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Abstract

Background: The main goal of the whole transcriptome analysis is to correctly identify all expressed transcripts
within a specific cell/tissue - at a particular stage and condition - to determine their structures and to measure their
abundances. RNA-seq data promise to allow identification and quantification of transcriptome at unprecedented level
of resolution, accuracy and low cost. Several computational methods have been proposed to achieve such purposes.
However, it is still not clear which promises are already met and which challenges are still open and require further
methodological developments.

Results: We carried out a simulation study to assess the performance of 5 widely used tools, such as: CEM, Cufflinks,
iReckon, RSEM, and SLIDE. All of them have been used with default parameters. In particular, we considered the effect
of the following three different scenarios: the availability of complete annotation, incomplete annotation, and no
annotation at all. Moreover, comparisons were carried out using the methods in three different modes of action. In
the first mode, the methods were forced to only deal with those isoforms that are present in the annotation; in the
second mode, they were allowed to detect novel isoforms using the annotation as guide; in the third mode, they
were operating in fully data driven way (although with the support of the alignment on the reference genome). In the
latter modality, precision and recall are quite poor. On the contrary, results are better with the support of the
annotation, even though it is not complete. Finally, abundance estimation error often shows a very skewed
distribution. The performance strongly depends on the true real abundance of the isoforms. Lowly (and sometimes
also moderately) expressed isoforms are poorly detected and estimated. In particular, lowly expressed isoforms are
identified mainly if they are provided in the original annotation as potential isoforms.

Conclusions: Both detection and quantification of all isoforms from RNA-seq data are still hard problems and they
are affected by many factors. Overall, the performance significantly changes since it depends on the modes of action
and on the type of available annotation. Results obtained using complete or partial annotation are able to detect
most of the expressed isoforms, even though the number of false positives is often high. Fully data driven approaches
require more attention, at least for complex eucaryotic genomes. Improvements are desirable especially for isoform
quantification and for isoform detection with low abundance.

Background
Gene transcription represents a key step in the biology of
living organisms. Several recent studies, including [1,2],
have shown that, at least in eukaryotes, a large fraction of
the genome is transcribed and almost all the genes (more
than 90% of human genes) undergo alternative splicing.
The discovery of the pervasive nature of eukaryotic tran-
scription, its unexpected level of complexity - particularly
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in humans - and its accurate quantification are helping to
have a deep insight into biological pathways and molec-
ular mechanisms that regulate disease predisposition and
progression [3].
The main goal of the whole transcriptome analysis is to

identify, measure, characterize and catalogue all expressed
transcripts within a specific cell/tissue - at a particular
stage and condition - in particular to determine the pre-
cise structure of genes and transcripts, the correct splicing
patterns, their abundances, and to quantify the differ-
ential expressions in both physiological and pathological
conditions.

© 2014 Angelini et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto:c.angelini@iac.cnr.it
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Angelini et al. BMC Bioinformatics 2014, 15:135 Page 2 of 25
http://www.biomedcentral.com/1471-2105/15/135

Thanks to pioneer works of [4-6] that showed, among
others, the potential of high-throughput mRNA sequenc-
ing (RNA-seq) and the development of efficient compu-
tational tools [7-9] to analyse such a data, RNA-seq has
quickly become one of the preferred andmost widely used
approaches for discovering new genes and transcripts and
for measuring transcript abundance from a single exper-
iment (see [10,11] for reviews). To date, RNA-seq exper-
iments have been successfully used in a wide spectrum
of researches, offering tremendous benefits with respect
to those previous approaches, such as microarrays, and
also creatingmany challenges from both experimental and
data analysis perspective [12].
In particular, to fully benefit of RNA-seq data, the

following (strongly connected) computational challenges
must be faced:

i) Transcriptome reconstruction or isoform identification
ii) Gene and Isoform detection (on/off )
iii) Gene and Isoform quantification (expression level in
terms of either FPKM or read-count)
iv) Gene and Isoform differential expression

Points i)–iii) are aimed to provide a full characteri-
zation of the transcriptome of a given sample, with ii)
and iii) often combined into a simultaneous step, where
some parsimonious strategies are employed to deal with
the high number of candidate isoforms. Point iv) is car-
ried out to compare samples across different physiological
and pathological conditions. To face these challenges, sev-
eral computational methods have been proposed [13,14]
and open-source software packages are available. How-
ever, despite the connection among the previous points,
most of the available computational methods attempt to
face each point independently. Therefore, sophisticated
pipelines are built in order to provide a comprehensive
answer (see the Tuxedo pipeline [15] as a remarkable
example). Anyway, the choice of the best method to use
for a specific dataset, the best parameter tuning and the
expected performance are not clear to a beginner user.
In particular, methods often require several additional
parameters that are not easy to understand and choose.
Assessing the best combination is very difficult and time
consuming. In most cases the choice is done in a subjec-
tive way, partially driven by prior knowledge of the struc-
ture of the genome under analysis and by some heuristic
considerations, rather than using an objective and general
approach. Therefore, most users are often confused and
tend to use default values.
Recently, few independent studies have been devoted to

compare the performance of computational methods for
detecting differential expression under a wide type of set-
tings, see for example [16-18]. For what concerns points
i)–iii) limited comparisons were carried out within the

same paper that describes the proposed method [19-23].
However, to the best of our knowledge, no independent
comparison was available until the recent study of [24],
conducted almost simultaneously to our study.
Goals of the present paper are to illustrate the results

of a detailed comparison of five widely used tools, namely
CEM [23], Cufflinks [20], iReckon [22], RSEM [19] and
SLIDE [21], to provide a discussion about expected
results, and to assess which promises are already met
and which challenges are still open and require further
methodological developments. Even though, at least for
data driven approaches, our conclusions are similar to
those achieved by [24], the way to carry out our analysis
and the way to compare the methods are different. There-
fore, this study can be viewed as a complement to [24].
Specifically, we assessed the particular improvements that
may be obtained by using annotation.
In the following section, we briefly review some of the

most widely used tools for isoform reconstruction and
quantification in organisms for which a reference genome
is available. When the reference genome is not available
(or the user does not want to use it) such methods can-
not be used andmore computational demanding assembly
strategies have to be taken into account instead, see for
example [25,26] or more in general [24]. Subsequently,
in Methods section we describe the approach considered
to build the comparisons and provide the rationale about
the compared methods, their parameters and modes of
usage. Comparisons are mainly carried out for simulated
paired-end reads (PE) with different through-put and
read-lengths, since they represent the state of the art of
most current experiments. However, for completeness we
also implemented a limited simulation study using single-
end reads (SE) at the same depth. All methods weremostly
used with their default parameters, without attempting
any internal parameter optimization to improve their per-
formances, mimicking the expected usage of a non expert
scientist in the analysis of RNA-seq data.
Methods were compared under different experimental

scenarios, assuming the availability of complete annota-
tion, incomplete annotation and absence of annotation.
Moreover, whenever possible, such scenarios were com-
bined with three different modes of action that account
for different strategies in the considered algorithms. In
the first mode, the inference is limited only to those iso-
forms that are present in the annotation. In the second
mode, the annotation is used as a guide to identify other
possible transcripts. In the third mode, all inference is
fully data driven. We observe that the case of complete
annotation (combined with inference limited to handle
only transcripts contained therein) represents an ideal
case, that allows us to evaluate the performance of each
method in detecting presence of isoforms and to quan-
tify their expression when everything else in known. This
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situation is rarely met given our current knowledge of
Biology. However, it can be considered as a limit case
since, in the near future, it will be possible to work with
almost complete annotations, thanks to the output of large
international projects such as ENCODE (Encyclopedia of
DNA Elements) [27], at least for widely studied organisms
such as the Human one. The case of incomplete annota-
tion (combined with an inference driven by the provided
annotation) illustrates the realistic case in current studies,
where previous projects have disclosed most informa-
tion. However, data emerging from the literature show
that such information represents only partial knowledge.
Finally, the full data driven approach is necessary when
studying novel sequenced organisms for which no previ-
ous information is available (or the user does not want
to use the annotation explicitly). All comparisons in [24],
except iReckon and SLIDE, were carried out fully data
driven.
In Results section, we illustrate the results of our com-

parative study on two different experimental set-ups. The
first models small genomes, while the secondmodels large
genomes. In particular, we compare recall and precision
given a set of truly expressed isoforms and we evaluate
the quality of the abundance estimates. Also with respect
to this point, our method differs from [24]. In our case
the truth is based on simulated data, about which we
have a complete knowledge in terms of truly expressed
isoforms and expression levels. Conversely, in [24] the
comparison was carried out on a real dataset for which
the same information was not available. In that case the
aim was to benchmark data driven approaches in recov-
ering the gene annotation, without taking into account
whether the retrieved isoforms were present in the sam-
ple or not. Finally, Conclusions section summarizes all our
evaluations.

An overview on computational methods for isoform
identification and quantification
The classical pipeline for isoform detection and estima-
tion consists of the following three logical steps. First,
the reads are aligned to the reference genome. Subse-
quently, candidate isoforms are either identified or are
directly provided by the user through an annotation file.
Finally, the presence and the abundance of each isoform
are (either independently or simultaneously) estimated.
We refer to [13,14] for detailed reviews of the existing
algorithms and software. Alternatively, it is also possible
to use methods, such as [26], that assemble reads in longer
fragments that constitute the transcriptome, and then
use methods for quantifying the abundance of inferred
transcripts. Assembly methods are based on local align-
ment and graph theory and are similar in spirit to those
methods used to assemble genomes. Such methods are
potential very interesting for detecting de-novo isoforms.

However, the comparison of such approaches with aligned
based algorithms is out of the scope of the current work.
RNA-seq alignment can be performed by a series of

devoted tools such a [28-32], that allow to map both reads
to the reference genome without large gap (i.e., exon-
body reads) and reads with large gap in terms of genomic
coordinates that span exon-exon junctions (i.e., splice-
junctions reads). Since the aim of this paper is to compare
isoform estimation/detection procedures, we chose for
the alignment step Tophat2 [29] (version 2.0.7) and we
refer to [18,31,33,34] for comparisons on different algo-
rithms. The choice of Tophat2 is motivated by the fact
that the analysed tools suggest it, or its previous version
[28], as aligner. Nevertheless, in general these methods
only require the user to provide an alignment file. There-
fore, any of the existing RNA-seq mappers can be used.
The ability of an aligner to properly map the junction
reads is important since false negative junctions may pre-
vent the possibility of reconstructing some isoforms, while
false positive junctions can lead to false isoform identi-
fication. We also note that some methods, for example
[35], align reads to the transcriptome to better map the
(known) splice junctions. Others, such as [29], implement
hybrid approaches using both transcriptome and genome.
Once the read alignment has been performed, the infer-

ence can be carried out at different biological levels.
Quantification of multiple isoforms is more complicated
than the single event one (i.e., exons, junctions or genes),
since different isoforms of the same gene (or that insist on
the same genomic locus) share great part of the sequences
from common exons and junctions. Moreover, identifi-
cation and quantification problems are affected by both
positional and sequence content biases present in RNA-
seq data and by several other -still not fully understood-
sources of experimental biases. The differences among the
methods mostly depend on the way they model reads and
the way they account for the different sources of biases.
In principle RNA-Seq data (i.e. observed coverage and

splice-junction) can bemodeled as a linear combination of
isoforms. Therefore, the problem can be seen as a decon-
volution problem [36,37] with expression levels as weights
and isoforms as convolution kernels. Under such formal-
ism, the isoform expression can be estimated either by
using the “maximum likelihood principle” or by using
similar statistical optimizations. Unfortunately, the design
matrix that describes the isoform structures is unknown
(or at least not completely known) and potentially very
large. Therefore, the problem can be treated as a two
steps procedure where, first, a set of candidate isoforms is
identified, then the inference is made on such a set. The
isoform identification step is crucial since the rest of infer-
ence is carried out on the basis of this result. On the other
hand, it is also possible to perform the two steps simulta-
neously, see [38]. Moreover, because of the large number
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of candidate isoforms, the problem becomes ill-posed.
Therefore, some penalties have to be used to encourage
sparse solutions and avoid data over-fitting.
For instance, the very famous Lasso-type penalty was

used in [21,39]. This penalty is sub-optimal since it does
not take into account that all abundances are non nega-
tives and their sum is constrained. The penalty in [22] is
one attempt to explicitly use such constraints and rein-
force the sparsity. In other cases, see for example [20] the
sparseness is achieved using post-filtering steps to reduce
the number of candidate isoforms.
It should be noted that several methods proposed for

studying isoforms [36,40,41] do not perform the identi-
fication step explicitly. Indeed, they require the user to
provide such a-priori knowledge. This is usually done
either in terms of annotation file (in .GTF or .BED for-
mat) that can be downloaded from some database (e.g.,
[42]) or as a preliminary result of some tools for transcript
reconstruction, such as in [43]. In this context, the infer-
ence is often limited to the easier problem of quantifying
only those isoforms that are contained in the annotation
rather than identifying novel isoform structures. Despite
the availability of several methods that allow both isoform
reconstruction and quantification, we consider useful to
consider those approaches since, when the annotation
will become complete, they can turn back in competition.
Moreover, providing them a list of candidate isoforms
obtained from some assembly procedures, such meth-
ods claim to return accurate quantification. An example
of such idea is given by RSEM [19] that is now used as
quantification step combined with Trinity [26].
More in general, for methods performing the identifi-

cation step, isoform reconstruction can be carried out by
using two other philosophical approaches. In the first one,
the algorithm is driven by an annotation (that represents
the available information at state of the art). In the second
case, all isoforms are reconstructed ab initio (or fully data
driven), mainly using graph theory. These models must be
used in combination with some (heuristic) approaches in
order to make the graph optimization feasible due to the
large number of potential transcripts coming from a splic-
ing graph. Moreover, it often occurs that a same method
can use different rationales according to the way it is used,
see [20,23,43].

Methods
In order to evaluate and compare the performances of
the proposed methodologies, we used simulated data for
which the true isoform structures and abundances are
known.
Few RNA-Seq simulators have been proposed in the

last years (BEERS Simulator [31], RSEM Read Simula-
tor [35], RNASeqReadSimulator [44]). In this work we
used Flux Simulator [45] (available at http://sammeth.net/

confluence/display/SIM/Home), which is a tool able to
model most of the experimental steps. Indeed, it takes into
account reverse transcription, fragmentation, adapter lig-
ation, PCR amplification, gel segregation and sequencing.
We ran Flux Simulator with the default file of param-

eters suggested for H. Sapiens (see Section 5.2 of
the user manual at http://sammeth.net/confluence/pages/
viewpage.action?pageId=786691) where we only changed
the number of molecules (NB_MOLECULES), the num-
ber of reads (READ_NUMBER) and the read length
(READ_LENGTH) to achieve the desired sparsity. We
used the error model for reads of length 76 bp provided in
the software, as suggested in the user manual, because the
simulator scales the error profile to the chosen read length
not explicitly supported by the model.
As output Flux Simulator returns a .pro file containing

for each transcript the number of simulated reads orig-
inating from it and its length in bp. Therefore, for each
transcript the “true” abundance was evaluated in terms
of FPKM (Fragments Per Kilobase of transcript per Mil-
lion of mapped fragments). Transcripts not originating
any simulated read were considered as not expressed.

Simulation scheme
Human genome (Hg19, UCSC) was considered as refer-
ence organism and release 69 annotation file was down-
loaded from Ensembl database [46]. For simplicity, we
took into account only transcripts coding for proteins (i.e.,
142692 potential transcripts in total).
Two experimental set-ups were simulated using Flux

Simulator: Set-up 1, in which all transcripts from chro-
mosome 1were considered as Complete Annotation (CA),
i.e., CA contains 13123 transcripts; Set-up 2, in which
we considered a subsample of 85615 transcripts uniformly
sampled from the list of all protein-coding transcripts as
CA (i.e., CA contains 85615 transcripts). These scenarios
were used to investigate the capability of the compared
methodologies to deal with “small” and “large” genomes.
For Set-up 1 Flux Simulator generated a large dataset of

(strand-specific) PE reads of 100 bp per side and a set of
3726 transcripts with positive FPKM; for Set-up 2 it gen-
erated a dataset of (strand-specific) PE reads of 75 bp per
side and a set of 17032 transcripts with positive FPKM.
Fastq files of reads underwent to a filtering process to
remove those pairs that had one of the two sides smaller
than 100 bp in Set-up 1, and one of the two sides smaller
than 75 bp in Set-up 2, leading to a number of 31177152
PE fragments for Set-up 1 and to a number of 74365564
PE fragments for Set-up 2.
To investigate the depth effect, in Set-up 1 the simu-

lated fragments were sub-sampled to obtain six subsets of
cardinality 20M, 10M, 5M, 1M, 0.5M and 0.25M, whereM
stands for 106 reads. To study the read-length effect, for
each of the six subsets the reads were trimmed to obtain

http://sammeth.net/confluence/display/SIM/Home
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analogous sets of PE fragments of length 75 bp and 50
bp per side. Finally, to account for the library type effect,
for each of the six sets of PE of 100 bp per side, only the
left-mate reads were retained to obtain analogous sets of
SE reads of length 100 bp. Analogously, in Set-up 2 the
dataset of PE reads was sub-sampled to obtain a subset of
cardinality 60M, from which a second set was generated
by trimming the reads at 50 bp.
Summarizing, overall eighteen PE datasets and six SE

datasets were obtained under Set-up 1 and two datasets
under Set-up 2. Set-up 2 was also analyzed for depths of
40M and 20M (both at 75 bp and 50 bp). However, such
results are not showed here for the sake of brevity.
To investigate the ability of different methods for tran-

script identification at different abundance levels, iso-
forms were divided in high, medium and low expression
classes, where (analogously to iReckon) the low class is
given by the isoforms whose true expression belong to the
lower 5% of the FPKM distribution, the high class by iso-
forms with expression larger than the 74% of the FPKM
distribution, the remaining ones representing the medium
class.
For the sake of completeness, we also generated an

Incomplete Annotation (IA). IA was obained from the
corresponding CA selecting 70% of the annotated tran-
scripts (i.e. 9186 in Set-up 1 and 59930 in Set-up 2).
In Set-up 1, IA was aimed to mimic a normal condition
where most of the not annotated isoforms are present at
low abundance in the RNA sample. Therefore, IA con-
tains about 70% of the non expressed transcripts and
the remaining 30% of expressed transcripts. In particu-
lar, the highly expressed transcripts represent 93% of the
true high class, the moderately expressed transcripts rep-
resent the 64% of the true medium class and the lowly
expressed transcripts represent only the 30% of the true
low class. On the contrary, in Set-up 2, IA was obtained
by randomly sampling the 70% of isoforms from the cor-
responding CA, regardless of their expression, to mimic
the situation where tissue specific conditions or patholo-
gies can alter the normal expression profile and produce
novel transcripts that are present at any expression level.

Read alignment
PE reads of each dataset were aligned to the human
reference genome by using TopHat2 [29] with option –
library-type fr-secondstrand turned on to benefit of the
strand information of the simulated reads.
In particular, TopHat2 can be used with option -G

turned on (i.e., by adding -G annotation.gtf to the com-
mand line). In this case, first, TopHat2 extracts the tran-
script sequences and uses Bowtie2 to align reads to this
virtual transcriptome. Then, only the reads that do not
fully map to the transcriptome are mapped to the ref-
erence genome where potential novel splice sites are

identified. The reads mapped on the transcriptome are
converted to genomic mappings (spliced as needed) and
merged with the novel mappings and junctions in the final
TopHat2 output. By contrast, if the option is turned off
(i.e., -G is not used), TopHat2 aligns the reads directly
to the genome and it searches for junctions with a data
dependent approach [28]. It is clear that providing the
annotation file allows TopHat2 to better map the splice
junctions and cover the entire exon body, and to reduce
the number of FP junctions, see [29] for a more detailed
discussion.
For the scope of our analysis, when the option -G was

turned on, we ran TopHat2 alignment on each set of PE
reads twice. The first time, we provided CA. The sec-
ond time, we provided IA. We also ran TopHat2 with the
option -G turned off. For each set of the SE reads in Set-
up 1, we repeated the alignment with TopHat2 using the
same scheme.

Modes of action
In our study, the problem of isoform detection and quan-
tification is analyzed under different modes of action:

Mode 1) The method assumes that annotation is avail-
able and the algorithm is forced to quantify only those
isoforms in the given annotation. Those isoforms that are
not present in the annotation are set to zero.
Mode 2) The method assumes that annotation is avail-
able, but it could be incomplete. Therefore, the algorithm
uses the provided annotation as a guide in order to find
potentially new isoforms. After that all potential isoforms
are identified, their expressions are quantified.
Mode 3) The method assumes that no information is
available. Therefore, all potential isoforms are computed
from the data. Then, their expressions are quantified.

It is important to note that the modes of action can be
combined with the different type of available annotation.
In particular, under Mode 1 and 2 we can further distin-
guish the case that the available annotation is CA or IA.
The case of Mode 1 with CA represents an ideal situation,
when everything else is known. Such scenario is rarely met
given our current knowledge of Biology, but can be con-
sidered as limit case for studies in the near future. The case
of Mode 2 with IA represents a realistic scenario in cur-
rent studies. Indeed, it is true that previous projects have
disclosed most information, but still data emerging from
the literature shows that such information represents only
partial knowledge. Therefore, IA in Mode 2 represents
a more realistic situation. For the sake of completeness,
we observe that the usage of the methods under Mode 1
with IA will not allow to recover the not-given transcripts.
Analogously, all novel transcripts detected by any method
inMode 2 with CA will be false positives. In both cases we
are aimed to evaluate how such drawbacks can affect the
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estimation of other isoforms. Finally, Mode 3 is consid-
ered to illustrate the expected results that one can obtain
when studying novel sequenced organisms for which no
previous information is available (or when the user does
not want to use it) and all inference has to be carried
out from the experimental data. Moreover, comparing our
simulation scheme with the analyses carried out in [24],
we observe that their results correspond to Mode 3 with-
out annotation, except for iReckon and SLIDE that were
used similar to our Mode 2.
Figure 1 illustrates the simulation pipeline built for the

two experimental set-ups.

Compared algorithms
In this paper, we assess the performance of five different
methods: CEM, Cufflinks, iReckon, RSEM and SLIDE. All
of them were used with mostly their default values and
with modes of action illustrated in Table 1. We observe
that Cufflinks and CEM can perform all modes of action,
while the other methods only some of them. All methods
where compared in Set-up 1 for PE reads. All methods,
except iReckon, were compared in Set-up 1 for SE reads.
All methods, except SLIDE, were compared in Set-up 2.

CEM
CEM [23] is a recent command line program written in
C++ and Python developed by the authors of IsoLASSO

[39] of which it constitutes a significant improvement. Its
logic is very similar to the one of Cufflinks. Indeed the
only required argument is the sam/bam alignment file.
In this case, it executes Mode 3. The assembly problem
is solved via a connectivity graph, which is more general
than the overlap graph implemented in Cufflinks. By using
optional parameter -x, the user can specify the annotation
file (in BED format) and execute Mode 1 or Mode 2. If –
forceref is turned on (i.e., -x annotation.bed – forceref ),
CEM will run in Mode 1. If the option –forceref is turned
off (i.e., -x annotation.bed), the existing gene annotation
will be incorporated into the estimation process as a guide
from which CEM assembles new isoforms. Regardless of
the action modes, the estimation of transcript abundance
is carried out by minimizing a lasso penalized squared
data-fit loss, where data-fit is given modeling the coverage
in each segment as a Poisson distribution whose intensity
is proportional to the mixture of abundances of the iso-
forms that insist on the same segment.With respect to this
point, the main difference between CEM and its parent,
IsoLASSO, consists in the algorithm used to performmin-
imization: CEM uses the Expectation-Maximization (EM)
algorithm instead of quadratic programming. As a conse-
quence CEM results by far more efficient than IsoLASSO,
and overall one of the most efficient algorithm in terms of
computational cost. No explicit parameter is available for
strand specificity. CEM supports both SE and PE dataset.

Figure 1 Pipeline of the simulation. Simulation workflow used both in Set-up 1 and Set-up 2. Complete annotation (CA) was given to Flux
Simulator to generate strand specific PE reads (R). Reads were aligned on the reference genome using TopHat2. TopHat2 was independently used in
three different ways (with CA, IA and without annotation). For each execution an alignment bam file was obtained. The alignment bam files were
used as input for the compared methods. For each alignment file CEM and Cufflinks were used in Mode 1, 2 and 3; Slide was used in Mode 1 and 2,
iReckon was used only in Mode 2. When providing annotation during the alignment, the same annotation was also used for Mode 1 and 2 (see
green boxes for CA and pink boxes for IA). When the data driven alignment was carried out we further distinguished (in Mode 1 and 2) the cases
with CA and IA, as annotation (see purple boxes). Since RSEM does not work with aligned reads, the output of Flux simulator was processed using
CA or IA as annotation (depicted in a green and pink box, respectively).
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Table 1 Software used in the comparison

Name Version Modes of action Link Publication

TopHat2 2.07 CA/IA, no annotation http://tophat.cbcb.umd.edu/ [28,29]

RSEM 1.2.3 1 http://deweylab.biostat.wisc.edu/rsem/ [19,35]

Cufflinks 2.0.2 1,2,3 http://cufflinks.cbcb.umd.edu/ [20]

SLIDE May 7th, 2012 1,2 https://sites.google.com/site/jingyijli/ [21]

CEM 0.9.1 1,2,3 http://alumni.cs.ucr.edu/~liw/cem.html [23]

iReckon 1.0.7 2 http://compbio.cs.toronto.edu/ireckon/ [22]

Table 1 shows detailed information for the software used during the study.

Cufflinks
Cufflinks [20] is a popular software developed by the
authors of TopHat and Bowtie and is part of the Tuxedo
pipeline [15]. It is a command line tool, written in C++,
where the only required argument is the sam/bam align-
ment file. In this case, it executes Mode 3. In particular,
Cufflinks reduces the comparative assembly problem to
a maximum matching problem in bipartite graphs and
solves it by using the so call overlap graph approach.
On the contrary, when using the optional parameters -
G (i.e., -G annotation.gtf ) or -g (i.e., -g annotation.gtf )
the user can execute Mode 1 and Mode 2, respectively.
Cufflinks was also used with the option -u turned on
that allows an initial estimation procedure to assign more
accurately those reads that mapped to multiple loca-
tions in the genome. Given the set of newly identified or
annotated transcripts, for all modes of action, the tran-
script abundance is estimated via a Maximum Likelihood
approach, where the probability of observing each frag-
ment is modeled as a linear function of the transcript
abundance that can originate the fragments. Because of
linearity, the likelihood function has a unique maximum
value that Cufflinks finds via a numerical optimization
algorithm. Finally, we also observe that when the reads
are aligned by TopHat by using strand-specific mode,
Cufflinks will automatically treat data as strand-specific
(otherwise library type has to be explicitly specified by the
user). Cufflinks supports both SE and PE dataset.

iReckon
iReckon is a java software which implements the method
presented in [22]. The input of iReckon are aligned reads,
genome, annotation and reads themselves. Genome and
annotation have to be provided in a house format obtained
from Fasta and BED format after conversion in Savant
[47]. The original reads and the genome files are necessary
since after the construction of an enlarged transcriptome
(i.e., all possible isoforms including pre-mRNA and iso-
forms with retained intron) from the mapped reads, the
estimation is done by re-aligning the reads (using BWA
0.6.2, [48]) on the sequences of all possible isoforms.
In principle iReckon could execute both in Mode 1 and

Mode 2. Nevertheless, we used only Mode 2 (which is
the iReckon’s default approach), due to a potential bug
appearing when executing version 1.07 with the option -
novel 0 that was forcing the method in quantifying only
transcripts in the annotation.
The main advantage of iReckon is that it directly models

(and to date is the only one to have this feature) multi-
ple biological and technical phenomena, including novel
isoforms, intron retention, unspliced pre-mRNA, PCR
amplification biases, and multi-mapped reads. iReckon
utilizes the EM algorithm with a new non linear regular-
ization penalty to accurately estimate the abundance of
known and novel isoforms. The reason is that abundances
are very similar to frequencies being non negative and
summing to a normalization constant.
For large datasets and genomes, iReckon requires a

large memory space and execution time. Most of the run-
ning time is due to the re-alignment step. No additional
parameter is available for strand specificity. iReckon only
supports PE dataset.

RSEM
RSEM [19] is a software package which implements the
method originally presented in [35]. It is a command line
program, written mainly in C++, with contributions in
Perl and R. In contrast with previous methods, RSEM can
only perform the estimation of isoform abundance given
an annotation file, i.e. it can only work under Mode 1.
As input data, RSEM requires either both the genome
sequence and the annotation (in fasta and .GTF format)
or the transcript sequences directly, and the read file.
As first step, the reads are aligned directly to the tran-
script sequences using Bowtie (function rsem-prepare-
reference); then abundances are estimated via an EM
algorithm based on a generative statistical model that han-
dle read mapping uncertainty (function rsem-calculate-
expression). In particular, it uses an iterative process to
fractionally assign reads to each transcript considering the
probabilities of the reads being derived from each tran-
script and taking into account positional biases created
by RNA-seq library-generating protocols. The interest in
RSEM is that, although it can quantify only the known

http://tophat.cbcb.umd.edu/
http://deweylab.biostat.wisc.edu/rsem/
http://cufflinks.cbcb.umd.edu/
https://sites.google.com/site/jingyijli/
http://alumni.cs.ucr.edu/~liw/cem.html
http://compbio.cs.toronto.edu/ireckon/
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transcripts contained in the annotation file, if the anno-
tation file includes potential novel transcripts or ab-initio
estimates transcripts, the quantification can be performed
as well. In this context it comes bundled with the Trin-
ity software [26] where it is used to quantify the novel
assembled transcripts. We used RSEM software with
the –strand-specific option activated. RSEM supports
both SE and PE dataset.

SLIDE
SLIDE (Sparse Linearmodeling for IsoformDiscovery and
abundance Estimation) is a software mainly written in
Python (with some R scripts) that implements the statis-
tical method described in [21]. It can be used either in
Mode 1 (–mode estimation) and in Mode 2 (–mode dis-
covery). In particular, in Mode 2, SLIDE defines all the
possible 2n − 1 transcripts obtained by enumerating the n
sub-exons of each gene.
In contrast to the other methods, SLIDE does not work

on empirical read coverage, but it associates to each PE
fragment four genomic locations corresponding to the
starting and ending position of its 5’ and 3’ reads, respec-
tively, and converts such positions into four sub-exon
indexes. Then, it computes the fraction of pairs whose
genomic locations span a given bin (i.e., a combination
of four given sub-exons, for all sub-exon combination).
Subsequently, it uses a linear model to approximate the
observed bin proportions in terms of isoform proportions,
which represent the parameters to be estimated. SLIDE
estimates isoform abundance with a non negative least
squares solution of a linear model. The design matrix
models the conditional probability of sampling a PE read
in a bin given that it comes from an isoform. A modified
lasso type approach is used to limit the number of non null
isoforms as well as to favor longer isoforms.
Finally, we observe that SLIDE has beenmainly designed

for relative small genomes. Therefore, the code has not
been optimized. For this reason we compared its perfor-
mance only on a small scale comparison (i.e., Set-up 1). In
this case we considered both the higher confident output
denoted, as “less”, and the larger one, denoted by “more”,
similar to the original annotation. No explicit parameter
is available for strand specificity. SLIDE supports both SE
and PE dataset.

Novel isoformmatching
All methods used in Mode 1 (i.e. Cufflinks -G; RSEM;
CEM - forceref and SLIDE - mode estimation) directly
estimate FPKM of each isoform given in the annotation
(CA or IA). Therefore, the association between the esti-
mated value and the true value is straightforward. On
the contrary, methods used in Mode 2 or Mode 3 allow
to discover (new) isoforms. Therefore, their output need
to be further processed in order to properly associate

the inferred isoforms with the true ones. To this pur-
pose, Cuffcompare v2.1.1 (which is part of the Cufflinks
suite) was used to associate the output of any considered
method (usually a gtf file) with the true CA. In particu-
lar, a ‘true’ isoform name was associated to an assembled
isoform whenever a complete match of the intron chain
was observed (i.e, Class Code ‘=’ in < cuff_in > .tmap
file, see user manual of [20] for details). Such level of tran-
script matching is quite stringent and could be relaxed,
since in some cases we noticed that the match in Mode
2 and 3 was achieved at lower level of stringency (for
example transcripts were contained in the true ones or
other Class Codes were returned by Cuffcompare). How-
ever, the choice of using stringent match does not change
the conclusions, but only the actual values of the per-
formance indexes. The assembled transcripts which did
not match an annotated one were classified as novel. In
few cases, more assembled isoforms were associated to
the same annotated isoform. Then, the estimated FPKM
of the isoform was evaluated as the sum of all estimated
FPKMs. Similarly to [24], for iReckon, transcripts with
intron retention or unspliced events were not considered.

Measures of performance
In order to measure the performance of the considered
methods, we first evaluated their capability in isoform
detection in terms of true positives (TP), false positives
(FP) and false negatives (FN), then their accuracy in iso-
form estimation in terms of estimation error.
For isoform detection, the following indicators were

computed:

• Recall (aimed at measuring the fraction of truly
expressed isoforms that is retrieved) defined as

recall = TP
TP + FN

=
∣∣∣
{
̂FPKM > 0

}
∩ {FPKM > 0}

∣∣∣
|{FPKM > 0}| .

(1)

• Precision (aimed at measuring the fraction of
predicted expressed isoforms that are truly
expressed) defined as

precision = TP
TP + FP

=
∣∣∣
{
̂FPKM > 0

}
∩ {FPKM > 0}

∣∣∣∣∣∣
{
̂FPKM > 0

}∣∣∣
.

(2)

where ̂FPKM represents the estimated abundance of the
isoform, FPKM is the true abundance and |S| stands
for cardinality of set S. If FPKM > 0 the isoform is
truly expressed, while if FPKM = 0 the isoform is not
expressed, analogously for the estimated values. Obvi-
ously, recall is a measure of completeness and precision
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is a measure of accuracy. Recall was also evaluated on
abundance classes (low, medium and high) defined as
described in Section Simulation scheme.
As a global measure of performance we also considered

the following

• F-Measure defined as

F = 2 ∗ precision ∗ recall
precision + recall

. (3)

For evaluating the accuracy in abundance estimation, we
distinguished three cases and considered

• Estimation Error (aimed at quantifying the FPKM
retrieval accuracy) defined as

error=

⎧⎪⎪⎨
⎪⎪⎩

E1 = ̂FPKM−FPKM
FPKM if FPKM > 0 and ̂FPKM > 0

E2 = ̂FPKM if FPKM = 0 and ̂FPKM > 0

E3 = FPKM if FPKM > 0 and ̂FPKM = 0

,

(4)

where E1 quantifies the (relative) accuracy in estimating
the expressed isoforms that the method is able to identify,
E2 quantifies the abundances assigned to FP isoforms and
E3 quantifies loss of expression for FN isoforms.
The last, but not the least, important thing to be con-

sidered is the computational cost. Since algorithms are
implemented in different languages and can be used on
different computational architectures that can benefit or
not of parallelism, we believe that any precise quantifica-
tion of computational cost would be not fair. Therefore,
this point will be only discussed from qualitative point of
view in Section Results.

Results and discussions
In the following, we first compare the methods in terms of
their capability in isoform detection, then in terms of their
accuracy in isoform estimation. We stress that the goal
of the comparison is not to make a rank list of the con-
sidered methods, but to underline global positive aspects,
common weaknesses and open problems that might lead
to over-optimistic conclusions about the performance of
current methodology.

Isoform detection
Here, we illustrate the results in terms of recall, preci-
sion and F-measure considering the following effects: type
of alignment, modes of action, type of annotation, type
of library, abundance level, read length and sequencing
depth. In order to investigate such effects, the same figures
have to be inspected several times evaluating different
aspects each time. To facilitate such comparison, we first
describe the general structure of the figures, then we focus
the attention on some specific comparison.

Figures 2, 3, 4 and 5 illustrate results for precision and
recall obtained in Set-up 1 for libraries 100 bp-PE, 75
bp-PE, 50 bp-PE and 100 bp-SE, respectively. For each
of these cases, recall is further expanded with respect to
the level of abundance of the true isoforms and results
are reported in Figures 6, 7, 8 and 9 in the same order.
Finally, F-measure is illustrated in Additional file 1: Figure
S1, Additional file 2: Figure S2, Additional file 3: Figure S3
and Additional file 4: Figure S4 in the same order for each
of the four cases.
In Figures 2, 3, 4 and 5 results are visually depicted

into four panels, A (upper left), B (upper right), C (bot-
tom left) and D (bottom right). Panels A and B refer
to the annotation driven alignment; panels C and D to
the data driven alignment. Precision is depicted in pan-
els A and C, while recall in panels B and D. Within
each panel, the plot is divided in six sub-blocks accord-
ing to the modes of action and the type of annota-
tion. In particular, on the left blocks (Mode 1) there are
RSEM, Cufflinks with the -G option turned on, CEMwith
the -forceref option turned on, SLIDE with -mode esti-
mation. In the central blocks (Mode 2) there are iReckon,
Cufflinks with the option -g turned on, CEM with the
option -forceref turned off, SLIDE with -mode discovery.
Finally, in the right blocks (Mode 3) there are only Cuf-
flinks and CEM with all default options. Results obtained
using CA/IA are depicted in the first/second row of each
panel, respectively. In Set-up 1 different bars for the same
method and mode of action correspond to the different
sequencing depth (0.25M, 0.5M, 1M, 5M, 10M and 20M,
respectively). Dashed horizontal lines are added to facili-
tate comparisons among different cases. Since RSEM does
not depend on the alignment strategy, for comparative
purposes, panels A and C report the same precision and
panels B and D the same recall, in correspondence of the
same type of annotation for RSEM. Analogously, within
each panel, methods in Mode 3 show the same precision
and recall (within the upper and bottom rows of each
panel), not depending on the provided annotation when
the alignment is data driven.
Figures 6, 7, 8 and 9 have a similar organisation. In par-

ticular, CA is used in panels A and C, IA in panels B and D.
Within each panel, the plot is divided in nine sub-blocks.
Along the horizontal direction the organization is analo-
gous to that of Figures 2, 3, 4 and 5, in the vertical direction
recall is reported for the low, medium and high abundance
classes, respectively.
Additional file 1: Figure S1, Additional file 2: Figure S2,

Additional file 3: Figure S3 and Additional file 4: Figure
S4 are also organized in four panels and illustrate the F-
measure with respect the sequencing depth. Panels A and
B refer to the annotation driven alignment; panels C andD
to the data driven alignment. CA is used in panels A andC,
IA in panels B and D. To better distinguish results among
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Figure 2 Precision and Recall bar-plot in Set-up 1 for 100 bp-PE. Panels A (upper left) and B (upper right) depict precision and recall bar-plots
for the compared methods when the alignment is annotation driven. Panels C (bottom left) and D (bottom right) are analogous to Panels A and B,
when the alignment is data driven. The figure refers to Set-up 1 and 100 bp-PE. Within each panel, the left column refers to methods used in Mode
1, middle column to methods used in Mode 2, right column to methods used in Mode 3; upper row represents results when the annotation is CA,
bottom row is the analogous case when the annotation is IA. Different bars of the same colour for the same method and mode of action
correspond to the different depth (i.e., from left to right 0.25M, 0.5M, 1M, 5M, 10M and 20M). When the alignment is annotation driven, the same
annotation provided during the alignment was used for Mode 1 and 2.

different modes of action, results in Mode 1 are shown
with continuous lines, those in Mode 2 are reported in
dashed lines, those in Mode 3 are reported in dotted lines.
For the sake of completeness, we also provide Additional

file 5: Figure S5, Additional file 6: Figure S6, Additional
file 7: Figure S7 and Additional file 8: Figure S8 showing
the number of TP and FP obtained under Set-up 1, for
the most extreme conditions PE vs SE, 20M vs 0.25M. The
figures are again organized in four panels where panels A
and B refer to the annotation driven alignment; panels C
and D to the data driven alignment. CA is used in panels
A and C, IA in panels B andD.Within each panel, the right

bars (i.e., the one depicted in coral) show the number of
FP and the left ones (depicted in aquamarine) the number
of FN. An horizontal dashed line is added representing the
number of truly expressed isoforms. Therefore, the differ-
ence between the number of FP and this line represents
the number of FN.
To provide a better insight into the capability of meth-

ods in Mode 2 (with IA) to identify those isoforms that
are not provided in the annotation, Figures 10 and 11
show the number of TP (with the annotation driven align-
ment and with data driven alignment, respectively). In
these figures, the number of TP is divided in those already
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Figure 3 Precision and Recall bar-plot in Set-up 1 for 75 bp-PE. Analogous to Figure 2 but for Set-up 1 and 75 bp-PE.

present in IA (denoted IA) and those not contained in IA
(denoted No IA). The latter are further divided according
to the true expression level. Finally, Figure 12 illustrates
the performance of Cufflinks and CEM (Mode 1) when a
suitable threshold is applied to set to zero isoforms with
very low estimated FPKM. The figure compares preci-
sion, recall and F-measure with the corresponding indexes
observed for the same methods in Mode 2.
Additional file 9: Figure S9, Additional file 10: Figure

S10, Additional file 11: Figure S11, Additional file 12:
Figure S12, Additional file 13: Figure S13 and Additional
file 14: Figure S14 show results for Set-up 2. In particular,
Additional file 9: Figure S9, Additional file 10: Figure S10,
Additional file 11: Figure S11, Additional file 12: Figure
S12 are devoted to precision and recall. Additional file 13:
Figure S13 is the analogous of Figure 12 and Additional
file 14: Figure S14 is the analogous of Additional file 5:

Figure S5, Additional file 6: Figure S6, Additional file 7:
Figure S7 and Additional file 8: Figure S8.
All methods have been evaluated under the two set-ups,

except SLIDE, that for the high computational cost has
been evaluated only under Set-up 1, and iReckon, that
was evaluated only for PE reads, since it does not support
SE reads. In Figures 1, 2, 3, 4, 5, 6, 7, 8 and 9, Additional
file 1: Figure S1, Additional file 2: Figure S2, Additional
file 3: Figure S3 and Additional file 4: Figure S4 and
Additional file 9: Figure S9, Additional file 10: Figure S10,
Additional file 11: Figure S11 andAdditional file 12: Figure
S12, Cufflinks is coloured in red, CEM is coloured in blue,
SLIDE is coloured in orange (when present), RSEM is
coloured in green and iReckon is coloured in brown (when
present).
RSEM shows relatively good performance when CA

is provided, but its inference is limited to annotated
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Figure 4 Precision and Recall bar-plot in Set-up 1 for 50 bp-PE. Analogous to Figure 2 but for Set-up 1 and 50 bp-PE.

transcripts (or to a list of potential transcripts that
the user has to provide). On the other side, SLIDE
shows worse performance than the others (in particu-
lar, in Mode 2) suggesting that it could be better suited
for genome with lower complexity in terms of isoform
structures.
Overall Set-ups 1 and 2 show similar qualitative results.

The best F-measure in Set-up 1 was about 0.78, in Set-
up 2 was 0.75. In both cases, the best performance was
achieved by RSEM in the CA case.
Looking at Figures 2, 3, 4 and 5, precision rarely exceeds

0.6–0.7 and it is often below such values, meaning that
all methods produce a quite large number of FP isoforms
(remarkably, even when the true CA is provided and the
methods are forced to work in Mode 1). Such drawback
is also confirmed by the inspection of Additional file 5:
Figure S5, Additional file 6: Figure S6, Additional file 7:

Figure S7 and Additional file 8: Figure S8, where we often
observe a high number of FP (compared to TP) for the
same set-up. These poor results can be due to a non suf-
ficiently strong penalty term (or to a not sufficient strong
post-filtering step) that should keep to zero not significant
isoforms.
The best precision is achieved by Cufflinks in Mode 2

with CA (at a price of lower power). Surprisingly, Cuf-
flinks (Mode 1) shows a worse precision. However, we
noticed that most of the isoforms detected as presents
by Cufflinks (Mode 1) were estimated with extremely low
expression. Therefore, if we filter out these isoforms, pre-
cision in Mode 1 and Mode 2 becomes comparable (see
Figure 12, left panel), as expected. For example, by setting
to zero all isoforms with estimated ̂FPKM < 10−5 the Cuf-
flinks (Mode 1) precision increases to 0.59, without sig-
nificantly reducing the recall (analogous behaviour with
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Figure 5 Precision and Recall bar-plot in Set-up 1 for 100 bp-SE. Analogous to Figure 2 but for Set-up 1 and 100 bp-SE.

10−1as threshold). Indeed, the F-measure of Cufflinks
(Mode 1) with a threshold on the expressed isoforms
becomes better than the Cufflinks (Mode 2) one, as
expected. The tendency to produce a high number of FP
with very low expression level was observed also for CEM
(Mode 1), but with a much less pronounced effect (see
Figure 12, right panel). The same effect occurs for the
other conditions of depth, read length and library type
(data not showed).
Overall recall is above 0.80 when methods are used in

Mode 1 with CA (and above 0.6 with IA), while recall does
not exceed 0.3 in Mode 3. Recalls in Mode 1 are mostly
satisfactory (except for SLIDE). The actual observed recall
values for Mode 2 and Mode 3 depend on the stringency
of the match between newly identified isoforms and exist-
ing ones. However, the low recall values in Mode 3 show
that the performance of methods in recovering the precise
isoform structure is still not satisfactory.

Figures 6, 7 and 8 for PE and Figure 9 for SE datasets
illustrate how well methods are able to detect highly
expressed isoforms (remarkably, recall is mostly higher
than 0.50 also for methods in Mode 3). At the same time
they underline that themajor problem arises in identifying
lowly expressed isoforms (recall rarely exceeds 0.2 either
in Mode 2 and Mode 3). In particular, we observe that
lowly expressed isoforms are identified mainly in Mode 1
with CA. Methods in Mode 2 with IA are able to iden-
tify lowly expressed isoforms mainly if they were already
present in IA. On the contrary, for moderately and highly
expressed isoforms they are capable of detecting isoforms
not provided in IA, see Figures 10 and 11. The figures
show good results for Cufflinks and iReckon for medium
and high expression classes, at high depth and regardless
the alignment type.
The performance clearly drops down when decreas-

ing the depth. In that case, it becomes almost impossible
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Figure 6 Recall bar-plot versus isoform abundance in Set-up 1 for 100 bp-PE. Panels A (upper left) and B (upper right) depict recall bar-plots
versus isoform abundance for the compared methods when the alignment is annotation driven, CA and IA case respectively. Panels C (bottom left)
and D (bottom right) are analogous to Panels A and B, when the alignment is data driven. The figure refers to Set-up 1 and 100 bp-PE. Within each
panel, the upper row represents the recall observed for lowly expressed isoforms, middle row for moderately expressed isoforms and bottom row
for highly expressed isoforms; left column refers to methods used in Mode 1, middle column to methods used in Mode 2, right column to methods
used in Mode 3. Different bars of the same colour for each method and mode of action correspond to the different depth (i.e., from left to right
0.25M, 0.5M, 1M, 5M, 10M and 20M). When the alignment is annotation driven, the same annotation provided during the alignment was used for
Mode 1 and 2.

to recover isoforms that have not been provided in the
annotation at the beginnig.
As mentioned above, Set-up 2 bring us to analogous

overall considerations, see Additional file 9: Figure S9,
Additional file 10: Figure S10, Additional file 11: Figure
S11, Additional file 12: Figure S12, Additional file 13:
Figure S13 and Additional file 14: Figure S14.

Effect of alignment
In order to evaluate the effect of the alignment, we com-
pared results obtained by the same method and mode of

action across different alignment strategies, i.e., we inves-
tigate its effect on precision by comparing (in Figures 2,
3, 4 and 5) panel A versus panel C, and on recall by com-
paring panel B versus panel D, for Set-up 1. To evaluate
the global effect on the F-measure, it is sufficient to carry
out the analogous comparison for Additional file 1: Figure
S1, Additional file 2: Figure S2, Additional file 3: Figure
S3, and Additional file 4: Figure S4. Clearly, RSEM is not
affected by the alignment, since it maps the reads directly
to the transcriptome. Therefore, its results differ only with
respect to CA and IA within panels A and B.
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Figure 7 Recall bar-plot versus isoform abundance in Set-up 1 for 75 bp-PE. Analogous to Figure 6 but for Set-up 1 and 75 bp-PE.

Overall comparisons show no appreciable difference in
precision for Mode 1, a slight difference in Mode 2, where
the precision increases along with the quality of map-
ping, and more remarkable improvements in Mode 3.
Analogous results can be observed for recall. Moreover,
both differences in precision and recall decrease when
the sequencing depth increases. As global measure, we
observe that F-measure for 20M 100 bp-PE is about 0.35
and 0.27, respectively, for Cuffinks and CEM in Mode 3
with reads aligned without any annotation; it becomes
about 0.40 and 0.34, respectively, when the reads are
aligned providing either IA or CA, see Additional file 1:
Figure S1. To comment this effect, we inspected the align-
ment files and we observed that the main differences are
in the number of mapped junctions. As an example, we
observed that the dataset 20M 100 bp-PE identified 14500
junctions when CA was provided and 14479 junctions

without annotation, with a very negligible loss due to the
alignment. But, with 0.25M 100 bp-PE the number of
mapped junctions was 9173 with CA and dropped down
to 8047 without annotation. Analogously, for 20M 50 bp-
PE, 14290 junctions were detected when CAwas provided
and only 12643 junctions without annotation; with 0.25M
50 bp-PE, the number of mapped junctions was 8241 with
CA and dropped down to 5990 without annotation. The
improved performance in Mode 3 can be explained by the
fact that data driven methods can deeply benefit from the
presence of informative junctions, even though current
performances cannot be considered overall satisfactory.
The same conclusions apply for Set-up 2, compar-

ing Additional file 9: Figure S9 and Additional file 10:
Figure S10. In particular, in Mode 3, the F-measure
increases from 0.18 of both Cufflinks and CEM in the
case of data driven alignment up to 0.24 and 0.31
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Figure 8 Recall bar-plot versus isoform abundance in Set-up 1 for 50 bp-PE. Analogous to Figure 6 but for Set-up 1 and 50 bp-PE.

respectively in the case of CA based alignment (data
not showed).

Effect of modes of action
In order to evaluate the effect of the modes of action,
results have to be compared across the horizontal blocks
of each panel of each figure, see Figures 2, 3, 4, 5, 6, 7, 8 and
9 for Set-up 1 and Additional file 9: Figure S9, Additional
file 10: Figure S10, Additional file 11: Figure S11 and
Additional file 12: Figure S12 for Set-up 2. Moreover,
we have to compare the continuous lines with respect to
the dashed lines and the dotted lines in Additional file 1:
Figure S1, Additional file 2: Figure S2, Additional file 3:
Figure S3 and Additional file 4: Figure S4.
As expected, all methods in Mode 1 have better global

performance than those in Mode 2 and perform signif-
icantly better than the methods in Mode 3. The latter
ones are still a big challenge. Moreover, performance of

methods in Mode 1 are much less affected by the depth
and the read length, while still benefit of PE reads, if the
coverage is not sufficiently high.
As previously mentioned, Figures 2, 3, 4 and 5 show

that the precision cannot be considered fully satisfactory
and the number of FP is high across all modes of action.
In particular, Cufflinks (Mode 1) shows still poor preci-
sion. However, in this case, we already noted that most of
the FP isoforms were estimated with a very low expres-
sion value and filtering out the low ̂FPKMs restores the
performance, see Figure 12. From Figures 2, 3, 4 and 5,
we observe that all methods in Mode 1 using CA have
a very good recall, independently from alignment option.
Methods in Mode 2 reach good/sufficient recall, except
for SLIDE that shows the worst behaviour. In particular,
it seems that SLIDE (Mode 2) does not take advantage
of the annotation and behaves similarly to methods in
Mode 3.
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Figure 9 Recall bar-plot versus isoform abundance in Set-up 1 for 100 bp-SE. Analogous to Figure 6 but for Set-up 1 and 100 bp-SE.

To fully understand the action mode effect, it is impor-
tant to inspect Figures 6, 7, 8 and 9. Here, one can immedi-
ately observe that highly expressed isoforms are detectable
in all actionmodes (in particular, for high sequencing depth),
the scenario changes dramatically for moderately and lowly
expressed ones. The latter have been recognized only in
Mode 1 with CA and with sufficient sequencing depth.
The same conclusions apply for Set-up 2, comparing

Additional file 9: Figure S9, Additional file 10: Figure S10,
Additional file 11: Figure S11 andAdditional file 12: Figure
S12.
It follows that, while it is intriguing to promise to recon-

struct the whole transcriptome using only RNA-seq data
without any information about annotation, researchers
have to be very careful in faithfully believe to the results
obtained inMode 3 (using current experimental protocols
and computational methodologies analogues to those

considered in the present work). As a consequence, for
complex genomes, they should consider to complement
the results with other sources of either experimental or
computational evidence.

Effect of the annotation
In order to evaluate the effect of the annotation, in
Figures 2, 3, 4 and 5 precision and recall have to be com-
pared between the two horizontal blocks in each panel
A,B,C e D of the same figure (where the upper row refers
to CA and the lower row refers to IA) limiting the atten-
tion to Mode 1 and Mode 2. While, in Figures 6, 7, 8
and 9 and in Additional file 1: Figure S1, Additional file 2:
Figure S2, Additional file 3: Figure S3 and Additional file 4:
Figure S4, panels A have to be compared with the corre-
sponding panels B; and panels C with the corresponding
panels D.
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Figure 10 True positive isoforms in Set-up 1, annotation driven alignment and Mode 2 with IA. The panels depict the number of TP isoforms
detected by methods in Mode 2 when IA is provided. They are divided in those that were already present in IA (bar in purple), and those not present
in IA but retrieved by the methods. The latter are further divided in low, medium and high expression classes according to their true expression
level. Panels A (upper left) refers to the case of 20M 100 bp-PE, Panels B (upper right) to 0.25M 100 bp-PE. Panels C (bottom left) and D (bottom
right) are analogous to Panels A and B but for SE reads. All results are obtained with annotation driven alignment.

This effect is very important considering that CA is
usually unknown in a real experiment. Therefore, results
obtained with CA represent a sort of optimal perfor-
mance. Results obtained under IA can be seen as a mea-
sure of what one can reach with the current knowledge of
the Biology.
As expected, moving from CA to IA, regardless the type

of alignment, the performances degrade, with a more evi-
dent loss in Mode 1 with respect to Mode 2. The observed
difference in the twomodes of action allows us to illustrate
the discovery power of methods in Mode 2. To this pur-
pose, Figures 10 and 11 show the number of transcripts
that were not present in IA, but are still recovered by

methods in Mode 2 driven by IA. As mentioned before,
the “recovering" effect is mainly concentrated on isoforms
with high or moderate expression.
In general, the best F-measure observed in Mode 1 with

CA is about 0.8 for the higher depth at 100 bp PE and it
drops to about 0.6 when IA is used; while in Mode 2 the
best F-measure is above 0.6 and drops down to 0.6 when
IA is used, compare panel A and B of Additional file 1:
Figure S1. Obviously, the present difference depends on
the closeness between CA and IA.
Inspecting Figures 2, 3, 4 and 5, it is possible to observe

that the loss of performance occurs both in terms of pre-
cision and recall. While the loss in detection capability of
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Figure 11 True positive isoforms in Set-up 1, data driven alignment and Mode 2 with IA. Analogous to Figure 10 but for Set-up 1 and data
driven alignment.

true isoforms is expected with IA, the loss in precision
is more devious. It can be justified by the fact that the
methods tend to explain all the reads by assigning them to
an isoform. Therefore, other isoforms are used to accom-
modate the differences in fitting and isoforms with few
reads (and low expression) are often formed in absence
of a sufficiently strong penalty term or of a post-filtering
procedure.
Issues apply for Set-up 2 comparing Additional file 9:

Figure S9, Additional file 10: Figure S10, Additional file 11:
Figure S11 and Additional file 12: Figure S12, where IA
was randomly generated from CA. Therefore, the main
conclusion does not depend strongly on the precise con-
tent of IA. As a conclusion, we want to stress that themain
limit of methods in Mode 2 is their inadequacy in recov-
ering lowly expressed isoforms, unless already annotated

in IA. On the contrary, such methods are able in detecting
bothmoderately and highly expressed isoforms in absence
of their annotation as well.

Effect of library type
In order to evaluate the effect of the library type, we
have to compare PE results with SE results. Such com-
parison was carried out in Set-up 1, for the read length
100 bp and for all depths. Therefore, for precision and
recall we have to compare the corresponding panels of
Figures 2 and 6 with Figures 5 and 10, respectively;
for F-measure we have to compare Additional file 1:
Figure S1 with Additional file 4: Figure S4; for num-
ber of TP and TN we have to compare Additional
file 5: Figure S5 with Additional file 6: Figure S6 for
the highest depth (20M) and Additional file 7: Figure S7



Angelini et al. BMC Bioinformatics 2014, 15:135 Page 20 of 25
http://www.biomedcentral.com/1471-2105/15/135

Figure 12 Precision, Recall and F-measure with thresholds (Set-up 1). Precision, Recall and F-measure for Cufflinks (left panel) and CEM (right
panel). Within each set of bars, the first one (depicted in purple) reports the result for the corresponding method in Mode 1 (without any threshold),
as depicted in Figure 2. The last one (depicted in yellow) refers to the same method in Mode 2, as depicted in Figure 2. The two central bars
(depicted in magenta and cyan, respectively) refer to the method in Mode 1 when estimated isoforms with expression levels below 10−5 and 10−1,
respectively, are set to zero. The figure refers to Set-up 1, to the case of 20M 100 bp-PE and annotation driven alignment with CA.

with Additional file 8: Figure S8 for the lowest depth
(0.25M).
We observe that PE reads show better indexes with

respect to SE reads at the same depth (at the price of
higher experimental cost, not evaluated here). However,
the differences are almost negligible inMode 1 (in particu-
lar, at high coverage), they are relatively small for methods
in Mode 2 when CA is provided. The gap increases in
Mode 2 when IA is provided. In this case, Figures 10
and 11 show that PE reads allow to correctly detect more
isoforms that were not present in IA. The gain is small
for high depth, it becomes more evident for low depth.
Advantages of using PE is also evident in Mode 3. To
better evaluate the differences, we observe that 20M 100
bp-SE allows tomap 13918 junctions when CA is provided
and 13564 junctions in absence of annotation; 0.25M 100
bp-SE allows to map 8086 junctions when CA is provided
and 6851 in absence of annotation.
As a conclusion, we can underline that the main advan-

tage of using PE with respect to SE is in the better
capability to recover novel isoforms when not provided in
the annotation. On the other hand, we also observe that
100 bp-SE are quite long reads, with short SE reads the
advantages of PE are more pronounced.

Effect of isoform abundance
In order to evaluate the effect of isoform abundance, we
have to inspect Figures 6, 7, 8 and 9 that provide a deeper

insight about the recall illustrated in Figures 2, 3, 4 and 5.
The index is now expanded into three rows depending on
the level of expression of the corresponding true isoforms.
From the figures, we can see that the capability in isoform
detection strongly depends on their expression levels. In
general, highly expressed isoforms are easily detected by
methods in Mode 1, while methods in Mode 2 and Mode
3 show a lower (but still acceptable) detection capabil-
ities. On the contrary, moderately and lowly expressed
isoforms are detected well, or at least with an acceptable
rate, in Mode 1. However, they are not well identified in
Mode 2, and often completely lost in Mode 3. Integrating
such observation with Figures 10 and 11, we observe that
lowly expressed isoforms are mostly detected if they are
provided in the annotation.
Additional file 11: Figure S11 and Additional file 12:

Figure S12 illustrate the recall with respect to the iso-
form abundance class in Set-up 2, providing analogous
conclusions.

Effect of sequencing depth
In order to evaluate the effect of sequencing depth, we
have to compare different bars of the same colour in
each block and methods of panels of Figures 2, 3, 4, 5,
6, 7, 8 and 9, and the behaviour of each coloured line in
the F-measure reported in Additional file 1: Figure S1,
Additional file 2: Figure S2, Additional file 3: Figure S3 and
Additional file 4: Figure S4.
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In most cases, the performance gets worse with the
decrease in sequencing depth, but the loss is less evident
than what one can expect. In particular, it is almost negli-
gible for methods in Mode 1 with CA and it appears more
evident for methods in Mode 2 or 3. The gap increases
for data driven alignment and in absence of CA. Indeed,
when the depth increases we observed less precision and
simultaneously a higher recall. The loss in precision can
be explained by the large number of FP isoforms, often
with low expression values. More in general, we noticed
that as far as a minimum level of depth is reached (in
the case of Set-up 1 such level is estimated in about 1M
for PE) then further increases of the depth only play a
trade-off role between the observed precision and recall
without impacting the overall global performance. Con-
versely, below the saturation level the global performance
drops down.
In a similar way, comparing Additional file 5: Figure S5,

Additional file 6: Figure S6 and Additional file 7: Figure S7
and Additional file 6: Figure S6, Additional file 7: Figure
S7 and Additional file 8: Figure S8, it is possible to see the
benefit in the total number of correctly identified isoforms
when increasing the depth from the extreme conditions of
0.25M to 20M.

Effect of read length
In order to evaluate the effect of read length, we have to
compare precision and recall in Figure 2 (100 bp-PE) with
Figures 3 and 4 (75 bp-PE and 50 bp-PE, respectively) and
Additional file 1: Figure S1 with Additional file 2: Figure S2
and Additional file 3: Figure S3 in terms of F-measure. We
found, as expected, that long reads are preferable to short
ones. In particular, we observed an overall loss of perfor-
mance both in terms of recall and precision.We quantified
in about 5% the loss in performance in term of F-measure
for methods in Mode 1 (the best performance achieved by
RSEM with CA is about 0.78 for 100 bp-PE and becomes
0.75 for 75 bp-PE and 0.73 for 50 bp-PE). A more signifi-
cant loss was observed when executing methods inModes
2/3, especially at low depth.
We also observe that in our experimental design short

reads are obtained by trimming the long ones. There-
fore, short reads generated in this way have a slightly
better quality with respect to those (of the same length)
generated following the error profile. As a consequence,
we expect that the real difference between short and
long reads could be slightly larger than the one we have
reported.
Additional file 9: Figure S9 and Additional file 10: Figure

S10 provide analogous insights for Set-up 2.

Isoform estimation
Here, we illustrate the results for estimation error indexes
E1,E2 andE3. Additional file 15: Table S1, Additional file 16:

Table S2, Additional file 17: Table S3, Additional file 18:
Table S4, Additional file 19: Table S5, Additional file 20:
Table S6, Additional file 21: Table S7, Additional file
22: Table S8, Additional file 23: Table S9, Additional
file 24: Table S10, Additional file 25: Table S11,
Additional file 26: Table S12, Additional file 27: Table S13,
Additional file 28: Table S14 Additional file 29: Table
S15 and Additional file 30: Table S16 show errors statis-
tics (median, 3rd quartile and maximum value) for the
indexes in Set-up 1. In particular, the group of tables
in Additional file 15: Table S1, Additional file 16: Table S2,
Additional file 17: Table S3, Additional file 18: Table S4,
Additional file 19: Table S5, Additional file 20: Table S6,
Additional file 21: Table S7 and Additional file 22: Table S8
illustrate the results for PE, and those in Additional file 23:
Table S9, Additional file 24: Table S10, Additional file 25:
Table S11, Additional file 26: Table S12, Additional file
27: Table S13, Additional file 28: Table S14 Additional
file 29: Table S15 and Additional file 30: Table S16 for
SE. Within each group, the two most extreme depths
are shown (i.e., 20M and 0.25M). Furthermore, the tables
provide results either for annotation driven alignment
(CA and IA) and for data driven alignment. Additional
file 31: Table S17, Additional file 32: Table S18, Additional
file 33: Table S19 and Additional file 34: Table S20 refer to
Set-up 2. In particular, Additional file 31: Table S17 and
Additional file 32: Table S18 describe the results for 60M
75 bp-PE (annotation driven alignment). The analogous
cases for data driven alignment are shown in Additional
file 33: Table S19 and Additional file 34: Table S20. In
order to investigate the performance of the methods in
correctly estimating the isoform abundances, the atten-
tion have to be mainly focused on the qualitative aspects
related to error distributions rather that on the actual
values shown in the tables.
Overall, both set-ups show a similar behaviour for all

error types. In fact, all methods produce errors that have
a strongly asymmetric skewed distribution with a long
right tail. This means that they fail to estimate a (signifi-
cant) fraction of isoforms (see results for the 3rd quartile
and the maximum observed value). Moreover, within the
same table, the same index is also different (sometimes of
order of magnitude) with respect to methods and mode
of actions. Differences are observed, not only with respect
to the most extreme value, but also with respect to the
median and the 3rd quartile. This means that the meth-
ods may provide very different results on a large fraction
of isoforms. In brief, all tables indicate that the problem of
obtaining reliable estimates is still open. The loss of per-
formance is not completely surprising, since estimation
is carried out after isoform detection, without explicitly
consider the uncertainty due to the identification step.
The latter statement is clear when we compare the same
method under different modes of action. In such cases,
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each method uses an analogous statistical procedure for
estimating the abundances. However, the inference is car-
ried out on different sets of isoforms and can produce
different estimates. To mitigate such drawbacks confi-
dence intervals for the estimates could be more reliable
than point estimates.
More in detail, looking at the 3rd quartile in Additional

file 15: Table S1 (i.e., 20M 100 bp-PE CA driven align-
ment), the best result for E1 oscillates between 0.27–0.29
(CEM and Cufflinks Mode 3, RSEM), for E2 is about
0.005 (Cufflinks, Mode 1), and for E3 is between 0.22–0.25
(RSEM, CEMMode 1).
The low 3rd quartiles observed for E3 and E2 confirm

that problems arise mainly with lowly expressed isoforms,
that are either not detected or not set to zero by fil-
tering or penalization procedures. On the contrary, the
large extreme values observed for E2 and E3 indicate that
the corresponding methods can completely fail (of sev-
eral order of magnitude) some estimates. However, such
failures are limited to few units when the corresponding
3rd quartile is low, being larger when the right tail of the
distribution becomes heavier.
More attention requires the (relative) error E1, whose

3rd quartile is at least about 0.27–0.29 in Additional
file 15: Table S1, (with the median value of about 0.07–
0.15). This means that, even when we are able to correctly
detect the presence of the isoforms, in more than 50% of
the cases the estimation error is about 10% of the true
value. Larger values for the median or the 3rd quartile
indicate a worse performance.
We stress that Additional file 15: Table S1 illustrates

(in principle) the most favourable condition. Comparing
it with Additional file 17: Table S3 (i.e., 0.25M 100 bp-
PE CA driven alignment), it is possible to evaluate the
effect of the depth when the annotation is CA. Whereas
precision and recall for methods in Mode 1 were not sig-
nificantly influenced, the error indexes did. In particular,
the largest differences are observed for E2 and E3. In gen-
eral, at low depth the quality of the estimates is quite poor.
Analogous considerations hold considering SE instead
of PE, see Additional file 23: Table S9 and Additional
file 15: Table S11, for the cases 20M SE and 0.25M SE,
respectively.
The influence of annotation can be deduced comparing

Additional file 15: Table S1 and Additional file 17: Table
S2 (obtained using IA). Analogous comparison can be car-
ried out for all pairs of corresponding tables (CA vs IA).
In such cases the differences are larger, due to the fact that
methods are not able to identify all isoforms (in particular
those not provided in IA).
Additional file 31: Table S17, Additional file 32: Table

S18, Additional file 33: Table S19 and Additional file 34:
Table S20 drive to similar considerations for Set-up 2with
more skewed error distributions.

Considerations about the computational cost
Since the methods were implemented in different lan-
guages and ran in different environments, we found that
a technical comparison of execution time was not fair.
Therefore, we briefly reports only qualitative considera-
tions. RSEM and Cufflinks (in all modes of action) are
sufficiently fast, CEM (in all modes of action) is the fastest.
On the contrary, iReckon is quite slow with respect to the
others and also produces very large temporary files. Cur-
rent implementation of SLIDE is too slow to be completed
in Set-up 2 in a reasonable amount of time, and therefore
was considered only in Set-up 1.

Conclusions
Our results show that algorithms have good or acceptable
performance in detecting the presence of the isoforms
(recall) when the annotation is provided, even if incom-
plete (Mode 1 and Mode 2, with both CA and IA). On
the contrary, the data driven methods (Mode 3) are still
not satisfactory, also when the reads are carefully aligned
using the annotation during the mapping phase. Results
obtained in Mode 3 are in agreement with what observed
in [24].
The performance of all methods is strongly influenced

by the strength of the isoforms. Highly and moderately
expressed isoforms are identified with good accuracy.
On the contrary, lowly expressed isoforms are still prob-
lematic, also when the exact annotation is provided. In
particular, we observed that lowly expressed isoforms that
are not present in the annotation, are not recovered using
methods in Mode 2. Conversely, Mode 2 approaches are
able to recover part of moderately and most of highly
expressed transcripts also when not provided in the
annotation.
Results improve by increasing the sequencing depth and

the read-length. However, for the depth there is a satura-
tion limit -in current computational methodologies- that
does not allow to achieve optimal reconstruction even at
high coverage. In fact, when the coverage increases, the
number of TP increase as expected, but also the number of
FP increases. In particular, we noticed that some methods
tend to identify several (novel and annotated) isoforms as
present at very low expression levels. In most cases such
isoforms are FP, as a consequence precision is often not
satisfactory.
Realistic estimation of isoforms abundance is also very

problematic. Similar to [24] our results show that the esti-
mation error is very skewed. The error distribution up to
the third quartile is acceptable at least for E2 (connected to
FP) and E3 (connected to FN), with a very long right tail.
On the contrary, the distribution of the (relative) error E1
shows that more than 50% of isoforms are estimated with
more than 10% of error. To this purpose, we should con-
sider that estimation of isoform abundances is not easier



Angelini et al. BMC Bioinformatics 2014, 15:135 Page 23 of 25
http://www.biomedcentral.com/1471-2105/15/135

than isoform identification. In fact, the estimates are often
obtained for the set of isoforms that have been previ-
ously identified. However, methods usually do not take
into account such uncertainty. As a consequence, the per-
formance can bemuch worse. Therefore, we conclude that
the estimation of the correctly identified isoforms is still
challenging.
As observed by [24], the complexity of higher eukary-

otic genomes, such as the human one, imposes severe
limitations to the performance of all quantification and
estimation methods, that are likely to remain limiting
factors for the analysis of current-generation RNA-seq
experiments. Such limitations can be partially solved pro-
viding existing annotations, but more in general require
the development of further research and techniques
from both methodological and experimental point of
views.
Finally, it should be noted that all methods considered

here and in [24] work with a single RNA-seq sample.
Recent works [49,50] propose to use a multiple-sample
approach to achieve a more precise identification and
estimation of isoform expression. The availability of such
type of approaches, whose performances have to be fur-
ther validated, seems to indicate that future studies have
to investigate a larger variety of (homogeneous) samples
at a lower depth per sample to obtain more confident
transcript predictions, see [50].

Additional files

Additional file 1: Figure S1. F-measure in Set-up 1 for 100 bp-PE. Panels
A (upper left) and B (upper right) depict F-measure versus the sequencing
depth for each compared method when the alignment is annotation
driven using CA and IA, respectively. Panels C (bottom left) and D (bottom
right) are analogous to Panels A and B, when the alignment is data driven.
The figure refers to Set-up 1 and 100 bp-PE. Within each panel, methods in
Mode 1 are depicted with continuous line, methods in Mode 2 with
dashed line, methods in Mode 3 with dotted line. When the alignment is
annotation driven, the same annotation provided during the alignment
was used for Mode 1 and 2.

Additional file 2: Figure S2. F-measure in Set-up 1 for 75 bp-PE.
Analogous to Additional file 1: Figure S1, but for Set-up 1 and 75 bp-PE.

Additional file 3: Figure S3. F-measure in Set-up 1 for 50 bp-PE.
Analogous to Additional file 1: Figure S1, but for Set-up 1 and 50 bp-PE.

Additional file 4: Figure S4. F-measure in Set-up 1 for 100 bp-SE.
Analogous to Additional file 1: Figure S1, but for Set-up 1 and 100 bp-SE.

Additional file 5: Figure S5. True Positives and False Positives in Set-up 1
for 20M 100 bp-PE. Panels A (upper left) and B (upper right) depict TP
(coral) and FP (aquamarine) bars for the compared methods when the
alignment is annotation driven (CA and IA, respectively). Panels C (bottom
left) and D (bottom right) are analogous to Panels A and B, when the
alignment is data driven. The figure refers to Set-up 1 and 20M 100 bp-PE.
The true number of expressed transcripts (i.e., 3726) is added as dashed
horizontal line to each panel. The difference between the TP and the
horizontal line represents the FN.

Additional file 6: Figure S6. True Positives and False Positives in Set-up 1
for 20M 100 bp-SE. Analogous to Additional file 5: Figure S5, but for Set-up
1 and 20M 100 bp-SE.

Additional file 7: Figure S7. True Positives and False Positives in Set-up 1
for 0.25M 100 bp-PE. Analogous to Additional file 5: Figure S5, but for
Set-up 1 and 0.25M 100 bp-PE.

Additional file 8: Figure S8. True Positives and False Positives in Set-up 1
for 0.25M 100 bp-SE. Analogous to Additional file 5: Figure S5, but for
Set-up 1 and 0.25M 100 bp-PE.

Additional file 9: Figure S9. Precision and Recall bar-plot in Set-up 2 for
75 bp-PE. Analogous to Figure 2, but for Set-up 2 for 60M 75 bp-PE.

Additional file 10: Figure 10. Precision and Recall bar-plot in Set-up 2 for
50 bp-PE. Analogous to Figure 2, but for Set-up 2 for 60M 50 bp-PE.

Additional file 11: Figure S11. Recall bar-plot versus isoform abundance
in Set-up 2 for 60M 75 bp-PE. Analogous to Figure 5, but for Set-up 2 for
60M 75 bp-PE.

Additional file 12: Figure S12. Recall bar-plot versus isoform abundance
in Set-up 2 for 60M 50 bp-PE. Analogous to Figure 5, but for Set-up 2 for
60M 50 bp-PE.

Additional file 13: Figure S13. Precision, Recall and F-measure when
introducing thresholds (Set-up 2). Analogous to Figure 12, but for Set-up 2,
60M 75 bp-PE and the alignment with CA.

Additional file 14: Figure S14. True Positives and False Positives in
Set-up 2 for 60M 75 bp-PE. Panels A (upper left) and B (upper right) depict
TP (coral) and FP (aquamarine) bars for the compared methods when the
alignment is annotation driven (CA and IA, respectively). Panels C (bottom
left) and D (bottom right) are analogous to Panels A and B, when the
alignment is data driven. The figure refers to Set-up 2 and 60M 75 bp-PE.
The true number of expressed transcripts (i.e., 17032) is added as dashed
horizontal line to each panel. The difference between the TP and the
horizontal line represents the FN.

Additional file 15: Table S1. E1, E2 and E3 in Set-up 1 with annotation
driven alignment (CA) for 20M 100 bp-PE. Median, 3rd Quartile and
maximum value observed for error indexes E1, E2 and E3 in Set-up 1, 20M
PE reads of 100 bp. Tables are divided in blocks, where the left block is for
methods used in Mode 1, middle block is for methods used in Mode 2, right
block is for methods used in Mode 3. Upper rows refer to E1, middle ones
refer to E2, bottom ones refer to E3. CA was provided during the alignment.

Additional file 16: Table S2. E1, E2 and E3 in Set-up 1 with annotation
driven alignment (IA) for 20M 100 bp-PE. Analogous to Additional file 15:
Table S1, but with IA provided during the alignment.

Additional file 17: Table S3. E1, E2 and E3 in Set-up 1 with annotation
driven alignment (CA) for 0.25M 100 bp-PE. Analogous to Additional file 15:
Table S1, but for 0.25M PE reads.

Additional file 18: Table S4. E1, E2 and E3 in Set-up 1 with annotation
driven alignment (IA) for 0.25M 100 bp-PE. Analogous to Additional file 15:
Table S1, but for 0.25M PE reads and with IA provided during the alignment.

Additional file 19: Table S5. E1, E2 and E3 in Set-up 1, with data driven
alignment and CA for 20M 100 bp-PE. Analogous to Additional file 15: Table
S1, but with data driven alignment. CAwas provided in Mode 1 andMode 2.

Additional file 20: Table S6. E1, E2 and E3 in Set-up 1, with data driven
alignment and IA for 20M 100 bp-PE. Analogous to Additional file 15: Table
S1, but with data driven alignment. IA was provided in Mode 1 and Mode 2.

Additional file 21: Table S7. E1, E2 and E3 in Set-up 1, with data driven
alignment and CA for 0.25M 100 bp-PE. Analogous to Additional file 19:
Table S5, but for 0.25M PE reads.

Additional file 22: Table S8. E1, E2 and E3 in Set-up 1, with data driven
alignment and IA for 0.25M 100 bp-PE. Analogous to Additional file 20:
Table S6, but for 0.25M PE reads.

Additional file 23: Table S9. E1, E2 and E3 in Set-up 1 with annotation
driven alignment (CA) for 20M 100 bp-SE. Analogous to Additional file 15:
Table S1, but for 20M SE reads.

Additional file 24: Table S10. E1, E2 and E3 in Set-up 1 with annotation
driven alignment (IA) for 20M 100 bp-SE. Analogous to Additional file 17:
Table S2, but for 20M SE reads.

Additional file 25: Table S11. E1, E2 and E3 in Set-up 1 with annotation
driven alignment (CA) for 0.25M 100 bp-SE. Analogous to Additional file 17:
Table S3, but for 0.25M SE reads.
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Additional file 26: Table S12. E1, E2 and E3 in Set-up 1 with annotation
driven alignment (IA) for 0.25M 100 bp-SE. Analogous to Additional file 18:
Table S4, but for 0.25M SE reads.

Additional file 27: Table S13. E1, E2 and E3 in Set-up 1, with data driven
alignment and CA for 20M 100 bp-SE. Analogous to Additional file 19:
Table S5, but for 20M SE reads.

Additional file 28: Table S14. E1, E2 and E3 in Set-up 1, with data driven
alignment and IA for 20M 100 bp-SE. Analogous to Additional file 20: Table
S6, but for 20M SE reads.

Additional file 29: Table S15. E1, E2 and E3 in Set-up 1, with data driven
alignment and CA for 0.25M 100 bp-SE. Analogous to Additional file 21:
Table S7, but for 025M SE reads.

Additional file 30: Table S16. E1, E2 and E3 in Set-up 1, with data driven
alignment and IA for 0.25M 100 bp-SE. Analogous to Additional file 22:
Table S8, but for 025M SE reads.

Additional file 31: Table S17. Statistics for E1, E2 and E3 in Set-up 2 with
annotation driven alignment (CA) for 60M 75 bp-PE. Analogous to
Additional file 15: Table S1, but for Set-up 2, 60M 75 bp-PE.

Additional file 32: Table S18. Statistics for E1, E2 and E3 in Set-up 2 with
annotation driven alignment (IA) for 60M 75 bp-PE. Analogous to
Additional file 17: Table S2, but for Set-up 2, 60M 75 bp-PE.

Additional file 33: Table S19. Statistics for E1, E2 and E3 in Set-up 2 with
data driven alignment and CA for 60M 75 bp-PE. Analogous to Additional
file 19: Table S5, but for Set-up 2, 60M 75 bp-PE.

Additional file 34: Table S20. Statistics for E1, E2 and E3 in Set-up 2 with
data driven alignment and IA for 60M 75 bp-PE. Analogous to Additional
file 20: Table S6, but for Set-up 2, 60M 75 bp-PE.
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