. In this
method, 9,711,915 common sites (allele frequency >
0.005 and < 1 in the European individuals) were analyzed
using GATK Unified Genotyper to generate genotypes
and genotype likelihoods from WES aligned reads. These
genotype likelihoods were then used as input for Beagle
[43], which recalculates the probability and determines
the most likely genotype at each site in each sample.

Genotype and variant filters

Genotype (both from sequencing and imputation) and
variant filters were applied using vcftools [44]. For geno-
types, the “minGQ” and “minDP” options were used to
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filter genotype quality and depth, respectively. For vari-
ant filtration, the “hwe” option was used to filter variants
that deviated from HWE, while the “geno” option was
used to filter variants by call rate. A simple AWK script
was created to calculate and filter based on average
genotype quality (available upon request).

Additional files
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Additional file 1: Table WES genotype concordance in 10 samples
after VQSR and genotype filters, including number of genotypes

and reference and non-reference concordance.
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Additional file 3: Table WES sensitivity and specificity compared to
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Additional file 4: Figure Average target coverage of 920 sequence
samples shows batch effects.
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