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Abstract

Background: Several methods are available for the detection of covarying positions from a multiple sequence
alignment (MSA). If the MSA contains a large number of sequences, information about the proximities between
residues derived from covariation maps can be sufficient to predict a protein fold. However, in many cases the
structure is already known, and information on the covarying positions can be valuable to understand the protein
mechanism and dynamic properties.

Results: In this study we have sought to determine whether a multivariate (multidimensional) extension of
traditional mutual information (MI) can be an additional tool to study covariation. The performance of two
multidimensional MI (mdMI) methods, designed to remove the effect of ternary/quaternary interdependencies, was
tested with a set of 9 MSAs each containing <400 sequences, and was shown to be comparable to that of the
newest methods based on maximum entropy/pseudolikelyhood statistical models of protein sequences. However,
while all the methods tested detected a similar number of covarying pairs among the residues separated by < 8 Å
in the reference X-ray structures, there was on average less than 65% overlap between the top scoring pairs
detected by methods that are based on different principles.

Conclusions: Given the large variety of structure and evolutionary history of different proteins it is possible that a
single best method to detect covariation in all proteins does not exist, and that for each protein family the best
information can be derived by merging/comparing results obtained with different methods. This approach may be
particularly valuable in those cases in which the size of the MSA is small or the quality of the alignment is low,
leading to significant differences in the pairs detected by different methods.
Background
During the past ten years there has been significant pro-
gress in the development of computational tools for the
detection of co-evolution between pairs of positions in a
protein family by analysis of its MSA (reviewed in [1-5]).
If the MSA of a protein family contains a sufficiently
large number of sequences, information about the prox-
imities between residues derived from the covariation
map can be used to predict the protein fold. However, in
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many cases the structure of one or more members of a
protein family is already known, and interest in identifying
covarying positions lies instead in the information that
this knowledge can provide about the protein mechanism
and dynamic properties, or in its use as a starting point
for mutagenesis studies.
Unfortunately, the reliability of covariation data can be

diminished by the existence of correlations originating
not just from the direct interactions (physical or functional)
between two residues, but also from their shared inter-
action with one or more other residues, and by the shared
phylogenetic history of several homologous proteins in the
MSA. Attempts to disentangle direct from indirect and
phylogenetic correlations were made with the MIp/APC
[6], Zres [7] and Zpx [8] corrections of MI statistics, with
the application of Bayesian modeling in the logR method
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[9], with Direct Coupling Analysis (DCA) [10-13], a
maximum entropy method, with the use of sparse
inverse covariance estimation in the PSICOV method
[14,15], and most recently using a pseudolikelyhood
framework [16-18], or combining principal component
analysis (PCA) with DCA [19]. While the performance
of these methods has been tested primarily with high
quality MSAs containing a very large number of sequences
(between 5 L and 25 L, with L = sequence length), very
often investigators are interested in studying the covarying
positions of proteins for which the available MSA contains
less than L sequences, and whose alignment quality is not
optimal due to the presence of many (or large) gaps, or
significant sequence heterogeneity in the protein family.
In these cases, it is difficult to argue that a single best
method exists, since different algorithms may be more (or
less) effective in capturing the covariation signal from
MSAs with widely different statistical properties, and a
better strategy may rely on merging the information
derived from a few methods based on different principles.
In order to expand the choice of algorithms available for
covariation analysis, here we present a new class of methods,
based on multidimensional mutual information (mdMI),
specifically designed to remove indirect coupling up to tern-
ary/quaternary interdependencies. These new methods were
tested on a set of 9 protein families each represented by a
MSA containing between ~0.4 and ~2 L sequences.

Results and discussion
Derivation of 3D and 4D MI covariation matrices
In most traditional applications mutual information is used
to study the interaction between two variables. If we con-
sider a channel with a single discrete input X1 and a single
discrete output X2, the amount of transmission between X1
and X2 is defined as their ‘mutual information’ I(X1;X2):

I X1;X2ð Þ ¼ H X1ð Þ þH X2ð Þ−H X1;X2ð Þ ð1Þ
where the H’s represent the individual (X1 or X2) and
joint (X1,X2) entropies. For our application, X1 and X2
represent columns in the MSA. We can consider a more
complicated case including a third channel (column). In
this case, I(X1;X3;X2) between the three variables repre-
sents the ‘interaction information’ for a channel with two
discrete inputs X1 and X3 and a single discrete output X2
(a 2-way channel). It is defined [20] as:

I X1;X2;X3ð Þ ¼ H X1ð ÞþH X2ð Þ þH X3ð Þ−H X1;X2ð Þ
−H X1;X3ð Þ−H X2;X3ð Þ þH X1;X2;X3ð Þ

ð2Þ
The mutual information I(X1;X2) is provided by the

terms in bold font in (2). The following considerations help
understand the nature of the remaining terms. If we are in-
terested in ‘explaining out’ the effect of X3 on the
transmission between X1 and X2, we can take a sum of the
mutual information I(X1;X2) for each possible value x3 of
X3, weighted by the probability of occurrence (px3) of each
of those values:

IX3 X1;X2ð Þ ¼
X

px3I X1;X2jX3 ¼ x3ð Þ ¼ I X1;X2jX3ð Þ
¼ I X1;X3;X2ð Þ−I X3;X2ð Þ

where I(X1,X3;X2) is the MI between the joint variable
(X1,X3) and X2. Developing further we have:

¼ ½H X1;X3ð Þ þH X2ð Þ−H X1;X3;X2ð Þ−H X3ð Þ
þH X2ð Þ−H X3;X2ð Þ�

¼ H X1;X3ð Þ−H X1;X3;X2ð Þ−H X3ð Þ þH X3;X2ð Þ
ð3Þ

the right-hand side of (3) can be recognized as the negative
of the terms in regular (non-bold) font in (2). From this ob-
servation and rearranging, we obtain that the mutual infor-
mation IX3(X1; X2) between X1 and X2, when the effect of
X3 on the transmission between them has been eliminated,
can be obtained by subtracting the interaction information
I(X1; X2; X3) from the mutual information I(X1;X2):

IX3 X1;X2ð Þ ¼ I X1;X2ð Þ−I X1;X2;X3ð Þ ð4Þ
Averaging over all values of X3 (a 3rd column) in an

MSA we obtain for the 3-dimensional MI between any
two columns (X1 and X2):

< IX3 X1;X2ð Þ>X3≠X1;X2 ¼ I X1;X2ð Þ− < I X1;X2;X3ð Þ>X3≠X1;X2

¼< H X1;X3ð Þ−H X1;X3;X2ð Þ−H X3ð Þ þH X3;X2ð Þ > X3≠X1;X2

ð5Þ
We notice here that (5) is calculated independently for

every possible pair X1,X2 with respect to each column
X3 ≠X1,X2 in the alignment. Then the values of (5) ob-
tained for each pair X1,X2 with all columns X3 ≠X1,X2 are
averaged. Since the effects of all 3rd residues are averaged,
3-dimensional MI provides a global removal of all indirect
couplings exerted on a pair by any other individual residue
in the sequence (ternary interdependencies).
Likewise, the mutual information IX3,X4(X1;X2) between

X1 and X2, when the effect of two additional variables X3
and X4 on the transmission between them is removed, is
obtained [21,22] as:

IX3;X4 X1;X2ð Þ ¼
X

px3;x4I X1;X2jX3 ¼ x3;X4 ¼ x4ð Þ
¼ I X1;X2 X3;X4Þjð

ð6Þ

By the ‘chain property’ of multivariate MI [23] we derive:

I X1;X2jX3;X4ð Þ ¼ I X1;X2jX4ð Þ−I X1;X2;X3jX4ð Þ
¼ I X1;X2ð Þ−I X1;X2;X4ð Þ−I X1;X2;X3ð Þ

þI X1;X2;X3;X4ð Þ
ð7Þ
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where the ‘interaction information’ between the four
variables is:

I X1;X3;X2;X4ð Þ ¼ H X1ð Þ þH X2ð Þ þH X3ð Þ þH X4ð Þ½ �
− ½H X1;X2ð Þ þH X1;X3ð Þ þH X1;X4ð Þ
þH X2;X3ð Þ þH X2;X4ð Þ þH X3;X4ð Þ�
þ ½H X1;X2;X3ð Þ þH X1;X2;X4ð Þ
þH X1;X3;X4ð Þ þH X2;X3;X4ð Þ�
−H X1;X2;X3;X4ð Þ

ð8Þ
Averaging over all values of X3 and X4 (two additional

columns of the MSA), and recalling that all the values
taken by X3 and X4 are the same with respect to X1 and
X2 in a MSA (although X3 ≠X4), we finally obtain:

< IX3;X4 X1;X2ð Þ>X3;X4≠X1;X2 ¼ I X1;X2ð Þ−2 < I X1;X2;X3ð Þ>X3≠X1;X2

þ < I X1;X2;X3;X4ð Þ>X3;X4≠X1;X2

ð9Þ
Expanding (7) leads to a direct expression of IX3,X4(X1;X2)

in terms of the entropies of the individual variables and
simplifies to (Additional file 1):

IX3;X4 X1;X2ð Þ¼−H X3;X4ð ÞþH X1;X3;X4ð ÞþH X2;X3;X4ð Þ
−H X1;X2;X3;X4ð Þ

ð10Þ
Averaging over X3 and X4:

< IX3;X4 X1;X2ð Þ >X3;X4≠X1;X2 ¼< −H X3;X4ð Þ þH X1;X3;X4ð Þ
þH X2;X3;X4ð Þ
−H X1;X2;X3;X4ð Þ>X3;X4≠X1;X2

ð11Þ
We notice here that (11) is calculated independently

for every possible pair X1,X2 with respect to each column
X3 ≠X1,X2 and for each value of X3 with respect to each
column X4 ≠X3 in the alignment. First the values of (11)
obtained for a given pair X1,X2 with a given column X3 ≠
X1,X2 for all possible columns X4 ≠X3 are averaged.
Then, the values of (11) obtained for the same pair X1,X2
with all possible X3 ≠X1,X2 are averaged. Since the effect
of any 3rd and 4th residues are averaged, 4-dimensional MI
provides a global removal of all indirect couplings exerted
on a pair by any two other residues in the sequence
(quaternary interdependencies).
Both (5) and (11) can be computed from the marginal

frequencies of the aa symbols in any 3 or 4 columns of a
MSA.
We have implemented equations (5,11) as a Matlab

function (NMSA_to_mdMI) included in the new release
of our Toolbox (MSAvolve_v2.0a, Additional file 2)
for the covariation analysis of MSAs. Upon derivation
of the < IX3(X1;X2) > and < IX3,X4(X1;X2) > values, the
covariation matrices are further processed as described
in our earlier work [4] to derive the corresponding
ZPX2 matrices [8]. The final matrices are named
‘3D_MI’ and ‘4D_MI’ (for the 3- and 4- dimensional
cases, respectively). The same function provides also a
standard MI map, which for consistency is called here
‘2D_MI’.
In its current parallel version 3D_MI runs on a single

CPU in ~3 min with a MSA of 250 positions and 300 se-
quences, and its speed increases almost linearly with the
recruitment of more cpu’s. As expected 4D_ZPX2 is sig-
nificantly slower and with large memory requirements.
Despite this limitation, 4D_MI can be very useful to
analyze in great detail small parts of a large MSA. How-
ever, in the following section we show that the simpler
and faster 3D_MI is already very effective in calculating
the direct coupling between the positions of a MSA.
Prediction of close contacts in X-ray crystal structures
We have evaluated the performance of standard MI
(2D_MI), 3D_MI, 4D_MI, PSICOV [14], plmDCA [17],
GREMLIN [18], and Hopfield-Potts_DCA with Princi-
pal Component Analysis [19] (called here hpPCA) with
the MSAs of 9 protein families, which we have used as
test sets in our recent survey of covariation detection
methods [4]. These MSAs contain less than 400 sequences
with ratios of sequence number to sequence length (called
here the ‘L ratio’) between 0.4 and 2.0, and thus represent
a particularly sensitive test for the performance of the
different methods with less than optimal size MSAs. It
is worth noting that PSICOV, plmDCA, GREMLIN, and
hpPCA apply by default the ‘average product correction’
(APC or MIp correction) that was originally introduced
by Gloor [6] as a correction for the entropic and phylo-
genetic bias of MI statistics. Later on, independently,
Little [7] and Gloor [8] introduced a second correction
called respectively ZRES or ZPX, to be applied after the
APC correction, and Dickson [24,25] showed that this
second correction further improves the accuracy of co-
variation detection particularly in MSAs containing
some degree of misalignment. For this reason, an APC
correction (if not already present) and a ZPX correc-
tion were applied to all covariation maps derived in
this study with different methods. We found that the
maps so corrected, performed uniformly better than
the uncorrected maps in the detection of close con-
tacts. Although each MSA contained less than 400 se-
quences, all the methods tested produced covariation
maps that closely resembled the contact maps derived
from the representative X-ray structures of each family:
and example of these maps is shown in Figure 1 for the
MDH family, which contains 391 sequences with an L
ratio slightly larger than 1.



Figure 1 Correspondence between the distance map of (S)-mandelate dehydrogenase (sMDH) X-ray structure [PDB:1HUV] and the
covariation maps for the MDH protein family obtained with different methods. Contact predictions by 2D_MI (light blue), 3D_MI (red),
4D_MI (black), PSICOV (blue), plmDCA (green), GREMLIN (cyan), and hpPCA (magenta) are shown as spots of size proportional to the covariation
score. Gray regions represent the native distance map of the sMDH X-ray structure with a cutoff of 8 Å on the distance between the centroids of
different residues.
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To quantify the detection of close contacts, we measured
what percentage of all residue pairs separated by less than
8 Å in the X-ray structure was represented in the top
covarying pairs identified by each method. A number of
pairs equal to the number of residues L in each sequence
was considered. This result was further filtered to include
either all the pairs or only pairs whose component residues
are separated by at least 6, 12, 20 positions in sequence
space. Results obtained with all 9 MSAs for all pairs and
for pairs separated by at least 20 positions in sequence are
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shown in Figure 2 (averaged results are shown in Additional
file 1: Figure S1). When all possible pairs are considered
(left panels of each protein family in Figure 2), plmDCA
identifies a higher percentage of pairs separated by < 8 Å
in almost all the MSAs. However, a significant variability
in performance between the different methods becomes
apparent when only pairs separated by at least 20 posi-
tions in sequence (right panels of each protein family) are
considered. For example, in the ArsA family plmDCA
clearly includes the highest percentage (~6.5%) of prox-
imal pairs (in space) in the top 583 covariation scores
(Figure 2, ArsA family, left panel): however only 300 out
of these 583 pairs are in the subset of pairs that are dis-
tant in sequence, and these 300 represent only <0.5% of
all pairs close in space (Figure 2, ArsA family, right panel).
Figure 2 Detection of close contacts by covariation maps. Covariation
family, in the panel on the left, each trace shows what percentage of all re
is present in the top L covarying pairs identified by each method. In the pa
20 intervening positions in sequence space are included in the analysis. Tru
apart) appear as upward displacements in the traces; false positives appear
number of sequences and the number of positions in each MSA.
Conversely, GREMLIN includes a smaller number (~4.4%)
of proximal pairs in the top 583 covariation scores, but
400 of them are in the subset of pairs that are distant in
sequence, and they represent almost 1% of all pairs close
in space. These results indicate that the better overall
performance of plmDCA with ArsA (when all pairs are
considered) is due to the fact that a very large number
of pairs close in sequence is represented in the top
583 covariation scores. Extending this type of analysis
to all 9 protein families, it becomes clear that if we
were primarily interested in the pairs that are distant
in sequence but close in space, we would perhaps
achieve the highest accuracy using GREMLIN with
ArsA, ArsC, and MDH, but 4D_MI would be the method
of choice with Atp11p, PHBH, and CcrA, while either
analysis was carried out for the MSAs of 9 protein families. For each
sidue pairs separated by less than 8 Å in the reference X-ray structure
nel on the right, only pairs whose residues are separated by at least
e positives (covarying pairs corresponding to structural pairs < 8 Å
as horizontal segments in the traces. L ratio is the ratio between the
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GREMLIN, plmDCA, and hpPCA would work best for
Atp12p.
However, even for cases in which several methods

give comparable results in the type of analysis shown
in Figure 2, we may wonder whether the pairs identified
by any two of these methods are the same or not. In
Table 1 the average percentage (including all 9 MSAs) of
pairs shared by all methods in the top L covariation scores
is shown as a matrix, with values above the diagonal refer-
ring to all possible pairs, and values below the diagonal
referring to pairs separated by at least 20 positions in se-
quence. This matrix shows that a significant number of
pairs are shared among methods that are conceptually
similar (for example 2D_MI, 3D_MI and 4D_MI). How-
ever, the percentage of pairs shared by methods that are
conceptually different is much smaller: for example 3D_MI
and plmDCA share less than 40% of all pairs, and even
plmDCA and GREMLIN, which operate within a similar
pseudolikelyhood framework, share at most 64% of all
pairs.
Thus, even from just this set of only 9 protein families,

it appears that a single method that would give the best
result with all protein families is hard to find, as each
algorithm performs quite differently with different MSAs,
and even algorithms whose overall performance is similar
on a statistical basis, share no more than 2/3 of all the
pairs among the top L covariation scores, if they are based
on different principles.

Dependence of the covariation signal on secondary
structure
If there are significant differences in the performance of
each method with different MSAs, it is important to
understand the origin of such differences, and how they
affect the structural information derived from covariation
maps. For example, since each protein family is character-
ized by a variable mixture of secondary structures (e.g.,
amount, size, and orientation of helices and strands), we
have analyzed the dependence of the covariation signal
detected by each method on the type(s) of secondary
Table 1 Percentage of all pairs shared by different methods i
protein families

2D_MI 3D_MI 4D_MI

2D_MI – 80.0 69.9

3D_MI 79.1 – 87.9

4D_MI 67.7 86.3 –

PSICOV 38.3 41.6 42.1

plmDCA 29.0 31.5 32.4

GREMLIN 36.4 40.0 40.2

hpPCA 20.2 22.6 23.8

Values above the diagonal. All protein pairs. Values below the diagonal. Only pa
sequence space.
structure (helices, strands) in which covarying pairs
are located (see Methods). Non-independent selection
of neighboring residues is a phenomenon known to
occur in helices and strands, and thus the features of
these secondary structures provide a rich framework to
study residue coupling. With the set of 9 protein families,
all methods produce noticeable peaks or shoulders at pe-
riods corresponding to up to 4 helix turns, and at periods
of 2, 4, and 6 residues in strands, corresponding to side-
by-side residues pointing in the same direction (Figure 3).
However each method has its own pattern with stronger
covariation scores assigned on average on one or another
of these periods. Thus, the wide performance range of
each method with different MSAs results in contact pre-
dictions that may reflect more or less well the secondary
structure features of each protein family.

Network connectivity
An important aspect of recent improvements in the accur-
acy of covariation detection methods is the separation of
the direct coupling between two residues from the indirect
coupling. Given residues A,B,C, when pair AB and pair
BC are among the top pairs and represent true structural
contacts based on protein geometry, we may find pair AC
as highly covarying (yet distant in geometric structure)
as an induced coupling produced by pairs AB and BC.
This kind of induced coupling can extend along chains
of contacts: for example if A contacts B, B contacts C, C
contacts D, …N-1 contacts N, covariation maps may show
some level of covariation between A and N. This type of
covariation is not necessarily a statistical artifact. In fact
since proteins are very tightly packed a mutation that pro-
duces a change in volume in some part of the structure,
can be compensated by small changes of volume along
chains of residues contacting each other. A similar effect
can be observed for a mutation that produces a change of
charge, polarity, or hydrogen bond patterns. The very ex-
istence of this type of chaining effects as a real physical
phenomenon occurring inside proteins is proven by
the dependence of the covariation signal on secondary
n the set of top L covariation scores: average of 9

PSICOV plmDCA GREMLIN hpPCA

42.2 34.4 41.6 24.6

46.4 36.9 45.0 27.5

46.4 38.4 46.2 28.6

– 34.4 44.4 26.9

32.6 – 63.9 51.7

41.9 61.2 – 42.1

23.2 46.2 37.6 –

irs whose residues are separated by at least 20 intervening positions in



Figure 3 Distance dependent covariation signal and secondary structure. For each secondary structure element (helices and strands), the
average normalized covariation score was based on the sequence distance relative to an initial position. Curves connecting the average
covariation scores at each sequence distance are drawn as cubic splines. Vertical yellow lines indicate the expected secondary structure period.
The lower right two panels show the averaged scores for all 9 protein families.
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structure, which was analyzed in the previous section.
True chain-dependent coupling between residues should
be distinguished from the statistical correlation that may
occurr between residue A and residue B because of their
physical correlation to a third residue C despite the lack of
any physical correlation between A and B.
We have used tools from graph theory as applied to

the analysis of networks to explore further the influence
of chaining effects on the covariation scores of pairs that
are not in direct physical contact. We recall here that a
covariation map is a weigthed adjacency matrix of the
graph representing the network of interactions between
residues in a protein. For each pair A,B in the covari-
ation map, within a given threshold of top covariation
scores, we ask the question: is there a physical path that
connects A to B through residues that belong to high
scoring pairs? If there is such a path (there could be
more than one) we want to know what is the total length
of the shortest path (excluding a possible direct contact
between the two residues) and what is the mean length
of the steps that lead from A to B. In practice this ques-
tion is answered by selecting a group of pairs based on a
score threshold from the covariation map of a protein
family, and solving the ‘traveling salesman’ problem for
the corresponding pairs in the distance map of a reference
X-ray structure. For example, if the shortest non-direct
path 20-91-123-203-78 is found in the X-ray structure
between the components of the high scoring pair 20–78,
it means that pairs 20–91, 91–123, 123–203, and 203–78
are present among the pairs selected within a given num-
ber of top covariation scores. An example of this type of
analysis is presented in Figure 4A for the MDH protein
family using covariation maps derived with different
methods. The top right panel shows the mean length of



Figure 4 Dependence of covariation scores on connectivity: MDH protein family. A. Dependence of covariation scores on path length. Top
left. Mean length of the steps in each path connecting pairs within scoring threshold; the threshold is progressively moved to include a number
of pairs equal to 3 L. A vertical yellow line marks a number of pairs equal to L. Top right. Mean length of the path connecting pairs within
scoring threshold. As more pairs are included in the analysis the probability of finding a shorter path increases and all traces converge to a
smaller path length. Bottom panels. Correlation between the covariation score and the mean step length (left panel) or the total length
(right panel) of the path that connect the two members of each pairs through residues that belong to other pairs. B. Dependence of covariation
scores on transitivity. Left panel. The size of the covariation graph is varied by including a progressively larger number of top scoring pairs at
constant minimum sequence distance = 6. A vertical yellow line marks a number of pairs equal to L. Right panel. The minimum sequence
distance is varied at constant graph size = L.
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the path connecting the pairs within scoring threshold:
the threshold is progressively lowered to include a larger
number of pairs up to 3 L. As more pairs are included in
the analysis the probability of finding a shorter path
increases and all traces converge to a smaller path length.
The top left panel shows the mean length of the steps in
each path. Clearly, smaller steps favor the transfer of phys-
ical perturbations (of size, charge, or other property) along
a chain of contacts. It is significant that the ranking of dif-
ferent methods in this panel, based on the length of the
steps (shorter steps ≈more distance induced correlation),
corresponds quite well to their capacity to recognize close
contacts in the reference X-ray structure of the MDH
family as shown in Figure 2. This correlation was found to
hold true also for the other MSAs analyzed, and suggests
that chaining effects actually favor, rather than confound,
the recognition of close contacts by covariation methods.
Further support for this conclusion is provided in the
lower left panel of Figure 4A, which shows the correlation
between the covariation score of pairs and the mean step
length of the path that connect the two members of each
pairs through residues that belong to other pairs. With the
exception of a few points representing the very top scoring
pairs (~L/5), most points of the best performing methods
(based on Figure 2) sit in a range of negative correlation,
indicating that the covariation score is higher when the
mean step length (or also the mean path length, right
panel) is smaller.
An average of the results obtained with the path length

connectivity analysis for all 9 protein families is shown
in (Additional file 1: Figure S2). Also in this case, the
ranking of different methods based on the mean step
length of the connectivity paths (top left panel) corre-
sponds reasonably well to the average performance of
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the methods in predicting close contacts (Additional
file 1: Figure S1).
In a different type of analysis, we used the concept of

graph transitivity to investigate how the covariation
scores produced by different methods are affected by the
statistical correlation that may occur between residue A
and residue B because of their physical correlation to a
third residue C despite the lack of any physical correlation
between A and B. At each given threshold of covariation
scores, Transitivity, Tr, measures the number of “com-
pleted triads” relative to the number of “potential triads”,
and ranges from 0 to 1 (completely connected graph).
Protein covariation graphs were manipulated for the set of
9 proteins either by changing the covariation stringency
(number of top pairs included in the graph based on a co-
variation score cutoff) or by changing the minimum se-
quence distance of residue pairs at constant graph size
(see Methods). Transitivity was then calculated for each
covariation graph.
An example of this analysis for the MDH protein fam-

ily is shown in Figure 4B. As the graph size is increased
by lowering the score threshold at a constant sequence
distance of 6, transitivity values decrease for plmDCA,
hpPCA, GREMLIN and PSICOV, while they increase
for the three MI/mdMI based methods (2D, 3D, 4D)
(Figure 4B, left panel). For all methods transitivity
values reach a plateau when the network reaches size ≈ L
(yellow vertical line). As the minimum sequence distance
is increased at constant network size = L (Figure 4B, right
panel), all methods show a trend of decreasing transitivity,
with the decrement rate being maximal within the first
few positions for most methods. In both types of analysis
there is a clear separation of the different methods in two
groups with PSICOV, plmDCA, GREMLIN and hpPCA
showing significantly lower values of transitivity than the
MI/mdMI based methods. The transitivity trends shown
in Figure 4B are consistent with the path connectivity
analysis shown in Figure 4A: top scoring pairs identified
by MI/mdMI methods are connected on average by
shorter indirect paths involving other residues, but the
steps of these paths are longer (~13-15 Å) leading to a
higher number of completed triads (as opposed to quar-
tets, quintets, etc.). At the same time if, for example, A
is connected to B and B is connected to C, the increased
step length decreases the probability of a real physical
perturbation propagating from A to C through B. In this
case increased transitivity can be rationalyzed as evidence
of a statistical correlation between A and C without phys-
ical interaction. However, high transitivity appears to have
little effect on the identification of close contacts among
residues separated by > 20 positions in sequence, as
the performance of 3D_MI and 4D_MI in this respect
approaches that of plmDCA or GREMLIN (Figure 2,
MDH panel).
Conclusions
In this study we have introduced a new class of methods
to detect covariation from experimental MSAs, based on
multidimensional mutual information (mdMI). Simple al-
gebraic relationships (equations 5,11) for the removal of
3rd and 4th order indirect coupling between the columns
of a MSA were derived and implemented as Matlab func-
tions. Due to the long execution times and large memory
requirements (growing with the 4th power of the sequence
length) of 4D_MI only the removal of 3rd order indirect
coupling (3D_MI) is practical with desktop computers for
MSAs of sequences longer than 200 residues. The perform-
ance of 3D_MI and 4D_MI vis-a-vis that of standard MI
(2D_MI), PSICOV, plmDCA, GREMLIN and hpPCA was
tested with the MSAs of 9 protein families; although each
MSA contained less than 400 sequences, all the methods
produced covariation maps that closely resembled the con-
tact maps derived from the representative X-ray structures
of each family (Figure 1). While we observed significant
variability in the performance of the methods with each
MSA (Figure 2), on average removal of only 3rd order
indirect coupling by 3D_MI was sufficient to replicate
the performance of plmDCA and GREMLIN (Additional
file 1: Figure S1). One merit of 3D_MI is its algebraic sim-
plicity (see equation 5), grounded in the traditional rela-
tionships of multivariate information theory [20-22,26].
While all the methods used in this study performed

quite well in terms of percentage of close contacts recog-
nized among the top covarying pairs, they did not neces-
sarily recognize the same close contacts, as no more than
50% of all the pairs were shared between the MI/mdMI
based methods and the other methods (Table 1). The per-
centage of pairs shared among the residues separated by
at least 20 intervening positions in sequence space was
even lower (~40%). Furthermore, while on average all
methods produced noticeable peaks or shoulders at
periods corresponding to up to 4 helix turns, and at
periods of 2, 4, and 6 residues in strands, there were
significant differences in the methods capacity to identify
distance dependent covariation among residues located in
the same secondary structures (Figure 3). These results
suggest that if the goal of a covariation analysis is not that
of structure prediction, and if one or more representative
X-ray structures are available for a given protein fam-
ily, analyzing both the accuracy of residue-residue con-
tact prediction, and the patterns of distance dependent
covariation in secondary structures, may point to the
method(s) that offer the best performance with a spe-
cific MSA. Finally, since there is < 65% overlap among
the sets of covarying residues identified by algorithms
based on different principles, further improvement in
accuracy is likely to be obtained by selecting only the
shared pairs or by averaging the results from different
methods.
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In this study we have also attempted to identify whether
the difference in performance among covariation detection
methods is due to phenomena of network connectivity
among the covarying pairs. Several reports have stressed
the importance of removing covariation due to “chaining”
as a means to reduce false positive rates in the prediction of
structural contacts [9-11]. This concept has been invoked
again most recently in the introduction to the hpPCA
method [19]. However, it is not clear that it is really the re-
moval of chaining that produces better covariation maps.
For example, in our testing of 9 protein families MI/mdMI
based methods achieve close contacts recognition compar-
able to that of plmDCA and GREMLIN (Additional file 1:
Figure S1) despite showing on average higher values of
network transitivity.
Some clarity may be offered by considering what is the

meaning of the partial correlation between variables
(different positions in a sequence) in the context of the
information that covariation detection methods are try-
ing to extract from sequence data. In covariation studies,
we typically start with some type of covariance matrix,
and we try to guess its inverse, from which we can derive
the partial correlations. This inverse can be thought as re-
lated to the partial derivatives of a hidden optimization
process that evolution carries out on a ‘fit function’ (which
includes both functional and structural fitness), by chan-
ging one or more amino acids at a time. From this point
of view, the idea that transitivity depends on the existence
of ‘chains’ of residues in which correlation is transferred
from one residues to the next, so that distant residues
appear correlated but in reality are not, loses appeal. The
important question becomes instead: is a change in resi-
due A by itself producing a change in the ‘fit function F’
(the partial derivative of F with respect to A) that goes in
the same (or opposite) direction as a change in residue B
by itself (the partial derivative of F with respect to B)? For
two positions to appear correlated, it is not necessary to
be part of a chain of contacts, as all that matters is their
individual effect on the fit function. What is important in
these cases of covariation is not the presence of a direct
physical interaction, but the fact that residues exposed to
like forces (e.g., the hydrophobic interior or the hydro-
philic surface), will respond ‘individually’ (like a partial de-
rivative) in a correlated (or anticorrelated/compensatory)
way to the changes that affect the fit function.
On this basis, it appears that the reason why methods

that derive partial correlation between the columns of
a MSA (multi-dimensional MI, maximum entropy, sparse
inverse covariance, pseudolikelyhood) provide a better
recognition of close contacts is not because they remove
chaining effects, but because they filter out the correlation
between distant residues that originates from general fitness
constraints [27] without the need for physical contacts. In
contrast true chaining effects are expression of real physical
perturbations that propagate inside proteins, and therefore
are not removed by the derivation of partial correlation
between variables.
Methods
MSAs
MSAs for 9 protein families (the F1 chaperone Atp11p
[28], p-hydroxybenzoate hydroxylase (PHBH [29]), the
catalytic subunit ArsA of the arsenic transporter [30], the
F1 chaperone Atp12p [28], phthalate dioxygenase reductase
(PDR [31]), the arsenate reductase ArsC [32], KDO8P syn-
thase, (KDO8PS [33]), CcrA (type 1 metallo-β lactamases
[34]), and (S)-mandelate dehydrogenase (sMDH [35]);
Additional file 3) were calculated independently with
T-Coffee [36] Muscle [37], and Mafft [38] and then merged
with T-Coffee.
Covariation detection methods
A Matlab function (NMSA_to_mdMI) for the calculation
of 3D_ and 4D_MI is available in the MSAvolve v2.0a
Toolbox (Additional file 2; download also available from
http://146.9.23.191/~gatti/coevolution/). The computation
of 3D_MI and 4D_MI from equations (5,11) can be quite
demanding as the number of combinations to be averaged
rises very rapidly for large MSAs. To overcome this prob-
lem we have adopted a new MI algorithm, which was de-
veloped by Giangregorio Generoso to calculate the mutual
information between two images, and was deposited at
Matlab Central/File Exchange as the function ‘MI_GG’
(http://www.mathworks.com/matlabcentral/fileexchange/
36538-very-fast-mutual-information-betweentwo-images/
content/MI_GG.m). MI_GG is about 15 times faster than
most versions of MI; while we provide in our Toolbox a
version of the function optimized for the analysis of
MSAs we refer to the original deposition for details of
the algorithm.
In order to test the performance of PSICOV (which

in the original implementation [14] has convergence
problems in the GLASSO subroutine for the calcu-
lation of the sparse inverse when used with MSAs
of <500 sequences), we recoded the algorithm as a
Matlab function. The new function (NMSA_to_slPSI-
COV, also provided in our MSAvolve v2.0a Toolbox)
does not show convergence problems due to the adop-
tion of the QUIC algorithm [39] for the calculation of
the sparse inverse.
GREMLIN, plmDCA, and hpPCA analyses were carried

out with the original Matlab code downloaded from the
authors’ websites. For hpPCA the number p of patterns
used in the calculation was calculated as p = nλ1 - nλ2,
where nλ1 is the total number of eigenvalues in the Pearson
correlation matrix, and nλ2 is the number of eigenvalues
with value between 0.8 and 1.2 [19].

http://146.9.23.191/~gatti/coevolution/
http://www.mathworks.com/matlabcentral/fileexchange/36538-very-fast-mutual-information-betweentwo-images/content/MI_GG.m
http://www.mathworks.com/matlabcentral/fileexchange/36538-very-fast-mutual-information-betweentwo-images/content/MI_GG.m
http://www.mathworks.com/matlabcentral/fileexchange/36538-very-fast-mutual-information-betweentwo-images/content/MI_GG.m
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Merging of contact predictions obtained with different
protein families and calculation of error margins (Figure
S1) were carried out as described in [4].

Distance dependent covariation signal
A distance dependent covariation signal was used as a
measure of how covariation scores change as a function
of sequence distance. For each protein family, secondary
structure assignments were obtained from the header of
the PDB file of the reference X-ray structure. Then, given a
secondary structure of length n comprising residues r1,r2,r3,
r4 … rn-1,rn, a n-1 by n-1 matrix of normalized covariation
scores Ci,j was constructed in which the 1st row contained
the scores, C1,1+1, C1,1+2, C1,1+3 , C1,1+4 … C1,1+n-1, the
2nd row contained the scores C2,2+1,C2,2+2,C2,2+3 ,C2,2+4 …
C2,2+n-2, the 3rd row the scores C3,3+1,C3,3+2,C3,3+3 ,C3,3+4 …
C3,3+n-3, and so on until the n-1 row contained only the co-
variation score Cn-1,n as its first element; all other elements
of the matrix were set to 0. Average covariation scores for
every sequence distance from 1 to n-1 were obtained by
taking the average of the non-zero elements in each col-
umn of the matrix.

Protein covariation graphs and network connectivity
The covariation matrix provided by each method cor-
responds to the weighted adjacency matrix of a protein
covariation graph for each protein family. Given a threshold
covariation score, a set number of top pairs from the co-
variation matrix is selected. These top pairs can be repre-
sented as a graph, where individual residues are nodes and
edges exist between any two residues where the covariation
score has exceeded the cutoff (i.e. the pair is in the top
pairs). Two important factors contribute to the content of
the covariation graph; i.) the number n of pairs ii.) the
minimum sequence distance d between pairs. When
selecting based on the number of pairs, n is chosen as
some fraction of the length, L of the protein. When
selecting a minimum sequence distance d, all covariation
pairs for which the sequence distance is < d are discarded
from the graph. Covariation graphs were created for all
protein families by varying either the graph size (L) or the
minimum sequence distance (d). In practice, covariation
matrices were first converted to the corresponding un-
weighted adjacency matrices, by setting all selected entries
to 1 and all other entries (including the diagonals) to 0.
Then, all connectivity analyses of the covariation graphs
corresponding to these adjacency matrices were carried
out with the Matlab Toolbox for Network Analysis devel-
oped by the Strategic Engineering Research Group (SERG)
at MIT (http://strategic.mit.edu/).
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