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Abstract

Background: The haplotype phasing problem tries to screen for phenotype associated genomic variations from
millions of candidate data. Most of the current computer programs handle this problem with high requirements
of computing power and memory. By replacing the computation-intensive step of constructing the maximum
spanning tree with a heuristics of estimated initial haplotype, we released the WinHAP algorithm version 1.0, which
outperforms the other algorithms in terms of both running speed and overall accuracy.

Results: This work further speeds up the WinHAP algorithm to version 2.0 (WinHAP2) by utilizing the divide-and-conquer
strategy and the OpenMP parallel computing mode. WinHAP2 can phase 500 genotypes with 1,000,000 SNPs using
just 12.8 MB in memory and 2.5 hours on a personal computer, whereas the other programs require unacceptable
memory or running times. The parallel running mode further improves WinHAP2's running speed with several
orders of magnitudes, compared with the other programs, including Beagle, SHAPEIT2 and 2SNP.

Conclusions: WinHAP2 is an extremely fast haplotype phasing program which can handle a large-scale genotyping
study with any number of SNPs in the current literature and at least in the near future.
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Background
Single nucleotide polymorphisms (SNPs) are a kind of
genomic variations that play an important role in many
genetic analysis. Most eukaryotic genomes are diploid
and it’s both technically difficult and time consuming to
experimentally screen the sequence of alleles in contiguous
SNP sites along each copy of the diploid chromosomes,
which is called a haplotype. The two nucleotides/alleles
for one locus in a chromosome are usually obtained as an
unordered pair, which is called a genotype. A haplotype
phasing problem is to infer haplotypes from genotypes.
Although there are some other methods based on modern
sequencing, such as Haplotype-resolved sequencing tech-
nology and HaploSeq method, can obtain haplotypes
directly rather than computationally infer them, haplotype
phasing costs much less money than these methods [1,2].
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The existing methods for haplotype phasing problem
can be classified into two major categories: combinatorial
optimization algorithms [3,4] and statistical methods [5].
Combinatorial optimization algorithms focuses on finding
the solution based on reasonable biological assumptions.
Two models were considered: the Perfect Phylogeny Tree
Model and the Maximum Parsimony Model. Maximum
Parsimony Model assumed that the number of distinct
haplotypes in natural populations was really small or the
minimum among all feasible solutions [4]. The principle
was firstly proposed by Wang and Xu who also presented
a branch and bound algorithm under this principle to
speed up the problem resolving [6]. Many other algo-
rithms try to solve the problem based on this model using
either SAT-based formulations or integer linear program-
ming techniques. However, Maximum Parsimony Model
has been demonstrated to be NP-complete [7] and APX-
hard even in very restricted cases [8], which means precise
solution can only be got with exponential time consum-
ing. Therefore many approximate approaches were also
proposed based on this model. Perfect Phylogeny Tree
Model changed the haplotype phasing problem to a graph
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realization problem [3,9]. This model assumed that any
SNP mutation happened just once in the whole evolution-
ary history. As perfect phylogeny trees are usually not
unique for a given genotype set, the minimum perfect
phylogeny haplotyping (MPPH) rule was proposed [7].
MPPH is a combination of Perfect Phylogeny Tree Model
and the Maximum Parsimony Model. It tries to recon-
struct a perfect phylogeny tree that consists of minimum
number of unique haplotypes. Bafna et.al. proved MPPH
problem to be NP-hard [10]. Although combinatorial
optimization algorithms can do well in small datasets, the
strong assumption and high time complexity holds back
its application in larger datasets [11].
Compared with combinatorial optimization algorithms,

statistical methods focus on estimating the haplotype
frequencies according to certain statistical theories. An
earlier method was EM algorithm [5]. It iteratively
computes each haplotype’s frequency and estimate the
new solution. Then the quality of the solution will be
higher and higher. This algorithm worked well on a
small data set, but its time cost increased sharply as it
should enumerate all feasible solutions. In order to fur-
ther reduce the computation time requirement, PLEM
[12] and GERBIL [13] use partition-ligation strategy for
speed-up. And BPPLEM replaces the uniform strategy with
non-uniform strategy based on linkage disequilibrium
(LD) [14]. In addition, some other statistical theories
have also been used to infer the haplotypes, such as
Bayesian and MCMC [15]. Although statistical methods
can process larger datasets than combinatorial optimization
algorithms, they usually need to consider lots of feasible
haplotypes, which require large amount of storage.
With the recent innovations in high-throughput gene

chip technologies, huge amount of genotype data was
produced, leading to a new challenge of handling the
large-scale datasets for the haplotype phasing problem.
many methods based on Hidden Markov Model (HMM)
have been proposed recently, such as Beagle [16], HAPI-
UR [17], SHAPEIT1 [18] and SHAPEIT2 [19]. This kind
of methods firstly yields feasible haplotypes randomly.
Then it iteratively builds HMM according to current
haplotypes and gets new haplotypes based on this HMM.
Our experiments have shown that while they can get
accurate haplotype results for datasets with a large
number of homologous sequences, they can’t do well for
datasets with small number of long genotype sequences
which are very common. That’s because statistical methods
need more information to refer to compared with other
methods. In addition, some methods combine statistical
theories and combinatorial optimization rules. Although it’s
impossible to get exact solution based on combinatorial
optimization rules for large scale datasets, they are used in
some steps of algorithms to help to improve the precision
of approximate solutions. For example, 2SNP algorithm
finds the most relevant allele for a specific allele by building
a phylogeny tree [20].
We proposed the WinHAP algorithm [21] by combining

probability statistic and combinatorial optimization [21].
WinHAP significantly improved the speed of haplotype
phasing, while achieving similar or better overall accuracy
compared with the other existing programs. But days
are still needed for WinHAP to screening the millions
of SNPs in the human genome. We further improve the
program's running speed and memory efficiency by using
the following two strategies. Firstly, a divide-and-conquer
strategy is utilized to solve the challenge of huge computer
memory required by the existing algorithms. The basic
idea is to screen the long chromosomes for haplotypes
within the consecutive 1,000-SNP segments. Thus, the
memory need of the algorithm is only related with one
segment and no longer increases as length of sequences.
Secondly, the OpenMP parallel computing mode is imple-
mented to utilize all the computing power in a multi-core
computer cluster. The haplotype phasing performance
of WinHAP version 2 (WinHAP2) is discussed in the
following sections.
WinHAP2.0 software package is available at http://

staff.ustc.edu.cn/~xuyun/winhap/index.htm. We have also
uploaded the source code, manual, materials and example
datasets onto it. As of now, WinHAP software packages
have been downloaded for at least dozens of times and
used by biologists from different organizations and insti-
tutes around the world, such as Max Planck Institute for
Molecular Genetics, Dahlem Centre for Genome Research
and Medical Systems Biology, Alacris Theranostics GmbH
in Germany, University of Medical Sciences in Poland,
Jiangxi Agricultural University and University of Science
and Technology of China. Particularly, some users from
Huazhong Agricultural University want to process very
long sequences with more than 1 million SNPs on per-
sonal computers which cannot be done by WinHAP1.0
and nearly all the existing tools except for WinHAP2.0.

Implementation
The input to WinHAP2 consists of n genotype vectors,
each with m coordinates corresponding to m SNPs. Each
genotype vector can be phased to two haplotype vectors
with value in {0, 1}, where ‘0’ represents the major allele
and ‘1’ the minor allele. A haplotype vector is represented
as a string of the alphabet {0, 1}. A genotype vector is
represented as a string of alphabet {0, 1, 2, ?}, where ‘0’
and ‘1’ represent the homozygous SNP {0, 0} and {1, 1},
respectively, ‘2’ is a heterozygous SNP {0, 1}, and ‘?’ is a
missing SNP.

Divide-and-conquer strategy
WinHAP2 utilizes the divide-and-conquer strategy to
phase long sequences. The WinHAP algorithm infers
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haplotypes from the neighboring SNPs, and the comparison
with the other programs suggests that little association
exists between a pair of remote SNPs. So a segment with
fixed number of consecutive SNPs (1,000 by default) is
sufficient for inferring haplotypes.
With divide-and-conquer strategy, WinHAP2 consists

of three phases. In first step, the genotypes are partitioned
into segments. In second step, all segments are phased
by WinHAP respectively. In last step, the results of all
segments are merged into a whole result. Figure 1
shows the overall framework.
In the first step, we partition genotype datasets sequen-

tially into segments, each of which has the same sizes.
It should be mentioned here that the value of s must be
neither too large nor too small. Larger sis, more memory
is cost and then partition will be less meaningful. On the
other hand, if sis too small, precision of algorithm will
be affected. Because it’s possible that there’s no ‘2’ in
one segment, which will make it difficult to merge the
haplotype result of that segment with others’. Based on
our experiments, s should be larger than 1,000 sites,
while the upper limit of sis related with the memory of
computer used. For the last segment, as we know, the
size of it is less than or equal to s. If it is smaller than
1,000 sites, we merge it to the last but one segment.
In the second step, all segments are phased by WinHAP

respectively. WinHAP has three phases: In the first
phase which is called simplified 2SNP algorithm, the
initial haplotype results are obtained. In the second
Figure 1 Framework of WinHAP2. Procedure of WinHAP2 with divide-an
phase, scalable sliding windows are used to correct some
errors in first phase. In the third phase, maximum parsi-
mony principle is used to improve the quality of results
further. Two points should be mentioned here. Firstly,
in the second phase, precision of the sites near edge is
lower than others’ because they can only be covered by
sliding windows from one side. Number of this kind of
sites becomes much larger in WinHAP2 because each
segment has edges. This problem is solved in the third
step of WinHAP2. Secondly, the third phase can get
better results in WinHAP2, because maximum parsimony
principle is not suitable for very long sequences and
segmenting makes the sequences shorter.
In the final step, the results of all segments are merged

into a whole result. To ensure the precision of the SNPs at
the edge of each segment, a merging strategy is proposed.
It’s described in detail in section Method.

Parallelization
Due to its nature of local calculation, and its large data
size, an OpenMP parallel computing mode is adopted for
the time-consuming step of haplotype phasing including
step 2 and step 3. As phasing in each segment has no
relationship with other segments, parallelization of step
2 is comparatively easy. We just distribute one or several
segment to one thread and each thread gets the result
respectively. However, parallelization of step3 is harder.
For merging is a process involving all segments, how to
distribute the assignment to each thread is the key point.
d-conquer strategy. Explanation see text in this section.



Table 2 Results on HapMap simulated dataset

Software SER Time (s) Memory

2SNP 0.034 1342.10 2.2GB

Beagle 0.022 92.89 622.2 MB

WinHAP2 0.028 37.92 2.4 MB

Bold data means the best result in terms of the corresponding
evaluation standard.

Table 3 Results on ‘ms’ simulated datasets

Data sets Methods SER Time (s) Memory

#genotype = 200 2SNP 0.037 87.8 197.0 MB

#SNPs = 10,000 Beagle 0.020 121.4 481.7 MB

WinHAP2 0.020 14.5 5.1 MB

#genotype = 200 2SNP 0.035 2472.0 1.7GB

#SNPs = 50,000 Beagle 0.019 582.8 617.6 MB
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To eliminate the relationship between segments, we divide
the process into 3 phases. Firstly, we cut the right edge
of each segment except last one and save it in file,
which can be done by each thread respectively. Secondly,
each thread merge the right edge of the former segment
and later segment and save the merged each segment.
Finally, one thread put all merged segments together,
which is hardly time-consuming.

Time complexity of WinHAP2
Now, let’s analyze the time complexity of WinHAP2. In
the first step, WinHAP2partitions genotypes into segments,
which takes 0(nm) time since we have n genotypes each
with m SNPs. In the second step, each segment is phased
respectively by WinHAP. According to the analysis in the
previous paper [21], WinHAP takes 0(n2m). So if we use
p computing cores, it takes 0(n2m/p). In the last phase,
our algorithm merges the results of all segments into a
whole result using scalable sliding window. For each
two adjacent segments, lmax-2 windows are needed. And
the computation in one window takes 0(n) time. So the
last phase takes 0(nk/p), where k denotes the number of
segments and p denotes the number of computing
cores. Thus, our algorithm takes 0(nm + n2m/p + nk/p)~
0(n2m/p) in total time.

Results and discussion
Datasets
As the performance of WinHAP processing comparatively
small datasets (<1000 SNPs) like ACE [22], 5q31 [23] and
CFTR [24] has been showed in the previous paper [21],
only large scale datasets with more than 10,000 SNPs are
tested in this paper. However, public real datasets of this
scale are very few. So we employ one real dataset, one
simulated dataset which is generated by randomly pairing
real haplotypes, and simulated datasets of different scale
from ‘ms’ software.

HapMap real dataset
Firstly, we compared the performances of WinHAP2
and the other Haplotype Phasing programs on the real
dataset from International HapMap Project which aims
to develop a haplotype map ofthe human genome [25].
This dataset consists of 44 pedigrees (father, mother and
Table 1 Results on HapMap real dataset

Software SER Time (s) Memory

2SNP 0.049 892.70 1.0GB

Beagle 0.032 121.30 396.5 MB

SHAPEIT2 0.024 1816.20 91.4 MB

WinHAP2 0.039 32.00 3.2 MB

Bold data means the best result in terms of the corresponding
evaluation standard.
child), each genotyped at 36,258 SNPs in the 20th
chromosome of human. We choose the genotypes of 44
fathers and 44 mothers to get 88 unrelated genotype
sequences. As SHAPEIT2 is a newest algorithm for large
scale datasets, we want to compare WinHAP2with it.
The input of SHAPEIT2 includes recombination rate of
each SNP, and HapMap shows a table which includes
recombination rate of most SNP in human chromosome.
However, there are still some SNPs of this real datasets
are not in this table. So we have to choose 32,458
SNPs from original dataset. So it’s a dataset comprising
of 88 unrelated genotype sequences, each of which has
32,458 sites.
HapMap simulated dataset
We further tested the algorithms with another dataset
from HapMap International HapMap Project. It’s a dataset
of 120 real haplotype sequences, each of which has 63,810
SNPs in the 20th chromosome of CEU (Utah residents
with ancestry from northern and western Europe). We
generated the genotype datasets by randomly pairing
two haplotypes. To let the simulated genotype dataset
be similar to real ones, we only generate 40 sequences.
So it’s a dataset comprising of 40 unrelated genotype
sequences, each of which has 63,810 sites.
WinHAP2 0.024 69.9 5.1 MB

#genotype = 500 2SNP 0.023 8404.0 1.7GB

#SNPs = 50,000 Beagle Out of memory

WinHAP2 0.012 340.5 12.8 MB

#genotype = 500 2SNP Out of memory

#SNPs Beagle Out of memory

=1,000,000 WinHAP2 0.012 9013.6 12.8 MB

Bold data means the best result in terms of the corresponding
evaluation standard.
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“ms” dataset
We use well-known Hudson’s software “ms” [26] to
generate simulated genotype sets with N = 50, N = 100,
N = 200, N = 500 and M = 10,000, M = 20,000, M = 50,000,
M = 100,000, M = 1,000,000. Here N means the number of
sequences and M means the length of sequences. The
parameter“θ” is set to 5.0. The recombination parameters
“ρ” and “nsites” are set to 100 and 2501 respectively.

Measurement criteria of phasing accuracy
Usually, the individual error rate (IER) [15] and the switch
error rate (SER) [13] are used to evaluate the performance
of phasing algorithms [27,28]. IER is defined as the per-
centage of individuals whose genotypes are incorrectly
resolved and SER is defined as the ratio between the
numbers of switch errors and all the heterozygous loci.
The value of IER usually increases along with the increase
Figure 2 Comparison of memory consumption variation trend of Win
the datasets is 50; TopRight: The number of the sequences in the datasets
DownRight: The number of the sequences in the datasets is 500. As Beagle
personal computer, the curves about the two programs lack of some point
of genotype length. When the number of SNPs is large
enough, the IER value of almost all haplotype phasing
approaches is close to 100%. In our experiments, the
number of SNPs in all datasets is larger than 10,000, and
IER is meaningless for datasets of this scale. So we just use
switch error rate (SER) to evaluate the performance of
WinHAP2 in this paper.
We compared our algorithm with three existing pro-

grams including SHAPEIT2 [19], Beagle [16] and 2SNP
[20]. Other algorithms are not tested for either of the
following three reasons: (1) can’t produce the results
within reasonable time; (2) cannot handle the missing
SNPs; (3) can’t process such long sequence.

Validation on HapMap real dataset
We run the 2SNP, Beagle, SHAPEIT2 and WinHAP2 on
a HapMap real dataset averaged over 100 independent
HAP2 with other methods. TopLeft: The number of the sequences in
is 100; DownLeft: The number of the sequences in the datasets is 200;
and 2SNP cannot get the result for some large datasets in our
s.



Figure 3 Performance of WinHAP2 using different sizes of
segments. (a) The relationship between switch error rate and the
length of segments; (b) The relationship between running time and the
length of segments; (c) The relationship between memory consumption
and the length of segments. Explanation see text in this section.
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runs. The dataset comprises of 88 unrelated genotype
sequences, each of which has 32,458 SNPs. 2SNP and
SHAPEIT2 were both run with the default settings. The
parameter “nsample” of Beagle was set to 4 and we ran-
domly generated the parameter “seed” in every inde-
pendent running.
The performance of various phasing programs on this

HapMap real dataset was shown in Table 1. From the
result, we can see that although the error rate of
WinHAP2 is not the best, it’s similar to others’. But the
running time and memory consumption of WinHAP2
are both much lower than others’. While SHAPEIT2-
gets the lowest error rate, its running time is about 60
times and its memory consumption is 30 times than
WinHAP2. In addition to that, the use of SHAPEIT2 has
some limit which means that it needs the recombination
rate of each SNP, but not all SNPs’ recombination rate
can be got. Beagle’s running time is 3 times and memory
consumption is more than 100 times than our method.
The precision and memory consumption of 2SNP are
both the worst among the programs, and its running time
is nearly 30 times than our algorithm’s.

Validation on HapMap simulated dataset
To test the performance of WinHAP2 on datasets with
longer sequences, we run 2SNP, Beagle and WinHAP2
on HapMap simulated dataset. As SHAPEIT2 need the
information like recombination rate of each SNP and
sex of each individual, it cannot be run on simulated
datasets. We constructed a dataset of 40 haplotypes with
no missing data from 120 experimentally identified disease
haplotypes. Each haplotype has 63,810 SNPs. To ensure
the objection of the test, we repeat the sampling and
test for 100 times. The parameter “nsample” of BEAGLE
was set to 4. All the other parameters were set to the
default values.
Table 2 gives the accuracies, running times and mem-

ory consumption of the algorithms. Through WinHA-
P2has higher SER than Beagle, the running speed is
about 3 times than Beagle’s and memory consumption is
only about one thirtieth of Beagle’s. The precision, run-
ning time and memory consumption of 2SNP are all the
worst among the algorithms.

Validation on ‘ms’ simulated datasets
To test the performance of WinHAP2 on different size
of datasets, we run 2SNP, Beagle and WinHAP2 on ‘ms’
simulated datasets.
The performance of various phasing algorithms on this

‘ms’ simulated dataset was shown in Table 3. From the
result, we can see that SERs of WinHAP2 are similar with
and sometimes the same with Beagle’s. The running speed
of our algorithm is 3 to 10 times than Beagle’s. In addition,
Beagle cannot process 200 sequences with more than
100,000 SNPs or 500 sequences with more than 50,000
SNPs on our machine because of memory overflow. 2SNP
cannot process 100 sequences with more than 100,000
SNPs for the similar reason. WinHAP2 can process se-
quences with 1,000,000 SNPs using only 12.8 MB memory.
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Figure 2 shows that the memory requirement of
WinHAP2 received minor changes for test datasets with
different numbers of SNPs. By analyzing the WinHAP2
algorithm, we may hypothesize that its memory require-
ment per genotype should be a constant, and actually the
values (Memory)/(#Genotype) are 0.0364, 0.0600, 0.0255,
0.0255, 0.0256, and 0.0256 for the six datasets in Tables 1,
2 and 3, respectively. Most of current large-scale geno-
typing studies sampled fewer than tens of thousands of
individuals [29], and their memory requirement using
WinHAP2 is estimated to be ~330 MB. So WinHAP2
can handle a large-scale genotyping study with any
number of SNPs in the current literature and at least in
the near future.

Performance of WinHAP2 using different sizes of segments
To test how the different sizes of segments affect the
accuracy and computation load, we run WinHAP on the
HapMap real dataset using different sizes of segments.
Figure 3 shows that the accuracy will reduce extremely

when the segments are too short. At the same time, the
longer the segments are, the more running memory is
used. Therefore, the moderate size of segments should
be chosen.

Performance of parallelization
We further tested the running speed of parallelized
WinHAP2 on a server with 16 computing cores. The pro-
gram was run on a Linux server with 16 800 MHz comput-
ing cores and 23.6GB memory. The dataset is a ms dataset
which has 500 genotypes with 1,000,000 SNPs. Figure 4
shows that WinHAP2 using 16 computing cores was more
than 15 times faster than the single threaded WinHAP2.
Considering the running speed of WinHAP2 with single
processor has already been several or dozens of times than
other high performance algorithms which has been above
showed, the parallelized WinHAP2 with 16 computing
Figure 4 Performance improvements of parallelized WinHAP2. Runtim
The program was run on a Linux server with 16 800 MHz computing cores
genotypes with 1,000,000SNPs.
cores is over 40 times faster than Beagle, and even 50 to
200 times faster than SHAPEIT2 and 2SNP.

Conclusions
With the development of large-scale sequencing technolo-
gies, a large amount of genotype data is being generated.
Algorithms for large-scale haplotype phasing are needed.
Most of existing programs cannot process extremely
large datasets because of either space limit or time
consumption.
In this article, we introduced a computer program,

WinHAP2, which achieves significant improvements in
running speed and memory requirement, with better or
comparable precision, for the haplotype phasing problem.
WinHAP2 can handle a large-scale genotyping study with
over 1,000,000 SNP sites, which is beyond the capability of
the other existing programs.

Method
Merging strategy
After we get the haplotype results of all segments, we
must merge them to obtain the whole haplotype result.
Here, we introduce how to merge the haplotype result of
the fth segment with that of the (f + 1)th segment. Let

hfi ;
—
hfi

D E
and hfþ1

i ;
—
hfþ1
i

D E
denote the haplotype results

of ith genotype in fth segment and (f + 1)th segment,
respectively. Then, for ith genotype vector, merging is a

process to determine the pairing of hfi ;
—
hfi

D E
and

hfþ1
i ;
—
hfþ1
i

D E
. For example, if hfi ;

—
hfi

D E
= 〈00000, 01001〉

and hfþ1
i ;
—
hfþ1
i

D E
= 〈01000, 00001〉, we must determine

whether the merged result h; �h is 〈0000001000, 0100
100001〉 or 〈0000000001, 0100101000〉. The scalable slid-
ing window described in the previous paper [21] is used
to complete it.
es of parallelized WinHAP2 using 1, 2, 4, 8, and 16 computing cores.
and 23.6GB memory. The dataset is a ms dataset which has 500



Figure 5 Three cases in which scalable sliding window cannot merge the segments. Explanation see text in this section.
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Here, we assume that the length of the scalable sliding
window ranges from lmin tolmax, which can be different
from the value in the previous paper [21]. At the begin-
ning, the left edge of the window locates at the last site
but lmax-1 of fth segment and the right edge locates at
the first site of (f + 1)th segment. Then the window slides
from left to right and ends when the left edge locates
at the last site of the fth segment. At each position, if
the window only covers the ‘2’s from one segment, this
position should be given up and the window slides to
next position. Otherwise, we get the most potable
haplotype result of each genotype and compute the weight
that corresponds to it. The process and definition of the
weight was described in the previous paper [21]. During
the sliding of the window, we always save the current
best weight and the result corresponding to it. At last,
the two segments are merged using the result with the
best weight.
However, there’re some exceptional cases that the

method upper-mentioned cannot be used. Here, we de-
fine another window called scope window Wf to explain
them. Wf represents the whole scope that scalable slid-
ing window slides in, thus its left edge locates at the
(lmax-1)

th site from right edge of fth segment and the
right edge at the (lmax-1)

th site of (f + 1)th segment. Let

gfi and gfþ1
i denote the ith genotype of fth segment and

the ith genotype of (f + 1)th segment, respectively. Then
three exceptional cases are described as follows:

Case1: For either gfi or g
fþ1
i , there’s no ‘2’ in Wf.

Case2: For both gfi and gfþ1
i , there’s no ‘2’ inWf.

Case3: For either gfi or g
fþ1
i , there’s no ‘2’ .

For the 3 cases which are showed in Figure 5, scalable
sliding window cannot cover the last ‘2’ in fth segment
and the first ‘2’ in (f + 1)th segment at any position.

Therefore, paring of hfi ;
—
hfi

D E
and hfþ1

i ;
—
hfþ1
i

D E
cannot

be determined by sliding window. For case1 and case2,
we use simplified 2SNP algorithm which is described in
the previous paper [21] to determine the phasing result
of the last ‘2’ in fth segment and the first ‘2’ in (f + 1)th

segment. For case3, as it’s impossible to determine the
paring, we just choose one randomly. Although, as we
know, there is probability of 50 percent to get a wrong
choice, it hardly affects the precision because the possi-
bility of case3’s occur is extremely low.
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