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Abstract

Background: Population genetics and association studies usually rely on a set of known variable sites that are then
genotyped in subsequent samples, because it is easier to genotype than to discover the variation. This is also true for
structural variation detected from sequence data. However, the genotypes at known variable sites can only be inferred
with uncertainty from low coverage data. Thus, statistical approaches that infer genotype likelihoods, test hypotheses,
and estimate population parameters without requiring accurate genotypes are becoming popular. Unfortunately, the
current implementations of these methods are intended to analyse only single nucleotide and short indel variation,
and they usually assume that the two alleles in a heterozygous individual are sampled with equal probability. This is
generally false for structural variants detected with paired ends or split reads. Therefore, the population genetics of
structural variants cannot be studied, unless a painstaking and potentially biased genotyping is performed first.

Results: We present svgem, an expectation-maximization implementation to estimate allele and genotype
frequencies, calculate genotype posterior probabilities, and test for Hardy-Weinberg equilibrium and for population
differences, from the numbers of times the alleles are observed in each individual. Although applicable to single
nucleotide variation, it aims at bi-allelic structural variation of any type, observed by either split reads or paired ends,
with arbitrarily high allele sampling bias. We test svgem with simulated and real data from the 1000 Genomes Project.

Conclusions: svgem makes it possible to use low-coverage sequencing data to study the population distribution of
structural variants without having to know their genotypes. Furthermore, this advance allows the combined analysis
of structural and nucleotide variation within the same genotype-free statistical framework, thus preventing biases
introduced by genotype imputation.
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Background

Ongoing efforts to discover genetic variation in humans
and other species are yielding long lists of known vari-
ants [1-3]. The discovery of genetic variation is always
the first step of population genetics or association stud-
ies. Once structural or nucleotide variation is revealed,
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individuals not present in the original sample are usually
genotyped, for subsequent studies. Genotyping individu-
als is much easier than discovering new variants, because
fewer loci have to be tested, and the prior probabil-
ity of there being an alternative allele is higher than in
sites not known to be variable. However, the presence
of sequencing and mapping errors, and undersampling at
heterozygous sites demand high coverage in order to infer
individual genotypes accurately. Accurate genotypes are
the basic information upon which most classic methods of
population genetics depend. Our reliance on classic meth-
ods and the convenience of low-coverage data are such
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that the population-level structure of the variation is being
used to improve the genotype calls on low-coverage data
[4,5], which are then expected to help us understand the
population-level structure of the variation. This circular-
ity prevents, for example, the use of genotypes imputed
on the bases of known patterns of linkage disequilib-
rium to infer recombination rates. The problem stems
from considering the genotypes as the ultimate result of
a research program. For most studies, other than per-
sonalized medicine, the genotypes are just the means to
gain insight into population-level processes: association
between genotypes and phenotypes, history of migra-
tion and admixture, patterns of recombination, natural
selection, etc.

When studying structural variants, there is too much
to loose from relying on imputed genotypes. Polymor-
phic structural variants contribute to phenotypic diversity
and disease susceptibility in humans [6], and other species
[7-11]. The population genetics of structural variants is
both a classic field, and, thanks to the new sequencing
techniques, an emergent research venue [12,13]. In the
last years, many programs have been developed to iden-
tify structural variants from sequence data, using diverse
signatures from split reads [14,15], read depth [16,17],
paired reads [18,19], or a combination thereof [20,21].
Among the hotest topics that await to harvest full ben-
efits from the high-throughput sequencing technologies,
is the interplay between structural and nucleotide varia-
tion. The nucleotide variation linked to structural variants
can inform of their evolutionary history and their effects
on fitness, and it can also reveal to what extent struc-
tural variants affect recombination patterns. However,
these questions cannot be addressed with SNP genotypes
imputed on the bases of assumed patterns of linkage
disequilibrium.

An alternative to genotype imputation is to study the
population-level structure of the variation with new meth-
ods that take genotype uncertainty into account in the
analysis. This is what has been proposed before for single-
nucleotide variation [22-24]. The idea is to calculate
the genotype likelihoods at every site, instead of call-
ing the genotypes. Genotype likelihoods can be used to
obtain unbiased estimates of allele frequencies or site-
frequency spectra, and likelihood-ratio tests can be used
to address population-level hypotheses, such as Hardy-
Weinberg equilibrium, population differentiation, link-
age disequilibrium, genotype-phenotype association, etc
[24,25]. However, this promissing approach is not appli-
cable yet to structural variants, mostly because existing
implementations assume even sampling probabilities of
the two alleles from a heterozygous sample. While this
assumption is a reasonable simplification for the analysis
of SNP data, it is not for the analysis of structural vari-
ants, where one of the alleles may be observed much more
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frequently than the other in a heterozygous sample [26].
One source of bias is the conservative alignment of reads
to the reference genome. By default, mapping tools are
optimized for the discovery phase, when the prior of there
being a structural variant is very low. Therefore, align-
ers favor concordant mappings, that is, those that do not
report the variation [27-29]. Another source of allele sam-
pling bias is the different detectability of the alleles. For
example, using single reads, the presence of a polymorphic
insertion may be revealed by any read mapping to either
of the two breakpoints, or even to its inner sequence, if
unique and known; while the absence of the inserted frag-
ment can only be positively attested by reads mapping
on a single breakpoint. Also, repetitive sequences are fre-
quently present around a structural variant, and they can
impair the detection of one allele more than the other.
For example, when the sequence of a transposable ele-
ment is broken by an inversion in one of the breakpoints.
In summary, allele sampling bias is the rule, rather than
the exception, when genotyping structural variation with
sequence data; and the bias can be orders of magnitude
higher than in the case of SNPs (see below). In addition,
the few existing tools able to report genotype likelihoods
[5,24] require a bam file [30] for their calculation, which is
not designed for structural variation at all.

Here, we present svgem, a simple and flexible command-
line application to infer genotype likelihoods and allele
frequencies from counts of reference and alternative alle-
les, appropriate for structural variation data, with an arbi-
trarily high reference (or alternative) bias. This program is
not concerned with the discovery phase of the structural
variants, but with the post-discovery analyses. The only
assumptions made about the type of variation that can be
analysed are that it is bi-allelic, and that the two alleles
can be distinguished from sequencing data. Thus, sim-
ple insertions, deletions, inversions, and translocations of
any length can be analysed with svgem, while multiple,
overlapping rearrangements, with more than two possi-
ble alleles are not. The sampling bias must be known in
advance, and passed as a parameter. We offer some guide-
lines on how to estimate it, and explain how to test for
Hardy-Weinberg equilibrium. Also, the ploidy of the sam-
ples is taken into account to infer genotype likelihoods and
allele frequencies in sex chromosomes properly.

Implementation

Overview and requirements

The program svgem implements an expectation-maxi-
mization algorithm in C++. The source code is freely
available in Additional file 1, and in [31]. It runs from the
command line, analyses one structural variant at a time,
and it takes as input a text file with three (optionally, four)
columns: a sample identifier and the numbers of times the
reference and the alternative alleles have been observed.
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The optional fourth column represents the ploidy, for the
case when the sample is composed of a mixture of males
and females, and the variant being analysed is on the sex
chromosome.

In order to make svgem compatible with virtually any
way of counting the observations of reference and alter-
native alleles, only two qualities are distinguished: the
average quality of the reference counts, and the average
quality of the alternative counts. These are analogous to
the base qualities of a sequenced read, and they can be
passed as parameters to the program, in terms of the fre-
quencies of erroneous counts, or estimated from the data.
Alternatively, if the individual quality (probability of error)
of each observation is known, the expected number of
true counts or ‘effective’ number of times the alleles are
observed, instead of the raw counts, can be used. This
approach proved to be very useful in SNPTools [5].

The allele sampling bias is represented by one parame-
ter, A, defined as the odds of sampling the reference allele
from a diploid, heterozygous genotype. Even though in
some cases it could be estimated from the data, svgem
requires A to be passed as a parameter, in order to save
degrees of freedom. Otherwise, it would be impossible to
get accurate estimates of extreme allele frequencies in the
presence of errors. Plus, because svgem is not designed to
discover variants, but to analyse already known variants,
it is fairly easy to estimate A. There are two different situa-
tions. First, if the exact sequences of both structural alleles
are completely known, the alleles can be distinguished
by the single reads mapping specifically to one of them.
All possible reads from the informative regions of both
alleles can be extracted, as if they came from a heterozy-
gous sample, and mapped back to the reference genome
and to the alternative allele. Then, A would be estimated
as the ratio between the number of reference reads that
map uniquely to the reference allele, and the number
of alternative reads that map uniquely to the alternative
allele.

Second, if the exact sequences of the structural alleles
are not known (e.g., imprecise breakpoints), they must
be distinguished by the pattern of paired-end mappings:
concordant for the reference, and discordant for the alter-
native (methods based on the depth of coverage, usually
requiring high coverage, are not considered here). Still,
the most likely version of the alternative allele could be
composed, and used to extract paired end reads from
it. In this case, the complete extraction of all possible
paired-end reads is not feasible, but extensive simula-
tions can be done with available programs, such as wgsim
[24], or ART [32]. If the same coverage is simulated in
both alleles, A can be estimated as the ratio of the num-
ber of reference paired ends that map concordantly to
the number of alternative paired ends that map discor-
dantly. To overcome the imprecision of the breakpoints,
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several alternative alleles could be simulated and aver-
aged. Alternatively, if a subset of individuals are known
to be heterozygous by other means (e.g., PCR evidence,
or higher sequencing coverage), the ratio between their
pooled numbers of reference and alternative reads can
also be used as an estimate of A. Inaccurate estimates of A
have a mild impact on genotype likelihoods, and they are
always preferred to the default value of A = 1, as long as
they are closer to the true value of the allele sampling bias
(see below).

Implementation of the expectation-maximization
algorithm

Following the notation in [24] (see Table 1), we refer
to a genotype by its number of reference alleles, g €
{0,1...mj}, where m is the ploidy, usually 2. We assume
that variants are biallelic, so that m — g is the num-
ber of alternative alleles in the genotype. Table 2 shows
the likelihoods of the three diploid genotypes. The main
difference with respect to Li’s equation 2 [24] is the het-
erozygous genotype, the likelihood of which depends here
on the allele sampling bias. If A = 1, and allowing for
all the observations of the same allele to have the same
quality, the difference vanishes (see Additional file 2).
The likelihoods of the hemizygous genotypes Alt/0 and
Ref/0 are the same as those of the respective homozygous
genotypes.

Treating the genotypes as missing values, we imple-
ment an expectation-maximization (EM) method to esti-
mate either the alternative allele frequency, ¥, under the
assumption of Hardy-Weinberg equilibrium, or the geno-
type frequencies ¥, (with ¢ € {0, 1,2} for diploids) or
¢g (with ¢ e {0,1}, for hemizygous individuals), and
eventually the proportions of errors among reference (¢,)
and alternative (e¢,) counts. Note that v, is the frequency
of genotype g among diploids, and ¢, is the frequency
of genotype g among hemizygous individuals. The EM
algorithm is an iterative estimation of the parameters
that gets closer to the maximum likelihood estimates
in every iteration. Additional file 2 gives a summary
of how the standard formulation of the EM algorithm

Table 1 Notation
k Total number of allele observations, or counts, in one individual.

/ Number of times the reference allele is observed in one individual
(I < k).

m Ploidy.
Number of reference alleles in the genotype (g < m).
Allele sampling bias in heterozygous individuals.

€ Frequency of erroneous counts among reference counts.

€ Frequency of erroneous counts among alternative counts.
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Table 2 Likelihoods of the three diploid genotypes (m = 2)

Genotype (g) Likelihood
0 €l (1 —en)!
1 (@A)k(eﬁx—xe,)m P
2 (O e,)/eé_/

is used to derive the next values of these parameters,
namely:

® , p® . y®
2Dy + D\ + H

t+1) _
2Dy + DV + DYy + HY + H
®
w(t+1) _ Dy
&€ D
®
¢(t+1) _ Hg
& T H
®
A
(t+1) 2 _
€ , if A=1
a Aét) +A§t)
®
R
(¢+1) 0 if r=1
€ 5 1 =
r RO 4 g®

In the equations above, Dé(,t) is the ¢t estimate of the

total number of diploid individuals with genotype g, and
Hg) is the £ estimate of the total number of hemizygous
individuals with genotype g. That is, they are the summa-
tions of the posterior probabilities of genotype g over the
respective kind of individuals. D and H are the total num-
ber of diploid and hemizygous individuals, respectively,
where D+H = N. Ag) is the £ estimate of the total num-
ber of alternative counts coming from hemizygous and
homozygous individuals for either the alternative (g = 0)
or the reference (g = 2) allele. Finally, Rg) is the ¢ esti-
mate of the total number of reference counts that come
from hemizygous and homozygous individuals for either
the alternative (g = 0) or the reference (g = 2) allele.

When there is sampling bias in heterozygous individ-
uals, 2 # 1, and the next values of the proportions of
errors among reference (¢,) and alternative (¢,) counts are
the results of two quadratic equations (Additional file 2).
In practice, it is assumed that the erroneous counts are a
minority, and the program halts when e, > 0.50r¢, > 0.5.
This can prevent the correct estimation of extreme allele
frequencies in the presence of erroneous counts, as should
be expected.

Output and applications

The output includes: maximum likelihood estimates of
the parameters mentioned above, the likelihood of such
estimates, the genotype likelihoods of all individuals,
and the posterior probabilities of the genotypes of all
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individuals. The main purpose of svgem is to obtain
unbiased estimates of allele and genotype frequencies,
which are fundamental parameters in population genetics.
From these estimates, several other population parame-
ters can be estimated. The maximum likelihood estimate
of the frequency of the heterozygous genotype (1), esti-
mated without assuming Hardy-Weinberg equilibrium, is
a direct estimate of heterozygosity. An estimate of the
inbreeding coefficient follows from comparing Y with
the expected frequency of heterozygous individuals under
Hardy-Weinberg equilibrium: F=1- U / Q¥ = ¥)
(where ¥ is the maximum likelihood estimate of the alter-
native allele frequency). The fixation index, Fst, which
measures genetic differentiation among populations, is
also readily estimated from allele frequencies [33-35].
A test for Hardy-Weinberg equilibrium (HWE) can be
performed by running svgem with and without the equi-
librium assumption, and comparing the log-likelihoods of
the estimated frequencies. Twice the difference between
the log-likelihoods must be compared with a x? distri-
bution with 1 degree of freedom, if all individuals are
diploid, or with 2 degrees of freedom if the frequencies of
hemizygous genotypes are also being estimated.

Some analyses that used to require accurate knowledge
of individual genotypes can be performed now using only
genotype likelihoods. For example, it is possible to esti-
mate the linkage disequilibrium between pairs of variants
using genotype likelihoods, instead of individual geno-
types [24]. At the end of the next section, we show how
to estimate the linkage disequilibrium between a struc-
tural variant and the SNPs around it, without the biases
typically associated with genotype imputation.

It is also possible to run genetic association tests from
genotype likelihoods, without knowing the exact genotype
of the individuals [24]. Associations between phenotypes
and genetic variants are a significant difference in allele
frequency between two samples (cases and controls), and
they are routinely searched along the human genome to
infer the causal variants of diseases. To compare the allele
frequency of a variant between two samples, svgerm must
be run three times: once in each sample separately, and
once in the joint dataset. Lets call ¢, and ¢, the log-
likelihoods of the two independent estimates for samples
a and b. The total log-likelihood of the hypothesis of two
different frequencies is just the sum of the log-likelihoods
of the two samples: ¢; = ¢, + £;. The log-likelihood
of the hypothesis of one common allele frequency, £, is
obtained from the run on the joint data set. Because the
two hypotheses are nested, the application of a likelihood
ratio test is justified. Thus, if the null hypothesis of a com-
mon allele frequency is true, the statistic 2(£; — £o) is
expected to follow a x 2 distribution with as many degrees
of freedom as additional parameters the most complex
model has, which is 1 in this case (see [36], page 137).
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For other analyses, that may require knowledge of indi-
vidual genotypes, we recommend using the genotype with
the highest posterior probability, which is more accurate
than the most likely genotype, because posterior proba-
bilities take into account the information of the genotype
frequency in the population (see below). svgem uses the
maximum likelihood estimates of allele (1) or genotype
(lﬁg) frequencies, and the genotype likelihoods (L(g)) to
calculate the genotype posterior probabilities, P(g | data):

L@P(gl¥)

" L@ if HWE is assumed
P(g | data) = g[:l(zg) J
et if it is not
> gm0 Ve L£(©)
Performance

Although svgem is designed to analyse one variant at a
time, more than one variant can easily be analysed in mul-
tiple parallel runs. For the purpose of detailed population
genetic analyses of specific variants of interest, svgem per-
forms well, since its typical run time is always a tiny frac-
tion of the time usually needed to obtain the allele counts.
In absolute terms, it can analyse > 1000 individuals in, at
most, a few seconds, in a standard PC. However, the run
time is variable, just as in any expectation-maximization
algorithm, and convergence may take longer if the infor-
mation content of the input data set is limited.

Results and discussion

Estimates of A from real structural variants

In order to assess the expected range of values of the A
parameter, we downloaded the BreakDB database [37],
last accessed on January 26th 2014, and built a library
with the known sequences of both alleles of 568 structural
variants (54 inversions, 161 insertions, and 353 deletions).
Then, we simulated the exhaustive sequencing of both
alleles with single-end, 100-bp reads. Next, we mapped
the sequenced reads first to the library built with the
sequences of the reference and the alternative alleles, and
afterwards to the whole reference genome (HG18), in
order to discard any non-specific read. For this purpose,
we used the pipeline BreakSeq [38], with minor modifi-
cations. We removed from BreakSeq a filter that required
the reads to map on the breakpoints, in order to be able
to use the inserted or deleted sequences as evidence of
the presence or the absence of an insertion or a deletion.
Finally, we counted how many reads mapped specifically
on the reference or on the alternative allele, and estimated
A as the ratio of the two counts.

The observed, finite values of A ranged between 0.002
and 10000 (11 inversions, and 158 deletions had infinite
A, meaning that one of the alleles was not detectable by
sequencing with single-end, 100 bp reads, due to the pres-
ence of repeats around the breakpoints). Figure 1 shows
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log(Lambda)

log(Size (bp))

Figure 1 Estimates of the allele sampling bias, A, of real variants.
The allele sampling bias of 195 deletions (red), 43 inversions (green),
and 161 insertions (blue) is plotted against their lengths, in logarithmic
scales. The bias, 4, was estimated by simulating the sequencing of
both alleles with 100 bp, single-end reads. Lines are linear regressions.

that the length of the insertions and deletions greatly con-
tributes to the value of A, as expected. Because the inserted
or deleted sequence is known, and used as evidence of
the presence of the longest allele (the reference in a dele-
tion, the alternative in an insertion), longer insertions or
deletions produce more unbalanced allele observations,
favouring the reference allele in a deletion (high A) or the
alternative one in an insertion (low 1). The local sequence
around and within the variant, and the method used to
detect the alleles (read length, whether single or paired-
end) must also influence the exact value of A. However,
the linear regressions between the logarithm of A and the
logarithm of the size of the insertion or deletion (in base
pairs) allow for a rough, first approximation to A, at least
when detecting insertions or deletions with single-end
sequenced reads: log(X) = —4.22 +0.94 log(size) for dele-
tions with respect to the reference allele (adjusted R? =
0.37), and log(r) = 3.84 — 0.87log(size) for insertions
(adjusted R*> = 0.44). In the case of inversions, a A = 1
is a fair assumption, in the absence of additional infor-
mation. This approximations are not expected to hold
when detecting structural variants flanked by segmental
duplications or other repeats.

Analysis of simulated data

We run some simulations to test svgem. In the artifi-
cial datasets, genotypes followed Hardy-Weinberg equi-
librium, with allele frequencies between 0.01 and 0.99,
and the allele counts were sampled with a simulated error
rate of 0.005. Coverage was Poisson-distributed, in order
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to introduce variation in coverage among individuals,
although the exact distribution is irrelevant for the calcu-
lation of genotype likelihoods. In all, 100 simulations were
run with the same parameter values.

First, we checked that svgem is able to get unbiased esti-
mates of the allele frequency with low coverage data, in
the absence of any allele sampling bias (A = 1). Figure 2
shows how estimates based on a sample of 100 individu-
als are accurate and as precise as they can be with mean
coverages ranging from 0.2 to 4. The only biased esti-
mates correspond to alternative allele frequencies lower
than 0.01 (or higher than 0.99, not shown), targeted with
sequencing coverages lower than 0.5. Not surprisingly,
as the number of parameters to estimate increases, the
precision and the accuracy drop. The frequencies of the
three genotypes can still be estimated without bias in most
cases, if the mean coverage is higher than 2 (Figures S2—S4
in Additional file 2). When comparing the true geno-
types of all individuals simulated with the most likely and
with the most probable genotypes (Figure 3), two results
become aparent: 1) the benefit of using posterior probabil-
ities, instead of just likelihoods (which do not require the
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EM algorithm), is higher when the coverage and the minor
allele frequency are lower; and 2) applications that require
accurate genotypes should use coverages higher than 4,
unless the minor allele frequency is always very low. The
very high levels of genotype errors observed when the
minor allele frequency is high and the coverage is low are
an instrinsic problem of the limited amount of data avail-
able to infer the genotype. Even if the allele frequency and
the allele sampling bias were known with accuracy, up to
50% of the genotypes predicted by maximum posterior
probability are expected to be wrong when the coverage is
1 and the minor allele frequency is 0.5 (Figure S5 in Addi-
tional file 2). The fact that allele and genotype frequencies
can be estimated accurately under rampant uncertainty of
individual genotypes strongly encourages the use and fur-
ther development of genotype-free methods, that take full
advantage of low-coverage sequencing data.

Next, we checked svgem performance with different
sample sizes from 10 to 1000 and a fixed SV frequency
of 0.5, which is the one with higher sampling variance.
Figure S1 in Additional file 2 shows that smaller samples,
with a mean coverage of 4, also yield unbiased estimates
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Figure 3 Accuracy of genotype calls with low-coverage data. Proportion of most likely (grey) or most probable (white) genotypes that do not
match the true genotype among 100 individuals, in a series of simulations with different values of allele frequency and coverage. The minor allele
frequencies (MAF) are shown above each plot. Each box corresponds to 100 simulations.

with a precision comparable to the expected under accu-
rate knowledge of genotypes.

Finally, we prove that arbitrarily high reference bias does
not deviate the estimates from the true values, if svgem
is informed of the bias. Figure 4 represents the accuracy
and the biases of the estimates of the allele frequency for
several combinations of the true (1) and the estimated (i)
values of the allele sampling bias. The estimates are always
unbiased if A = 1, as expected. Interestingly, the estimates
are also unbiased when X is very low (< 0.01) or very high
(> 100), and 2 is even lower, or even higher, respectively.
This implies that extreme values of A can be effectively
approximated by a wide range of values. The reason of this
nice property is that at low coverage, the outcome of an
extreme A is always the same: none of a few observations
gets to sample the disfavoured allele from a heterozyous
sample. It is also worth noticing that rough approxima-
tions to A, in the range between 1 /2 and 2A produce only
minor biases in allele estimates. Moreover, any estimated
X closer to the real value of A than the default A = 1 will
improve the allele frequency estimates.

Figure 5 shows that the difficulty to predict individ-
ual genotypes varies in parallel with the difficulty in

estimating the allele frequency in the presence of an
uncertain allele sampling bias. While the accuracy of allele
frequency estimates is mostly independent of the allele
frequency (Figure 2), the accuracy in genotype predic-
tion highly depends on the frequency of the genotypes,
and therefore on the allele frequency. The heatmaps in
Figure 5 represent the observed proportion of true geno-
types that did not match the most probable genotype
among 500 simulated diploid individuals, with a mean
coverage of 4, as a function of the alternative allele fre-
quency and the ratio between the estimated and the
true allele sampling bias. The highest genotyping accu-
racy always happens when the true allele sampling bias is
known (A = 1), and the most dramatic increase in geno-
typing errors happens when the estimated bias deviates in
the direction opposite to the true bias.

It is also important to mention that the frequency of
erroneous reference or alternative allele counts, €, and
€4, need to be either known or co-estimated from the
data to get accurate estimates of allele or genotype fre-
quencies. An erroneous count is a false observation of an
allele, which should not contribute to the estimate of allele
frequency. They are assumed to be less frequent than
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Figure 4 Effect of the allele sampling bias on allele frequency estimates. Accuracy and precision of the allele frequency estimates under
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sequenced at 4x coverage, in order to reduce the dispersion of the estimates and make the bias caused by the misspecification of A more visible.

true counts. In practice, the accurate estimation of both
the allele (or genotype) frequency and the frequency of
erroneous counts is only feasible if there is enough infor-
mation in the data. As a rule of thumb, when coverage is
below 4, or the number of individuals is below 100, a pri-
ori estimates of ¢, and ¢, are highly recommended. They
can be obtained from simulations, or estimated from a
subset of individuals with high coverage, or empirically
determined in a subset of homozygous individuals.

Analysis of real data

To test the performance of the algorithm on real data, we
used as a model a previously unknown human inversion
with simple breakpoints. Analysis of this inversion was
part of a larger study to characterize and validate poly-
morphic inversions in human populations. In particular,
the inversion selected (HsInv0201) is a 376 bp inversion
in the Chr5q33.1 region, supported by paired-end map-
ping data of fosmids [39] or small DNA fragments [40,41].
By comparison of the HG18 Human Genome reference
assembly [42] with the alternative human assemblies of

Celera [43] and HuRef [44], it was found that the inverted
allele includes two small deletions flanking the inver-
sion and it was possible to locate the breakpoints (BP)
to HG18 position chr5:147533233-147534432 (BP1) and
chr5:147534809-147534971 (BP2), which correspond to
the sequences deleted in the inverted chromosomes [45].
From there, we extracted 100 nucleotides-long in silico
probes, in which the sequence change between the two
orientations is located exactly in the middle (see Table S3
in Additional file 3). Then, we mapped the reads from 550
individuals from the 1000 Genomes Project [3] on these
probes, using the program BreakSeq [38], and counted
how many matched specifically the reference or the alter-
native breakpoints. In order to quantify the allele sampling
bias, A, we extracted all possibly informative reads from
the 100 nucleotides probes (see Table S3 in Additional
file 3), with the same length range as the real reads used
(36-100 nucleotides), and used BreakSeq again to count
how many of them mapped uniquely to either the ref-
erence or the alternative breakpoints. A negligible bias
(A = 1) was found. Erroneous counts were experimentally
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determined to be also negligible (see below), and their fre-
quencies were set to 1.0 x 1073, although several orders
of magnitude of variation in this parameter did not alter
the results significantly. From the allele counts and from
these parameter values, svgem estimates a global alterna-
tive allele frequency of 0.55, and population-specific fre-
quencies ranging from 0.45 to more than 0.65 (Figure 6).
Among related individuals, only the oldest parents of
a family were retained for the estimation of population
parameters. Using a likelihood ratio test, we prove that
Asian and native American populations have a signifi-
cantly lower frequency of the alternative conformation
than African and European populations (p-value = 5.3 x
107%).

To genotype experimentally the inversion, we used
different pairs of primers specific for the reference

orientation (A2-B2) or the inverted orientation (A4-C3
and B2-D1; Table S3 in Additional file 3) and carried out
duplicate PCRs of each individual, both in simplex and
multiplex format. In total, the 270 individuals of the Phase
II of the HapMap Project were analyzed, including 90
Yoruba (YRI), 90 from European origin (CEU), 45 Chinese
(CHB) and 45 Japanase (JPT), and the PCR results can
be accessed in the InvFEST database [45]. Table S4 shows
the observed genotypes and the genotype posterior prob-
abilities calculated with svgem for the 122 individuals that
were both genotyped by PCR and analysed with BreakSeq
and svgem. The alternative allele frequencies determined
experimentally or estimated with svgem in this subsam-
ple were, respectively, 0.545 (standard error 0.045), and
0.541. The most probable genotype determined by svgem
matched the true genotype in 111 (91%) individuals, with
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Figure 6 Estimated global frequency of inversion Hslnv0201 in
human populations. Allele frequencies of a polymorphic inversion
on chromosome 5, calculated with svgem, are shown as colors on top
of the topology of a Neighbor-joining tree of some human
populations. The tree was built using the SNP-based, genome-wide,
Hudson’s Fsts among the populations as distances [3]. In each
bifurcation, the overall frequency was assiged to both sister clades if
there were no significant differences. Significant changes are labeled
with asterisks (¥, p-value <0.05; **, p-value <0.001). The numbers of
individuals analysed are shown in parentheses, and population labels
are: LWK; Luhya (Kenia); YRI, Yoruba (Nigeria); ASW, African-American
(Southwest, US); PUR, Puerto Rican; IBS, Iberian (Spain); TSI, Tuscan
(Italy); CEU, Utah residents with Northern and Western European
ancestry; FIN, Finnish; GBR, British (England, and Scotland); CLM,
Colombian; MXL, Mexican; CHB, Han Chinese (Beijing, China); CHS,

Southern Han Chinese; JPT, Japanese.

only 1 error (out of 86) when the coverage is higher than
2. From the allele counts of homozygous individuals, it
can be seen that the opposite allele is never observed,
confirming that the rate of erroneous counts is negligible.

Once having accurate genotype likelihoods of this short
inversion, it is possible to calculate its linkage disequi-
librium with nearby SNPs, without having to know the
true genotypes, neither of the inversion, nor of the SNPs.
This allows the study of the association between struc-
tural variants and SNPs without having to rely on imputed
genotypes, and without having to exclude SNPs with arbi-
trary coverage thresholds. The method to calculate the
pairwise linkage disequilibrium statistic 7> from geno-
type likelihoods is implemented in bcftools [24], and
requires an input VCF file with genotype likelihoods. We
downloaded from the 1000 Genomes Project database a
VCE file spanning 7 kb around the inversion, and man-
ually combined it with the inversion itself, represented
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by two punctual variants at the positions of its break-
points. Figure 7 shows how the two breakpoints are cor-
rectly determined to be in perfect linkage disequilibrium
between them, and how the patterns of linkage among the
inversion and the SNPs around it differ between European
and Asian populations. Note that linkage disequilibrium
estimates, let alone their comparison between popula-
tions, would be biased if imputed genotypes had been
used, because imputation already assumes some linkage
disequilibrium, not always measured in the population of
interest.

Conclusions

The development of methods to discover structural vari-
ants in individual genomes is giving way to population-
level analyses. The most recently developed discovery
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Figure 7 Linkage disequilibrium patterns around inversion
HsInv0201 in Asian and European populations. The heatmap
represents values of r?, a measure of linkage disequilibrium between
pairs of SNPs or between SNPs and the breakpoints of inversion
HsInv0201. The two breakpoints are marked with white spots. The
SNP positions span chromosome 5 (hg19) bases 147549663 to
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tools, such as GASVPro [21] or CloudBreak [46], call
the genotypes of the individuals analysed, instead of just
reporting the variants discovered (a notable exception
being ForestSV [20]). However, these individual-based
methods require high coverage, and they are oblivi-
ous to the information present at the population level.
While these methods are still useful in some applica-
tions, there is a current demand for efficient ways to
analyse low-coverage population genomics data. Most
studies still insist in genotyping the individuals, despite
of the loss of data caused by arbitrary quality thresh-
olds, and despite the circularity and biases associated
with genotype imputation [1,47,48]. The alternative of
using likelihood or Bayesian approaches, which take geno-
type uncertainty into account, is an optimal strategy to
explore genetic diversity, since it does not require high
coverage per individual, and allows the sequencing of
more individuals at the same cost [49]. Not surprisingly,
a new method to genotype indels from sequence data in
polyploid genomes uses the same approach of likelihood
calculation, frequency estimation through an expectation-
maximization algorithm, and reporting of posterior prob-
abilities [50]. However, this method does not consider
any allele sampling bias, because it targets indels shorter
than the reads used to distinguish the alleles. By includ-
ing allele sampling bias in the genotype likelihood cal-
culation, our program extends the applicability of these
methods to the analysis of large structural variation. Fur-
thermore, for the first time nucleotide and structural
variation can be analysed in the same statistical frame-
work, without having to rely on the accuracy of the
genotypes.

Two of the key features of svgem are its simplicity and its
few assumptions about the data, which make the program
useful for a wide variety of data types. Any bi-allelic struc-
tural variant detected by sequenced paired-ends or split
reads, including inversions, mobile element insertions,
duplications, and deletions, can be analysed by svgem.
Using simulations, we have shown that estimates of allele
or genotype frequencies are accurate, even in the face of
rampant allele sampling bias, that usually accompanies the
detection of structural alleles. Finally, using data from the
1000 Genomes Project and PCR experiments, we prove its
applicability to real data.

Availability and requirements

Project name: svgem.

Project home page: http://grupsderecerca.uab.cat/
cacereslab/content/resources.

Operating system(s): Platform independent.
Programming language: C++.

Other requirements: None.

License: GNU General Public License.

Any restrictions to use by non-academics: None.

Page 11 0f 13

Additional file

Additional file 1: This is a plain text file containing the source code of
svgem, in C++.

Additional file 2: Additional text including svgem’s manual and some
details on how the expectation-maximization algorithm is
implemented.

Additional file 3: Tables S3 and S4. Table S3. /n silico probes and PCR
primers. In silico probes including the two breakpoints, in both the
reference and the inverted conformations, and primers used for PCR
validations. Table S4. Experimental validation. Allele counts, genotype
posterior probabilities obtained with svgem, and true genotypes
determined by PCR, for inversion Hsinv0201 in 122 individuals from the
1000 Genomes Project.
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