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Abstract

Background: Current-generation sequencing technologies are able to produce low-cost, high-throughput reads.
However, the produced reads are imperfect and may contain various sequencing errors. Although many error
correction methods have been developed in recent years, none explicitly targets homopolymer-length errors in
the 454 sequencing reads.

Results: We present HECTOR, a parallel multistage homopolymer spectrum based error corrector for 454
sequencing data. In this algorithm, for the first time we have investigated a novel homopolymer spectrum
based approach to handle homopolymer insertions or deletions, which are the dominant sequencing errors in
454 pyrosequencing reads. We have evaluated the performance of HECTOR, in terms of correction quality,
runtime and parallel scalability, using both simulated and real pyrosequencing datasets. This performance has
been further compared to that of Coral, a state-of-the-art error corrector which is based on multiple sequence
alignment and Acacia, a recently published error corrector for amplicon pyrosequences. Our evaluations reveal
that HECTOR demonstrates comparable correction quality to Coral, but runs 3.7× faster on average. In addition,
HECTOR performs well even when the coverage of the dataset is low.

Conclusion: Our homopolymer spectrum based approach is theoretically capable of processing arbitrary-length
homopolymer-length errors, with a linear time complexity. HECTOR employs a multi-threaded design based on a
master-slave computing model. Our experimental results show that HECTOR is a practical 454 pyrosequencing
read error corrector which is competitive in terms of both correction quality and speed. The source code and
all simulated data are available at: http://hector454.sourceforge.net.
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Background
The rapid progress of next-generation sequencing (NGS)
has enabled the high throughput production of reads at
low cost. The increased throughput and decreasing per
base cost have made NGS an affordable tool. Many NGS
sequencing technologies have been developed [1] includ-
ing widely established platforms such as Illumina [2],
454 [3] and SOLiD [4] as well as newer platforms like
Ion Torrent [5]. However, the reads produced are not
perfect and may contain various types of sequencing er-
rors, i.e. substitutions, insertions and deletions. These
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sequencing errors complicate data processing for many
applications of NGS, e.g. NGS read mapping [6-9] and
de novo genome assembly [10]. Error correction aims to
identify the mistakes made by the sequencing platform
by exploiting the redundancy of the reads and then cor-
rect those mistakes. Therefore, error correction to im-
prove the sequence accuracy is an important task in
bioinformatics.
Different sequencing platforms usually have different

sequencing error characteristics thus complicating the
error correction task. For example, while substitution er-
rors are the dominant error source in Illumina and
SOLiD, insertion and deletion (indel) errors are abun-
dant in 454 sequencing, mainly due to homopolymers.
Homopolymers are consecutive repetitions of a letter in
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a string. From a genomics perspective, homopolymers
are sequences of identical bases, e.g. AAAA or TTT. In
454 sequencing, the homopolymer-length errors are
caused by flows, which are indicated by light signals. In
the base-calling step, the flow values are rounded to the
nearest integer, where each flow represents a homopoly-
mer of As, Cs, Gs or Ts and the intensity of the light de-
termines the length of the homopolymer. Undetermined
bases are represented by Ns. A homopolymer-length
error occurs when the exact intensity of the light is
wrongly determined. For example, a homopolymer of
AAAA is determined as AAAAA, or vice versa. Subse-
quently, a quality score is assigned to each called base. A
more detailed description is available in [3]. A study by
Huse et al. [11] shows that in a typical 454 experiment,
18% of the reads have at least one error. The study also
shows that insertion, deletion, substitution errors caused
by homopolymers have error proportions of 20%, 9% and
10%, respectively.
Many tools for NGS read error correction use the

spectral alignment method which was first introduced in
the Euler-SR assembler [12,13]. The spectral alignment
method establishes a spectrum of trusted k-mers from
the input dataset and then corrects each read so that it
only contains k-mers from the spectrum. SHREC [14], a
stand-alone NGS read error correction method based on
a parallelised suffix-trie with a majority voting scheme,
was introduced in 2009 and was soon followed by other
error correction tools, e.g. HiTEC [15], DecGPU[16],
HSHREC (Hybrid-SHREC) [17], ECHO [18], Quake
[19], Coral [20] and Musket [21]. The use of these error
correction tools have been shown to improve down-
stream applications, e.g. SNP calling [19] and de novo
genome assembly [14,19-21]. A study by Salzberg et. al.
[10] also shows that contig sizes often increased dramat-
ically after error correction, as much as 30-fold. Most of
these tools, however, only target substitution errors,
which are abundant in Illumina but not in 454 sequen-
cing data. The only two programs that are currently
capable of handling insertion and deletion errors are
HSHREC [17] and Coral [21]. HSHREC is an improve-
ment of SHREC [14], which is able to capture up to one
insertion/deletion error in a read per given iteration.
Coral is a multiple sequence alignment (MSA) based
error correction method, which uses k-mers as seed and
then corrects errors by constructing a consensus sequence
from the multiple alignments. However, HSHREC only
handles homopolymer errors of 1 bp and Coral doesn’t ex-
plicitly model homopolymer-length errors for 454 sequen-
cing data, instead treating them as ordinary indels [1].
Identifying and correcting indels is a non-trivial task in
terms of computational overhead. Exhaustive analysis of
every potential indel requires a quadratic time complexity
with respect to the read length and is usually dealt with
using costly dynamic programming solutions (e.g. in
Coral). However, the more specific error model of the 454
sequencing platform allows the error correction step to
be designed more efficiently without losing sensitivity.
Another type of error corrector for 454 sequencing tar-
gets amplicon pyrosequences, e.g. AmpliconNoise [22]
and Acacia [23]. AmpliconNoise applies an approximate
likelihood using empirically derived error distribution to
remove pyrosequencing noise from reads and is very
computationally intensive. Acacia is a recently published
error corrector for amplicon pyrosequences that is re-
ported to have comparable sensitivity to AmpliconNoise
but is up to 2,000x faster in terms of runtime.
We present HECTOR a parallel multistage homopoly-

mer spectrum based error corrector for 454 sequencing
data. In HECTOR, for the first time we have investigated
a novel homopolymer spectrum based approach in order
to cope with homopolymer-length errors, which is the
dominant source of sequencing errors in 454 reads. Fur-
thermore, inspired by Musket [21], we have utilized
three techniques, namely, two-sided conservative correc-
tion, one-sided aggressive correction and voting-based
refinement, to form a multistage correction workflow.
The performance of HECTOR is evaluated using both
simulated datasets from the Escherichia coli (E. coli) gen-
ome and real datasets from the E. coli and Salmonella
enterica (S. enterica) genomes. The performance compari-
son between HECTOR and Coral shows that HECTOR
yields comparable correction quality to Coral, but runs
3.7× faster on average.

Methods
As shown in Figure 1 HECTOR consists of three stages,
i.e. k-hopo encoding stage, homopolymer spectrum con-
struction stage and error correction stage. Firstly, HEC-
TOR encodes a read as a string of homopolymer pairs,
in which each homopolymer pair is encoded as a byte.
Secondly, all of the encoded reads are then used to con-
struct the homopolymer spectrum, where HECTOR
counts the number of occurrences of all non-unique
k-hopo using a combination of a Bloom filter [24] and a
hash table. The homopolymer spectrum is defined as a
set of all k-hopos in the dataset, where the k-hopos whose
multiplicity exceeds a certain coverage cut-off are consid-
ered as trusted and otherwise, untrusted. A k-hopo is a
substring of k homopolymers, in which each homopoly-
mer is encoded as a single base. HECTOR then automat-
ically estimates the coverage cut-off from the coverage
histogram of all non-unique k-hopos. Finally, in the error
correction stage, HECTOR utilizes three techniques,
namely, two-sided conservative correction, one-sided
aggressive correction and voting-based refinement. In
addition, HECTOR takes advantage of parallelization by
using multi-threading to benefit from the compute power



Figure 1 Workflow of HECTOR. HECTOR consists of three stages, i.e. k-hopo encoding stage, homopolymer spectrum construction stage and
error correction stage.
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of common multi-CPU systems. HECTOR is written in
C++ and uses a combination of Pthreads and OpenMP
for parallelization.

k-hopo Definition and encoding
HECTOR represents a homopolymer as a pair (R X),
where R is the homopolymer length and X ∈ Σ = {A, C,
G, T, N}, and encodes a read as a string of homopolymer
pairs. For example, the read S = AACCCCCGGGT will
be encoded as (2, A) (5, C) (3, G) (1, T). In this case, all
of the 3-hopos for S are (2, A) (5, C) (3, G) and (5, C)
(3, G) (1, T). In HECTOR, we represent each homo-
polymer pair as a byte and then calculate the value using
the following formula: (128*L + |∑|*R + B − 4), where B is
an encoded nucleotide (A = 0, C = 1, G = 2, T = 3, N = 4)
and L is the case flag (1 if the nucleotide is lowercase, 0
otherwise). Due to the 1 byte encoding implementation,
the value of R has range between 1 and 25.

Homopolymer spectrum construction
HECTOR encodes all reads as strings of homopolymer
pairs. The homopolymer spectrum is constructed from
all of the encoded reads where the counting of k-hopos
is performed using Bloom filters and hash tables and is
parallelized using multi-threading. In our implementa-
tion, the default value of k is 21. This value is obtained
empirically and is adapted from Musket [21].
The first stage filters out as many unique k-hopos as

possible using a Bloom filter and stores all non-unique
k-hopos in a hash table. However some unique k-hopos
are likely to still exist in the hash table due to the false
positive probability of a Bloom filter. In this stage, the
masters fetch reads in parallel from the input file and
then distribute all the k-hopos in the reads to the slaves.
The accesses to the file are mutually exclusive and are
guaranteed by locks. Hashing is used to distribute each
k-hopo to its respective destination slave to ensure a
good load balance. Once the destination slave is deter-
mined, the canonical k-hopo is transferred to the slave
through the corresponding communication channels.
The canonical k-hopo is the smaller numerical repre-
sentation of the k-hopo and its reverse complement.
Each slave holds a local Bloom filter and a local hash
table to capture all non-unique k-hopos as well as filter
out most unique k-hopos. When a k-hopo arrives, the
slave performs membership look up in the local Bloom
filter for the k-hopos. If the k-hopo queried exists in
the Bloom filter, the slave inserts it in the local hash
table because it is likely to have more than one occur-
rence. Otherwise, it is inserted in the Bloom filter. At
the end of this stage, all non-unique k-hopos are stored
in all local hash tables of all slaves, and the number of
unique k-hopos occasionally existing in all hash tables
depends on the false positive probability rate of all local
Bloom filters. No synchronization between the slave
threads is required in this stage due to the independ-
ence of the local Bloom filters and hash tables, which
greatly benefits efficiency.
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The second stage computes the multiplicity of each k-
hopo in the hash table to determine the unique hopos
that are still stored in the hash table. In this stage the
masters follow the same procedure as in the previous
stage and all slaves listen to their corresponding commu-
nication channels and wait for the arrival of k-hopos.
Once a k-hopo arrives, a slave queries the existence of
the k-hopo in the local hash table and then increments
the multiplicity if it exists. At the end of this stage, each
slave holds the multiplicity of each k-hopo stored in its
hash table, which is used to determine the uniqueness of
a k-hopo.
The third stage removes all unique k-hopos from the

hash table leaving all non-unique ones in place. In this
stage, each slave deletes all unique k-hopos from its hash
table while the masters are idle. At the end of this stage,
each slave holds a partition of the set of all non-unique
k-hopos in the input reads.
The last stage determines the coverage cut-off for the

homopolymer spectrum from the k-hopo coverage histo-
gram. A k-hopo coverage histogram illustrates a mixture
of two distributions: one for the coverage of likely cor-
rect k-hopos and the other for spurious k-hopos. The k-
hopos distributed at the right of the valley are supposed
to be true k-hopos (trusted) and the ones on the oppos-
ite side to be spurious (untrusted). A homopolymer
spectrum is different from a k-mer spectrum i.e. the
multiplicity along the x-axis represents a range of actual
sequence length. A comparison between a homopoly-
mer spectrum and a k-mer spectrum of SRR000868,
SRR000870 and SRR639330 reads is shown in Figure 2.
In Illumina datasets where the reads have equal length,
the distributions of the k-mer spectrum are normally bi-
modal. However, due to the irregular read length nature
of 454 datasets, the distribution of the k-mer spectrum
tends to be unimodal while the distribution of the homo-
polymer spectrum is normally bimodal. Therefore, by
encoding the spectrum construction in homopolymer
space, the homopolymer spectrum obtained is analogous
to the k-mer spectrum in Musket. As seen in Figure 2a
and b the homopolymer spectrums of the SRR000868
and SRR000870 datasets are similar because their data-
sets were sequenced in the same experiment and have
similar coverage (11.7× and 11×), respectively. Figure 2c
shows that the SRR639330 dataset has a different homo-
polymer spectrum because it has a higher coverage
(69.8×) and was sequenced in a different experiment.
However, in general, all the homopolymer spectrums are
bimodal. HECTOR then adopts the coverage cut-off se-
lection method of Musket by choosing the multiplicity
corresponding to the smallest density around the valley
as the coverage cut-off. As shown in Figure 2, the cut-off
values for SRR000868, SRR000870 and SRR639330 data-
sets are 3, 3 and 6, respectively. These values correspond
to the multiplicity associated with the smallest density
around the valley in the homopolymer spectrum for each
of the datasets, which are 91,923, 100,408 and 38,081,
respectively. In addition, HECTOR provides a parameter
to allow users to specify the cut-off.

Error correction
Figure 3 shows how sequencing errors i.e. insertions, de-
letions and substitutions, are represented in the context
of k-hopos, given a k-hopo Sk. Due to the representation
of the k-hopos in (R, X) format described in the previous
section, identifying a homopolymer-length error can then
be represented as a difference in R. Therefore, whatever
the type of error is, only a single k-hopo pair is actually
changed. Thus, explaining why identification of errors in
our method can be very efficient. We also ignore error
corrections that occur in the first or the last homopoly-
mer of a read. This is because the actual polynucleotide
in the reference genome can be much longer than the ho-
mopolymer at the beginning or end of a read. Thus, it is
impossible to tell if the read should have been longer or
shorter by a single base or two.
The examples in Figure 3 are not the only conceivable

scenarios of substitution and run-length errors. There
are others that could change k-hopos more drastically.
We argue in Additional file 1 why these scenarios do
generally not occur in 454 data.
The error correction phase of HECTOR consists of

three stages i.e. two-sided conservative correction, one-
sided aggressive correction and voting-based refinement.

Two-sided conservative correction
In the two-sided correction we assume that there is at
most one error in any k-hopo of a read. This assumption
is later relaxed in the one-sided aggressive correction.
The two-sided correction starts with the classification of
trusted and untrusted bases for a read. A base is consid-
ered to be trusted if it is covered by any trusted k-hopo.
Otherwise, it is considered to be untrusted and is con-
sidered to be a potential homopolymer-length error. For
a sequencing error occurring at position i of a read of l
bases, it causes up to min{k, i, l − i} erroneous k- hopos.
HECTOR only evaluates both the leftmost and the right-
most k-hopos that cover position i on the read, instead
of all possible k k-hopos that cover position i, thus, sig-
nificantly improving speed and avoiding high computa-
tional overhead. For each base, the correction is made
only if an alternative is found to make both the leftmost
and the rightmost k-hopos trusted. Otherwise, if more
than one alternative is found, the base will be kept un-
changed as a result of ambiguity. For a substitution
error, the alternative is a homopolymer of length 1 with
a different nucleotide. For an indel error, the alternative
allows up to 3 bases deletion and up to 3 bases insertion



Figure 3 Identification of sequencing errors in the context of k-hopos. Illustration of how sequencing errors, i.e. insertions, deletions and
substitutions, are represented in the context of k-hopos, given a k-hopo Sk. The figure shows how HECTOR handle errors in k-hopo Sk in the case
of a) homopolymer insertion of nucleotide C, b) homopolymer insertion of nucleotide C, and c) substitution of nucleotide T with nucleotide A.
Regardless of the type of error, only a single k-hopo pair is actually changed.

Figure 2 Comparison of Homopolymer Spectrum and k-mer Spectrum in SRR000868 (a), SRR000870 (b) and SRR639330 (c) datasets,
respectively. A homopolymer spectrum is different from a k-mer spectrum, i.e. the multiplicity along the x-axis represents a range of actual
sequence length. The comparison between the homopolymer spectrum and k-mer spectrum of SRR000868, SRR000870 and SRR639330
datasets are shown in a, b and c, respectively. The cut-off values chosen for the SRR000868, SRR000870 and SRR639330 datasets are 3, 3 and
6, respectively.
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of the same nucleotide. For a read, the two-sided correc-
tion will be executed for a fixed number of iterations or
until no base change is made.

One-sided aggressive correction
Since the two-sided conservative correction assumes
that there is only one error in a single k-hopo it is inad-
equate in cases where more than one error occurs in a
single k-hopo. Therefore, we utilize a one-sided correction
to aggressively correct errors in these cases. The core idea
is similar to the one described in [21] but we are looking
for an insertion or deletion alternative, instead of a substi-
tution alternative. Given a read H, define Hi to denote the
base at position i of H, and Hi,k to denote the k-hopo start-
ing at position i. If Hi,k is trusted, but Hi+1,k is untrusted,
the homopolymer Hi+k is likely to be a sequencing error.
Our one-sided correction aims to find an alternative
of Hi+k that yields a trusted Hi+1,k. Unlike the two-sided
correction, this correction selects the alternative, which
makes the resulting trusted k-hopo Hi+1,k have the largest
multiplicity, if more than one alternative is found.
The one-sided correction begins with the location of

trusted regions for a read. A trusted region means that
every base in this region is trusted thus having a mini-
mum length of k. For each trusted region, error corrections
are conducted towards each of the two orientations on the
read. For each orientation, the error correction process
does not stop until it either reaches a neighbouring trusted
region or fails to correct the current base.
This correction approach is effective but has the draw-

back that it strictly relies on the correctness of k-hopo
Hi,k. Thus if Hi,k does contain sequencing errors but is
deemed to be trusted, this one-sided correction is pos-
sible to cause cumulative incorrect corrections, mutating
a series of correct bases to incorrect ones. Look-ahead
validation and voting-based refinement techniques are
used to reduce this adverse effect. The look-ahead valid-
ation evaluates the trustworthiness of a predefined max-
imal number of neighbouring k-hopos that cover the
base position at which a sequencing error likely occurs.
If all evaluated k-hopos are trusted for a certain alterna-
tive on that position, this alternative is reserved as one
potential correction. The voting-based refinement is de-
scribed below. There is also a constraint on the number
of corrections that are allowed in any k-hopo of a read.
The default value of the constraint is 4. During the cor-
recting process, we track the number of corrections that
have been made in any k-hopo. If the number of correc-
tions of a k-hopo exceeds the defined constraint, all cor-
rections made in the k-hopo will be disregarded.

Voting-based refinement
The voting-based refinement method used is similar to
the voting algorithm originally used in DecGPU [16].
The voting algorithm attempts to find the correct base
by replacing all possible bases at each position of the
k-hopo and checking the solidities of the resulting k-hopos.
This approach introduces the fewest new errors even
though it does not correct as many errors as other correc-
tors. However, the objective of this approach is to reduce
of the number of new errors from the one-sided aggressive
correction.

Parallelization strategy
Our parallelization strategy uses the master–slave model
a typical parallelization paradigm in which masters are
dedicated to task distribution, and slaves are assigned to
work on individual tasks. Typically in many applications,
the master–slave model is implemented using a single
master and multiple slaves. In HECTOR, multiple mas-
ters are used to avoid the bottleneck caused by the task
distribution as the number of slaves grows larger. In gen-
eral, the model is configured to have more slaves than mas-
ters, with a master-to-slave ratio chosen to be 1:3. This
type of multiple masters, multiple slaves parallelization has
also been implemented by Musket [21]. A hybrid combin-
ation of Pthreads and OpenMP parallel programming
models is used to implement the master–slave model.

Results and discussions
Experimental design
The performance of HECTOR is evaluated in terms of
error correction quality, runtime, and parallel scalability.
All experiments were conducted on a workstation with
two Intel Xeon X5650 hex-core 2.66 GHz CPUs and
96 GB RAM, running Linux (Ubuntu 12.04). Both real
and simulated reads are used in the experiments. The
real reads are taken from the NCBI Sequence Read
Archive (SRA), i.e. SRR000868, SRR000870, SRR639330
and SRR957993. The simulated reads are generated by
Mason [25], with default parameters, using E. coli UTI89
and E. coli O104:H4 as reference genomes. The perform-
ance of HECTOR is then compared to Coral (v. 1.4) and
Acacia (v.1.52) using default parameters.

Correction quality evaluations
In order to evaluate correction quality, we have to dis-
tinguish the correct from the erroneous bases in the
experimental data. Errors in the sequence reads are
identified by using the CUSHAW2 [9] mapping program
to align reads to the reference genome. Only uniquely
mapped reads with no clippings are considered, with the
errors given by the differences to the reference genome.
This is common practice since genomic variants such as
single nucleotide polymorphisms (SNPs) can be defined
as errors, and ambiguously mapped reads can lead to
false classifications of bases as well [13,14,26]. However,
the number of SNPs compared to sequencing errors is
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insignificant, so that they can be safely ignored for the
purposes of experimental validation [27,28]. In addition,
this is a general problem for applications like error cor-
rection, assembly, or mapping. Thus, they pose the same
problem for any corrector, so that the relative results are
not affected.
We have explored SHRiMP2 [29] as a potential map-

ping algorithm apart from CUSHAW2 and found that
the reads mapped by both tools are practically equiva-
lent. We conclude that the evaluation of error correction
performance of Coral and HECTOR is independent of
the mapper used to establish the gold standard of erro-
neous bases. For more details, please refer to Additional
file 2.
The quality of the error correction is then evaluated in

terms of recall, specificity, gain, precision, and F-score.
We define TP (True Positive) as the number of erroneous
bases that are successfully corrected, FP (False Positive)
as the number of newly introduced errors, i.e. the num-
ber of correct bases that are changed to be erroneous,TN
(True Negative) as the number of correct bases that re-
main unchanged and FN (False Negative) as the number
of erroneous bases that remain undetected. Please note
that homopolymers that fall in the start and end of reads
are not counted to obtain the statistics. Recall is calcu-
lated as TP/(TP + FN), specificity as TN/(FP + TN), gain
as (TP − FP)/(TP + FN), precision as TP/(TP + FP) and
F-score as 2 × precision × recall/(precision + recall), re-
spectively. All the recall, specificity, gain, precision, and
F-score values in related tables have been multiplied by
100 and all best values have been highlighted in bold.

Evaluation on simulated datasets
The objective of the evaluation on simulated datasets is
to assess the performance of HECTOR on datasets with
various average read length and coverage. The simulated
reads are divided into 2 groups, i.e. the shorter reads
group (Group A), which has an average read length of
200 (dataset 1 – 8) and the longer reads group (Group B)
which has an average read length of 400 (dataset 9 – 16).
The detailed information of the simulated datasets used in
the evaluation is shown in Table 1.
Table 2 shows the correction quality results of HECTOR

and Coral for the simulated 454 datasets. On average,
HECTOR (Coral) scores 92.84 (89.01), 99.99 (99.99), 90.62
(87.86), 97.66 (98.72) and 95.19 (93.60) in terms of recall,
specificity, gain, precision, and F-score, respectively for
group A. Furthermore in group A, HECTOR shows better
sensitivity, F-score and gain, while Coral outperforms
HECTOR in terms of precision. For group B, HECTOR
(Coral) scores on average 93.16 (91.23), 99.98 (99.99),
89.89 (89.99), 96.61 (98.66) and 94.85 (94.79). Furthermore
in group B, HECTOR shows better sensitivity for low
coverage datasets at the expense of higher number of false
positives resulting in lower gain and precision compared to
Coral, while Coral outperforms HECTOR for higher cover-
age datasets. Overall, for the simulated datasets, HECTOR
shows a consistent performance regardless of coverage
while the performance of Coral improves as the coverage
increases.

Evaluation on real datasets
Three real 454 E. coli datasets and one real 454 S. enter-
ica dataset are used to evaluate HECTOR and Coral.
The SRR000868 and SRR000870 reads are sequenced
from the E. coli UTI89 strain, and the SRR639330 reads
from the E. coli O104:H4 strain. The SRR957993 reads
are sequenced from the S. enterica subsp. enterica sero-
var Virchow str. CFSAN000744. For the E. coli datasets,
the first two datasets have relatively low coverage of 11×
and 11.7×, respectively and an average read length of
257, while the latter has high coverage of 69.8× and a
larger average read length of 627. The S. enterica dataset
has coverage of 20.6× and an average length of 534.
Table 3 shows the detailed information of the real data-
sets used in the evaluation.
Table 4 shows the error correction quality compari-

son between HECTOR, Coral and Acacia for the real
datasets in terms of recall, specificity, gain, precision,
and F-score. HECTOR demonstrates comparable error
correction quality to Coral in terms of all measures. Spe-
cifically, HECTOR outperforms Coral for the SRR000868
dataset, while the latter performs better for the re-
maining datasets. Our performance evaluation shows that
HECTOR has a superior error correction quality com-
pared to Acacia for all real datasets. However, Acacia
shows better specificity.

Discussion of performance on simulated and real datasets
There are several factors that cause differences in per-
formance between real and simulated data. Firstly, the
coverage in simulated data is more uniform, whereas
real data tends to follow a more variable distribution.
This leads to areas in the genome that are now correct-
able; it can also cause false corrections, because correct
sequence gets erroneously classified as errors. Secondly,
the error profiles of real and simulated data can be dif-
ferent leading to further differences in correction per-
formance. Overall, for the simulated datasets, HECTOR
shows a consistent performance regardless of coverage
while the performance of Coral improves as the coverage
increases. This is consistent with the performance of the
real datasets, in which HECTOR is superior for the data-
set with the least coverage (SRR000868) while the per-
formance of Coral gets better as the coverage of the
datasets increases. The biggest performance difference
between Coral and HECTOR occurs on the SRR639330
dataset, which has an extreme coverage of almost 70 × .



Table 1 Information of the simulated datasets, consisting of the reference genome, length of the genome, coverage,
average read length and total number of reads in the dataset

Group Dataset Ref genome Genome length Coverage Average read length Number of reads

A 1 UTI89 5,065,741 5.9x 200 150,000

2 UTI89 5,065,741 9.9x 200 250,000

3 UTI89 5,065,741 15.8x 200 400,000

4 UTI89 5,065,741 19.7x 200 500,000

5 O104 5,312,586 5.6x 200 150,000

6 O104 5,312,586 9.4x 200 250,000

7 O104 5,312,586 15.1x 200 400,000

8 O104 5,312,586 18.8x 200 500,000

B 9 UTI89 5,065,741 11.8x 400 150,000

10 UTI89 5,065,741 19.7x 400 250,000

11 UTI89 5,065,741 31.6x 400 400,000

12 UTI89 5,065,741 39.5x 400 500,000

13 O104 5,312,586 11.3x 400 150,000

14 O104 5,312,586 23.5x 400 250,000

15 O104 5,312,586 30.1x 400 400,000

16 O104 5,312,586 37.6x 400 500,000

Wirawan et al. BMC Bioinformatics 2014, 15:131 Page 8 of 13
http://www.biomedcentral.com/1471-2105/15/131
Performance analysis based on homopolymer length
The correction quality performance is then further ana-
lysed based on the length of homopolymers. The sensitivity
and specificity of both HECTOR and Coral for homopoly-
mer lengths of 1, 2, 3, 4, 5, 6, 7 and larger than 7 on the
SRR000868 dataset are shown in Figure 4. The homopoly-
mers are classified based on the length of the homopoly-
mers in the original dataset. For example, if a homopolymer
of length 3 gets corrected to any length, then this is classi-
fied as a correction for a homopolymer of length 3.
As shown in Figure 4a, Coral shows better sensitivity

for homopolymers of length one and shows an irregular
trend while the sensitivity of HECTOR improves as the
homopolymer length increases. Figure 4b shows that in
terms of specificity, both Coral and HECTOR show
comparable performance for homopolymer length of 1,
2 and 3. As the homopolymer length gets longer, Coral
shows better specificity than HECTOR. It should be
noted that typically, the longer the length of the homo-
polymer, the less occurrence it has in the sequences.
Thus, there is a higher probability of homopolymers
with very long length which occur less than the required
cut-off value of the homopolymer spectrum. These ho-
mopolymers will be classified as untrusted and therefore
will be falsely corrected, which is one of the reasons why
the specificity of HECTOR goes down as the length of
the homopolymer increases.

Run time and parallel scalability evaluations
In addition to correction quality, runtime and parallel
scalability are important factors that must be taken into
account, especially for large-scale datasets. We have
evaluated the runtime and parallel scalability of both
HECTOR and Coral using the aforementioned real data-
sets using 2, 4, 8 and 12 threads. Runtimes are measured
in wall clock time. Figure 5 shows the runtime compari-
son between HECTOR and Coral. HECTOR is superior
to Coral for all cases. On average, HECTOR is about
3.7× faster than Coral.
The run times of HECTOR are vastly superior compared

to Acacia. For the SRR000868, SRR000870, SRR639330
and SRR957993 datasets, Acacia has a run time of 25, 24,
185 and 22 hours, respectively. In comparison, HECTOR
has a run time of 136.9, 114.6, 459.7 and 231.3 seconds, re-
spectively, using 2 threads. The run time of Acacia is not
shown in Figure 5 because of the huge run time difference
compared to Coral and HECTOR. In addition, Acacia is
also only a sequential program, so it is not possible to
measure the parallel run time with multiple threads.
The parallel scalability of HECTOR and Coral are

measured by varying the number of CPU threads used.
As HECTOR employs a master–slave model, all of its
speed-ups are calculated against the runtime with two
threads. Figure 6 illustrates the speedups of HECTOR
and Coral with different number of threads. HECTOR
showed a better parallel scalability compared to Coral.

Conclusion
The current-generation sequencing technologies are able
to produce low cost, high throughput reads. However,
the reads produced are imperfect and may contain vari-
ous sequencing errors. Error correction tools have been



Table 3 Information of the real datasets, consisting of the reference genome, length of the genome, coverage, average
read length, total number of reads in the dataset and version of the 454 platform

Dataset Ref genome Length Coverage Average read length Number of reads Version

SRR000868 E. coli UTI89 5,065,741 11.7× 257 230,517 454 GS FLX

SRR000870 E. coli UTI89 5,065,741 11.0× 257 216,458 454 GS FLX

SRR639330 E. coli O104 5,312,586 69.8× 627 591,126 454 GS FLX Titanium

SRR957993 S. enterica 4,915,960 20.6× 534 189,508 454 GS FLX

Table 2 Correction quality results of HECTOR and Coral for the simulated datasets in terms of recall, specificity, gain,
precision and F-score

Group Dataset Error corrector Recall Specificity Gain Precision F-Score

A 1 HECTOR 92.81 99.99 90.62 97.69 95.19

Coral 86.06 99.99 85.01 98.80 91.99

2 HECTOR 92.85 99.99 90.61 97.64 95.19

Coral 89.47 99.99 88.54 98.97 93.98

3 HECTOR 92.85 99.99 90.57 97.60 95.17

Coral 90.18 99.99 89.37 99.11 94.43

4 HECTOR 92.84 99.99 90.55 97.59 95.16

Coral 90.95 99.99 90.13 99.10 94.85

5 HECTOR 92.82 99.99 90.71 97.78 95.23

Coral 85.63 99.99 84.08 98.22 91.50

6 HECTOR 92.88 99.99 90.72 97.73 95.24

Coral 89.30 99.99 87.89 98.44 93.65

7 HECTOR 92.86 99.99 90.62 97.65 95.19

Coral 90.11 99.99 88.77 98.54 94.13

8 HECTOR 92.83 99.99 90.57 97.62 95.17

Coral 90.35 99.99 89.06 98.59 94.29

B 9 HECTOR 93.19 99.99 89.99 96.69 94.90

Coral 90.03 99.99 89.09 98.98 94.29

10 HECTOR 93.19 99.98 89.93 96.62 94.87

Coral 90.39 99.99 89.47 98.99 94.50

11 HECTOR 93.17 99.98 89.89 96.60 94.85

Coral 91.67 99.99 90.78 99.03 95.21

12 HECTOR 93.17 99.98 89.90 96.61 94.86

Coral 92.12 99.99 91.28 99.09 95.48

13 HECTOR 93.13 99.99 89.89 96.63 94.85

Coral 89.81 99.99 88.19 98.23 93.83

14 HECTOR 93.14 99.98 89.83 96.57 94.82

Coral 91.80 99.99 90.32 98.41 94.99

15 HECTOR 93.14 99.98 89.83 96.56 94.82

Coral 91.95 99.99 90.32 98.26 95.00

16 HECTOR 93.13 99.98 89.83 96.58 94.82

Coral 92.06 99.99 90.43 98.26 95.06
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Table 4 Correction quality results of HECTOR, Coral and Acacia on the real datasets in terms of recall, specificity, gain,
precision and F-score

Dataset Error corrector Recall Specificity Gain Precision F-Score

SRR000868 HECTOR 93.58 99.96 88.24 94.61 94.09

Coral 93.49 99.99 87.25 93.75 93.62

Acacia 84.17 99.98 77.61 92.77 88.26

SRR000870 HECTOR 92.11 99.86 85.30 93.11 92.61

Coral 92.03 99.99 85.71 93.57 92.79

Acacia 83.48 99.98 73.42 89.24 86.27

SRR639330 HECTOR 97.33 99.41 95.54 98.20 97.76

Coral 99.78 99.92 99.52 99.74 99.76

Acacia 92.56 99.98 90.19 97.50 94.97

SRR957993 HECTOR 94.54 96.43 88.23 93.74 94.14

Coral 94.55 96.87 89.09 94.53 94.54

Acacia 91.79 99.95 85.53 93.62 92.69
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shown to produce better quality data, which in turn en-
ables downstream applications to have better results,
compared to without any corrections [10]. Although many
error correction methods have been developed in recent
years, none of them explicitly targets homopolymer-length
errors in the 454 sequencing reads. We have addressed
this challenge by presenting HECTOR, a parallel multi-
stage homopolymer spectrum based error corrector for
454 sequencing data. HECTOR is based on a novel homo-
polymer spectrum based approach, which to the best of
our knowledge is the first algorithm that can deal with
arbitrary-length homopolymer indels, while maintaining
a linear time complexity. Based on our k-hopo coding
scheme, three correction techniques have been adapted:
two-sided conservative correction, one-sided aggressive
correction and voting-based refinement to form a multi-
stage correction workflow. In addition, HECTOR uses
Figure 4 Sensitivity and specificity of Coral and HECTOR based on the
show the sensitivity and specificity on different length of homopolymers o
x-axis shows the homopolymer lengths of 1, 2, 3, 4, 5, 6, 7 and larger than 7, an
multi-threading, based on a master–slave model, to le-
verage the compute power of common shared-memory
multi-CPU platforms.
We have evaluated the correction performance of

HECTOR in comparison to Coral and Acacia. The eval-
uations have been conducted using both simulated and
real reads. For both the shorter and longer simulated
reads, HECTOR achieves consistent and competitive
scores in terms of the five metrics: recall, specificity,
gain, precision, and F-score. For the real datasets, the
correction quality of HECTOR and Coral are compar-
able in terms of all measures. HECTOR also shows a
superior error correction quality compared to Acacia for
all real datasets, while Acacia shows better specificity. In
addition, HECTOR performs well even when the cover-
age of the dataset is low. On average, HECTOR runs
about 3.7× faster than Coral, while demonstrating a
length of the homopolymer on the SRR000868 dataset. a and b
f both HECTOR and Coral on the SRR000868 dataset, respectively. The
d the y-axis shows the sensitivity and specificity percentage, respectively.



Figure 6 Speed-up comparison between HECTOR and Coral. Speed-up comparison of both HECTOR and Coral on the real datasets using 2,
4, 8 and 12 threads. The x-axis shows the number of threads, and the y-axis shows the speed-up gained. HECTOR showed a better parallel
scalability compared to Coral.

Figure 5 Runtime comparison between HECTOR and Coral. Runtime comparison of both HECTOR and Coral on the real datasets using 2, 4, 8
and 12 threads. The x-axis shows the number of threads, and the y-axis shows the runtime in seconds. HECTOR is superior to Coral for all cases.
On average, HECTOR is about 3.7× faster than Coral.
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superior parallel scalability. The run times of HECTOR
are vastly superior compared to Acacia. Thus, although
HECTOR is not vastly superior compared to Coral, it of-
fers a novel approach to correct sequencing errors with
competitive correction abilities and improved runtime
performance.
For our future work, we are interested to see how

HECTOR can improve other NGS applications, e.g. de
novo assemblers. Examples of assemblers for 454 NGS
reads include CABOG [28] and Newbler [3]. Further-
more, a recent publication [30] shows that correcting er-
rors of 454 reads prior to transcriptome assembly can
improve the de novo assembly process. In addition, Ion
Torrent and 454 sequencing have similar error charac-
teristics, i.e. indels are abundant due to homopolymer
errors [31,32]. Therefore, it would also be interesting to
extend HECTOR to correct Ion Torrent reads.
Additional files

Additional file 1: HECTOR is capable of handling error scenarios
that change more than one hopo, i.e. substitution to neighbouring
hopo run, substitution of a single base/absorption in hopo run and
carry forward/incomplete substitutions.

Additional file 2: SHRiMP2 was explored as a potential mapping
algorithm apart from CUSHAW2. The results showed that the reads
mapped by both tools are practically equivalent.
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