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Abstract

Background: The locations of the TM segments inside the membrane proteins are the consequence of a cascade
of several events: the localizing of the nascent chain to the membrane, its insertion through the translocon, and the
conformation adopted to reach its stable state inside the lipid bilayer. Even though the hydrophobic h-region of
signal peptides and a typical TM segment are both composed of mostly hydrophobic side chains, the translocon
has the ability to determine whether a given segment is to be inserted into the membrane. Our goal is to acquire
robust biological insights into the influence of the translocon on membrane insertion of helices, obtained from the
in silico discrimination between signal peptides and transmembrane segments of bitopic proteins. Therefore, by
exploiting this subtle difference, we produce an optimized scale that evaluates the tendency of each amino acid to
form sequences destined for membrane insertion by the translocon.

Results: The learning phase of our approach is conducted on carefully chosen data and easily converges on an
optimal solution called the PMIscale (Potential Membrane Insertion scale). Our study leads to two striking results.
Firstly, with a very simple sliding-window prediction method, PMIscale enables an efficient discrimination between
signal peptides and signal anchors. Secondly, PMIscale is also able to identify TM segments and to localize them
within protein sequences.

Conclusions: Despite its simplicity, the localization method based on PMIscale nearly attains the highest level of
TM topography prediction accuracy as the current state-of-the-art prediction methods. These observations confirm
the prominent role of the translocon in the localization of TM segments and suggest several biological hypotheses
about the physical properties of the translocon.
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Background
The proteins transported into the endoplasmic reticulum
(ER) include transmembrane (TM) proteins which be-
come embedded in the ER membrane, and water-soluble
proteins which are fully translocated across the ER mem-
brane and released into the ER lumen. Proteins are guided
to the ER while they are synthesized on the ribosome by a
protein complex – the Signal Recognition Particle – that
recognizes a targeting signal localized in the growing poly-
peptide. The targeting signals are either N-terminal signal
sequences called signal peptides (SP) or, in the case of
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many membrane proteins that lack signal peptides, the
first TM segment which is called a signal anchor. Insertion
into the ER is then mediated by an evolutionarily con-
served membrane protein complex, the translocon. This
protein conduction channel provides a passage for pro-
teins across the membrane as well as a means to integrate
nascent proteins into the membrane through a lateral exit
gate. When this gate is opened, TM segments may move
from the aqueous interior of the channel into the lipid
phase of the membrane. Finally, the stably folded mem-
brane protein raises a minimum free energy inside the
lipid bilayer. A large number of computational methods
are available for detecting signal peptides (SignalP [1],
Signal-3L [2], Signal-CF [3], PrediSi [4]) or localizing TM
segments (TMHMM [5], Phobius [6], MemBrain [7]).
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Complete reviews of the advantages and shortcomings of
these methods are available in [8,9]. Only a few of them,
such iPSORT [10] or SOMRuler [11] concentrate on mak-
ing the relationships between amino acid sequences and
signal peptides or TMH transparent.
The objective of our study is to evaluate the influence

of the translocon on the partitioning of membrane seg-
ments. In 2005, Hessa et al. attempted to elucidate this
phenomenon of selective helical TM segment movement
through the ER translocon site with a series of experi-
ments. They developed an experimental system that
makes it possible to measure the membrane insertion ef-
ficiency of a large set of hydrophobic model segments
[12,13]. These studies suggested that insertion or not of
a helical TM segment is fundamentally a problem of
equilibrium thermodynamics for most of the TM seg-
ments. According to this hypothesis, the membrane in-
sertion of a TM segment mainly depends on the local
contribution of each amino acid inside the translocon
channel. Moreover, it also suggested a strong position-
dependence within the hydrophobic segment for each of
the 20 amino acids. Nevertheless, this approach which
leads to the so-called hydrophobicity biological scale
(BH) is uniquely based on the variation of an engineered
TM segment included in the protein leader peptidase
(Lep).
In order to benefit from the BH scale, two translocon-

based prediction tools have been developed to predict
the localization of TM segments: ΔG predictor [13] and
SCAMPI [14]. These tools are based on the same calcu-
lation of the free energy cost of insertion but they use
different algorithms. Moreover, whereas SCAMPI calcu-
lates the energy of peptides with a fixed length of 21
amino acids, ΔG predictor allows length corrections.
Even though prediction accuracies obtained by ΔG pre-
dictor or SCAMPI are outperformed by tools such as
OCTOPUS [15] or Philius [16], such methods are how-
ever extremely useful as they attempt to give clues to
explain biological observations and help us to more pre-
cisely understand the mechanism governing the inser-
tion of helical TM. In the future, an accurate prediction
could identify segments that are borderline in their clas-
sification, and that are therefore able to switch between
TM and non-TM configuration states. Such switches are
known to occur in a number of cases but it is difficult to
evaluate their prevalence at this time [17]. Finally, a de-
tailed understanding of topology determinants can lead
to the design of hydrophobic helices with biomedical
applications.
In their work, Hessa et al. do not focus on the prob-

lematic aspects of signal peptides and unfortunately,
tools developed from their results have difficulty in dif-
ferentiating them from TM segments. Nevertheless, even
though the central region of signal peptides – the
h-region - and a typical TM segment are both composed
of mostly hydrophobic side chains, the translocon has
the ability to sort them. If the translocon can determine
whether or not a given segment should be inserted into
the membrane, we can expect that essential elements
promoting the phenomenon could be captured by in
silico exploitation of the difference between the amino
acid composition of the hydrophobic core of signal pep-
tides and TM segments. Such an approach could benefit
from a large number of learning datasets but these data
must be chosen carefully. Although the UniprotKB/Swis-
sProt annotations cannot be regarded as experimentally
established topography data, we chose this databank to
construct our training data set because it allows the se-
lection of only eukaryotic proteins with a type II or type
III signal anchor annotation. To decrease the bias intro-
duced by the use of the TM prediction tools which may
be the origin of annotations in UniprotKB/SwissProt, we
considered that TM segments are actually not precisely
located. Several studies have shown that some TM seg-
ments in polytopic proteins need to cooperate during
the membrane insertion step [18]. The exclusion of poly-
topic proteins from the training data eliminates TM seg-
ments that depend on other parts of the protein for
efficient insertion and folding. We insist on this restric-
tion because the inclusion of polytopic proteins in train-
ing data may compromise the prediction accuracy of
bitopic proteins and vice-versa.
The in silico elaboration of a new scale can be consid-

ered as an optimization problem and a local search ap-
proach is an effective technique to solve it. In previous
work [19,20], our scale assigned a symmetric curve to
each amino acid in order to take into account its pos-
ition inside the translocon, but we only partially suc-
ceeded in obtaining stable curves. In this study, we
instead assign an average value for each amino acid and
arrive at the striking observation that, with very few pa-
rameters, this new scale, called PMIscale, obtains quite
good results, both for discriminating SP from TM seg-
ments and for capturing a large part of the information
required to locate TM segments along the membrane
proteins.

Results and discussion
The new PMIscale
The local search algorithm used to find a new scale that
discriminates signal peptides from signal anchors quickly
converges on an optimal solution that results in the
PMIscale displayed in Table 1. A high value corresponds
to a high preference for TM segment insertion.
When compared with other hydrophobicity scales, we

observe that the PMIscale highlights that more efficient
promotion into the membrane insertion occurs for the
aromatic side chains Trp, Tyr, and Phe. These results



Table 1 Amino acid PMIscale values

A 1.8 G 1.6 M 1.9 S -1.8

C 2.1 H -0.2 N -3.5 T 2.3

D -8.5 I 6.5 P -4.6 V 4.2

E -11.5 K 0.1 Q -4.5 W 5.7

F 5.8 L 3.8 R 0.5 Y 6.1
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suggest that these amino acids participate strongly in the
recognition of TM helices by the translocon. In addition,
PMIscale does not penalize basic amino acids – Arg,
His, Lys - as much as the other scales even though the
lipid bilayer does not favor their presence, suggesting
that the translocon may also play a major role in the in-
sertion of these amino acids. This result agrees with the
computer simulations of a helix containing an argin-
ine sidechain conducted specifically to consider the
sidechain moving from the translocon to the lipid bi-
layer [21].

Evaluation of the discrimination between SP and TM
As shown in Table 2, the PMIscale enables a significantly
improved discrimination between SP and TM than other
scales when a sliding-window approach is used as de-
scribed in the Methods section. The quality of such a
classification system can be evaluated by the Area Under
the ROC curve (AUC) [22]. The performance of PMIscale
for discriminating SP from signal anchors is excellent for
the SWPTest dataset (AUC= 0.932) and, unlike other
scales, it also exhibits suitability for the task of discrimin-
ating SP from TM segments as shown by our benchmark
for the PDBTMSeg dataset (AUC= 0.803). For informa-
tion purposes, Additional file 1: Table S1 also provides in-
sights into the effectiveness of PMIscale compared with
two widely used machine learning-based methods [1,6].

Prediction of membrane proteins in proteome-wide
studies
If PMIscale conveys relevant information about the
translocon mechanisms, it should also be able to predict
accurately whether a protein is a membrane protein or
Table 2 The AUC quality assessment of the discrimination
between SP and TM segments on several datasets

SWPTest ScampiHigh ScampiLow PDBTMSeg

PMIscale 0.932 0.86 0.845 0.803

K&D 0.829 0.662 0.691 0.636

GES 0.793 0.736 0.737 0.667

BH-2005 0.895 0.752 0.733 0.676

TM tendency 0.887 0.792 0.814 0.756

AvgH 0.837 0.706 0.726 0.67

The scales shown are from the following references: KD [23]; GES [24]; BH [12];
TM tendency [25]; AvgH [26].
not. It was previously observed in [27] that the energy
required for the insertion of the TM segment of a bito-
pic protein must be higher than the energy required by
the insertion of the following TM segments. In our ap-
proach, we extended this observation with the notion of
‘first TM segment’ – the TM segment of a bitopic pro-
tein or the first TM segment of a polytopic protein - and
we introduced two thresholds in the TM localization al-
gorithm: τfirst for the insertion of the first TM segment
deduced from the threshold that separates signal pep-
tides from signal anchors, and τnext for the following
TM segments. In addition it was also observed that
in vitro, the SRP binding to the ribosome nascent chain
declines when the nascent chain reaches a length of
110-140 amino acids [28]. Therefore when evaluating
methods based on a sliding-window approach, we added
the constraint that the signal anchor is not located after
that limit. Consequently τfirst determines if a protein
is a membrane protein or not for only that limited
N-terminal part of the protein.
A guideline to proteome-wide α-helical membrane

protein topology has been published recently [29] giving
the opportunity to compare the PMIscale predictions
with 18 algorithms on control datasets. We compared
PMIscale on two benchmark datasets extracted from this
work that permit evaluation of membrane-inserted pro-
teins. We also performed a comparison with the ΔG pre-
dictor method, because this method is directly based on
the Hessa et al. [12] biological scale. The first dataset is
composed of cytosolic proteins without any signal pep-
tide or TM segment. For this dataset, the PMIscale
based predictor predicts 2.8% proteins with at least one
TM segment which places it as one of the three best
methods, 12% better than the average performance of
the evaluated programs in [29]. The second dataset is
composed of extracellular proteins that contain a signal
peptide but no TM segment. The PMIscale predicts 10.2%
proteins with at least one TM segment, which is 30%
higher and therefore significantly better than the average
performance of the 18 more sophisticated methods. We
can note that over-prediction errors are much less abun-
dant with PMIscale than when other hydropathy plot
methods are used, placing it at the same level as the best
methods Phobius [30], Phillius [16] and Polyphobius [31].
The ΔG predictor is not adapted to this situation (it pre-
dicts 70% of proteins as having at least one TM segment),
which indicates that the BH scale may not differentiate
signal peptides from TM segments.
The last benchmark dataset we tested was extracted

from the benchmark server developed by Rath et al. [32]
which offers general and specialized assessment of exist-
ing and novel membrane helix prediction methods. In
this dataset, the SP was cleaved from the mature protein.
We evaluated the standard benchmark referred to as the



Table 3 Benchmark measures on a dataset extracted from
the Rath et al. benchmark web server

Sensitivity
(%)

Specificity
(%)

Correctly predicted
sequences (%)

PMIscale 80 90 88

Averaged performance
of 52 methods

82.6 70.7 66.2

This benchmark contains 599 sequences – 133 membrane proteins TMH or
β-barrel and 466 soluble proteins – including 483 membrane helices; the
averaged performance was calculated on the 52 transmembrane helix
prediction methods with topography information available on the web server -
TMLOOP method is not taken into account.
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TMH_1/2MH_OPM_BB_SOLB dataset (which consists
of sequences having less than 30% similarity to each
other possessing membrane helices that are long enough
to traverse the membrane and known membrane helices
that do not traverse the entire membrane). PMIscale
achieves a good performance that is 21% better than the
average of the 53 available methods. Performance result
details are available in Additional file 1: Table S2.

Prediction of TM localization in membrane proteins
The initial objective of PMIscale was to provide infor-
mation about the translocon passage. However, our ex-
periments demonstrated that this scale is also able to
localize TM segments in protein sequences. To evaluate
this point, we used two benchmark datasets. One is
composed of 1311 G-protein coupled receptors (GPCRs)
extracted from [29]. The particularity of this data set is
that the topology of GPCRs is challenging to predict, as
several of the TM helices are uncharacteristically hydro-
philic. In our benchmark, the prediction is regarded as
correct if it contains all 7 and only 7 TM segments. In
this case, the PMIscale prediction is lower than the
average of the evaluated methods with only 37% of the
proteins predicted with 7 TM segments. This is not sur-
prising because TM helices in the case of the GPCRs
could probably not be predicted with any method lim-
ited to the composition of the individual TM segments
alone. The usefulness of high accuracy prediction of
transmembrane inter-helix contacts has been demon-
strated in this particular protein family [33]. In this more
challenging case, sophisticated methods command an
advantage because they additionally extract information
from global features of the sequences, rather than using
only local features of the TM segments. Additional glo-
bal information about the positively charged residues of
the alternate sides of the membrane and the general bias
of the charges between regions of the proteins has also
been proven to be useful [34]. Moreover, with this par-
ticular family, the prediction power can be improved by
multiple sequence alignment information. We also note
that prediction performances on this particular dataset
vary a lot between algorithms.
The second dataset was a standard benchmark data

subset suggested by [32], that we used to compare our
novel PMIscale to 52 transmembrane helix prediction
methods freely available to be run in batch mode. The
evaluation was limited to topography scores, i.e. the ac-
curacy per protein sequence and the accuracy per seg-
ment. The results of specificity and the percentage of
correctly predicted proteins show that the performance
of PMIscale is significantly better than average. However,
PMIscale’s performance for sensitivity is slightly lower
than the average of the methods. The results are sum-
marised in Table 3, and a detailed comparison with each
method is available as supplementary data in Additional
file 1: Table S2. We also used this dataset to evaluate the
PMIscale-based predictions when the length of the slid-
ing window is modified and we observe a moderate deg-
radation of the performance when the window is set to 21
or 25 amino acids (shown in Additional file 1: Table S3).
Finally, we measured the impact on prediction accuracy
when the values of the thresholds τfirst and τnext are
modified. The results show that higher values improve the
specificity of predictions whereas lower values are able to
identify all the membrane proteins with very few excep-
tions. Performance results for modifications in thresholds
are available in Additional file 1: Table S4.

Conclusions
PMIscale is able to distinguish signal peptides from TM
segments as the translocon does. Moreover, accuracies
obtained by the PMIscale on all the benchmark datasets
are close to those of the most accurate and sophisticated
methods. This occurs despite the fact that our method is
based on a simple algorithm and has only 22 parameters -
20 values from the PMIscale and 2 thresholds, τfirst and
τnext. Information used in the predictions here is strictly
limited to the amino acid composition of the protein seg-
ment and is derived from the bias observed between the
composition of the signal peptides and the signal-anchor
segments. Compared to usual sliding-window approaches
used to precisely localize where the TM segments are, im-
provements in predictions are due to the new scale, and
also due to the introduction of a threshold term which dif-
ferentiates the first segment.
Our in silico results are consistent with the experi-

mental results of Hessa et al., as they suggest that the
translocon passage is the major factor that influences
the TM segment positions. Nevertheless, we can also note
that taking into account the position of the amino acids
inside the translocon does not give rise to much predictive
benefit in the comparison of the performances of the
SCAMPI, ΔG predictor and PMIscale methods.
Some particular protein families such as the GPCRs

require more specific algorithms for the precise locali-
zation of their TM segments. However, PMIscale could
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be very helpful for proteome-scale or genome-scale
studies: the PMIscale-based sliding-window predictor is
easy to use, quick and efficient which is important for
large-scale genome processing. Moreover, if the objective
of a prediction is to elaborate target lists that either ex-
clude or specifically select integral membrane proteins
as it is sometimes required in structural genomics pro-
jects, it is easy to modify the thresholds τfirst and τnext
to adjust the resulting inclusivity levels. An online
service for individual predictions and a stand-alone
PMIscale package for genome-scaled predictions writ-
ten in Perl are provided on the web site http://wwwappli.
nantes.inra.fr/bioinfoweb.

Methods
Selection of the data sets
The major problem with the training data sets of TM
prediction methods is the small number of membrane
proteins in the PDB database [35]. This proportion is
less than 2% according to the PDBTM database [36]. It
has also been shown that the commonly chosen test sets
are biased and, consequently, the reliability of the pre-
dictors could be lower than reported [37]. Even though
the UniprotKB/SwissProt annotations cannot be regar-
ded as experimentally established topography data, we
chose this database and retrieval tools [38] to construct
our training dataset because it allows the selection of ex-
clusively eukaryotic proteins with a signal anchor anno-
tation. A signal anchor serves the purpose of the ER
targeting as does a signal peptide, but it inserts into the
membrane while the signal peptide does not. For our
purpose, we selected reviewed eukaryotic proteins marked
with a “Signal-anchor for type II membrane protein” or
“Signal-anchor for type III membrane protein” annotation
[6]. We added the 10 adjacent amino acids to the TM seg-
ment or fewer if the number of adjacent amino acids was
lower than 10. CD-HIT [39] was then used to obtain a
final non-redundant protein set with an identity cut-
off at 30%.
The signal peptide dataset was extracted from SwissProt

with only eukaryotic proteins marked as “verified experi-
mentally”. This dataset, limited to the first 60 amino acids
of each protein, was submitted to the CD-HIT program to
obtain a non-redundant dataset with an identity cut-off at
30%. After this step, we obtained 1765 sequences with sig-
nal peptides in the SPexp dataset. One part of the SPexp
dataset - 1000 sequences - and the totality of the 435 TM
segments were divided at random into one training data-
set called SWPLearning (305 TM, 700 SP) - Additional
file 2 - and one test dataset called SWPTest (130 TM,
300 SP) – Additional file 3.
Our method is benchmarked using the SCAMPI data-

sets [14] and another derived from a recent extraction of
TM protein segments from the PDBTM database [40]
for which reduction to a non-redundant set was per-
formed with an identity cut-off of 30% and completed by
the remaining 765 sequences from the SPexp dataset.
The resulting datasets were referred to as ScampiHigh –
Additional file 4 - and ScampiLow –Additional file 5 -
respectively for SCAMPI TM datasets with high- or
low-resolution data, and PDBTMSeg – Additional file 6 -.
It is important to note that there is no redundancy be-
tween the PDBTMSeg dataset and the SWPLearning and
SWPTest datasets. Finally several sequence selections from
the ‘Benchmark of membrane helix predictions from se-
quences’ site [32] were used to evaluate PMIscale on PDB
datasets.

Local search algorithm for averaged values
Our algorithm, used to determine if a training segment
is an SP segment or a TM segment, is based on a
sliding-window approach. The value of a window is cal-
culated as:

Hi ¼ 1
n

Xiþn−1

j¼i

h rjð Þ ð1Þ

where i is the position of the first residue within the slid-
ing window, r is the residue at position j in the sequence,
n is the length of the fixed window, and h(rj) is the PMI
value. We define the PMI value of a sequence as the
maximum value obtained when sliding the window along
the sequence. If this value exceeds a threshold τfirst the
sequence is considered as a TM segment. Otherwise, it is
considered as a signal peptide.
PMI values are optimized by a local search method in

order to obtain the best discrimination between SP and
TM segments. Local search algorithms are modern heur-
istic methods designed for tackling hard optimization
problems (see [41] for a review of these methods and
their applications).
A local search algorithm starts with an initial candi-

date solution of the given search space and iteratively
moves from the current solution to a neighboring solu-
tion that improves the function that must be optimized.
At each step of the local search algorithm, all candidate
neighbors of the current solution are evaluated. Accor-
ding to the steepest hill-climbing strategy, the best so-
lution among the neighbors is chosen to replace the
current solution, and the local search process is iterated
from this new solution. The quality of a neighbor solu-
tion is assessed by an evaluation function based on the
Area Under the ROC Curve (AUC) [22] with the ROCR
package [42]. It estimates the ability of the solution to
obtain a suitable discrimination between SP and TM
segments.
A candidate solution is a set of 20 PMIscale values,

one for each amino acid. The initial PMIscale values are
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set with the Kyte & Doolittle hydrophobic indexes. In a
candidate solution, a PMIscale value is treated in three
different ways to obtain a neighboring solution. It can be
kept unchanged, and increased or decreased by a delta
variation. Candidate neighbor solutions are obtained by
combining these possible transformations of each PMI
scale value.
Furthermore, we must keep in mind that we consider

the localization information given by the SwissProt data-
bank as approximate. To allow the movement of the
window of maximum value along the sequence, signifi-
cant valuable delta variations [+3, -3] are tested in the
first iteration of the local search. These delta variations
were gradually decreased during the following iterations.
A systematic search including modifications of the 20
amino acid values at each step would be too time con-
suming. Therefore, to overcome this limitation, three
groups of amino acids were defined. The local search
process first deals with the first group, G1, and deter-
mines the optimal values for the amino acids of G1. It
then searches the optimal values for the amino acids of
the second group, G2, and finally deals with the third
group, G3, in the same way. Results presented in this
paper are obtained with the groups G1 = {F,L,I,V,Y,W},
G2 = {A,T,D,E,R,G,H} and G3 = {C,K,S,M,N,P,Q} which is
the best grouping that has been tested. Nevertheless, we
can note that several runs executed with several amino
acid groupings gave slightly similar results. Learning per-
formances vary also slightly according to a small vari-
ation of the length of the fixed window from 21 to 25 –
the AUC decreases less than 6%. Nevertheless, the best
performance is obtained with a fixed length equal to 23
amino acids.

The localization of TM segments
To determine the localization of the TM segments, we
developed a straightforward algorithm. A sliding window
of fixed length (n = 23 residues, consistent with the
learning dataset) is scanned across the protein sequence
and a PMI value is calculated with Eq. (1) at each pos-
ition along the sequence. The first window position that
gives the PMI value above τfirst localizes the first TM
segment. The iterative process continues to localize the
other segments with a threshold τnext. Moreover, at
least two amino acids separate two consecutive TM
segments.
A threshold value equal to 2.7 equilibrates the confu-

sion between signal peptides and signal anchors on the
SWPlearning dataset – ie the number of SP predicted as
signal anchors is roughly equal to the number of signal
anchors predicted as SP. The minimal threshold τfirst
required to predict the insertion of the first TM segment
was extrapolated from this observation. Next, we evalu-
ated τnext with the PDBTMSeg dataset. We chose to
optimize the specificity rather than the sensitivity par-
ameter, because our hypothesis is that some TM seg-
ments requires help to insert into the membrane and so,
it is expected that some TM will be missed. The specifi-
city value is set on the level of the best performing pre-
diction methods – ie 0.96 – which leads to τnext = 2.1.
All our benchmarks in this paper have been performed
only with these two thresholds: τfirst = 2.7 and τnext =
2.1. Evolution of predictions according to the threshold
τfirst and τnext are available in Additional file 1: Table S4.

Availability of supporting data
Several data sets supporting the results of this article are
included within the article and its additional files.
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