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Abstract

Background: Protein sequence similarities to any types of non-globular segments (coiled coils, low complexity regions,
transmembrane regions, long loops, etc. where either positional sequence conservation is the result of a very simple,
physically induced pattern or rather integral sequence properties are critical) are pertinent sources for mistaken
homologies. Regretfully, these considerations regularly escape attention in large-scale annotation studies since,
often, there is no substitute to manual handling of these cases. Quantitative criteria are required to suppress
events of function annotation transfer as a result of false homology assignments.

Results: The sequence homology concept is based on the similarity comparison between the structural elements, the
basic building blocks for conferring the overall fold of a protein. We propose to dissect the total similarity score into
fold-critical and other, remaining contributions and suggest that, for a valid homology statement, the fold-relevant
score contribution should at least be significant on its own. As part of the article, we provide the DissectHMMER
software program for dissecting HMMER2/3 scores into segment-specific contributions. We show that DissectHMMER
reproduces HMMER2/3 scores with sufficient accuracy and that it is useful in automated decisions about homology for
instructive sequence examples. To generalize the dissection concept for cases without 3D structural information, we
find that a dissection based on alignment quality is an appropriate surrogate. The approach was applied to a
large-scale study of SMART and PFAM domains in the space of seed sequences and in the space of UniProt/SwissProt.

Conclusions: Sequence similarity core dissection with regard to fold-critical and other contributions systematically
suppresses false hits and, additionally, recovers previously obscured homology relationships such as the one between
aquaporins and formate/nitrite transporters that, so far, was only supported by structure comparison.

Keywords: Sequence homology, Protein domain library, Hidden Markov model, Sequence similarity search, Non-globular
protein sequence segment, Automated protein function annotation, Similarity score dissection
Background
The modus operandi of the modern day sequence hom-
ology concept [1,2] is founded on two inductively proven
implications: (i) the inference of evolutionary history from
sets of homologous protein sequences (e.g. 1964, fibrino-
peptides [3]; 1967, cytochrome c [4]) to build believable
phylogenetic trees [5,6]; (ii) the inference of homology for
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functionally uncharacterized sequences with high sequence
similarity to proteins with characterized structure and/or
function through the trinity of sequence-structure-function
relationship (e.g., in 1967, lactalbumin model was built
using the X-ray coordinates of lyzosome where the two
sequences are concluded to be homologous for being
35% identical [7]; in 1986, angiogenin is homologous to
pancreatic ribonuclease where the X-ray structure of
the latter is known [8,9]).
In both proofs, there are some crucial, yet problematic

assumptions [10]. In the first implication, it requires the
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antecedent that the sequences are homologous (the event
of common evolutionary origin p), then, as a consequence,
the sequences are expected to be high in similarity (event
q; thus, we have p→ q). Whereas this first implication
appears quite acceptable (as well as the contrapositive
form ¬ q→ ¬ p, low sequence similarity would rather
imply absence of homology though evolution might have
erased sequence similarity), the second one is by far not
obvious. In the proof of the second implication where
structure/function similarity is concluded from high se-
quence similarity (actually q→ p), the conserved key
amino acids in the uncharacterized sequence for conclud-
ing similarity to the structure/function of the well-studied
protein need to be those that correspond to the hydropho-
bic patterns responsible for the 3D structure formation
and the residues critical for binding/catalysis/etc. To note,
in both cases of inductive proofs, the proteins under scru-
tiny were soluble, globular proteins of limited size without
non-globular segments.
Thus, homology has the precise meaning of “having a

common evolutionary origin” but it also carries the loose
meaning of “possessing sequence similarity or being
matched”. In addition, homology between sequences is
always a hypothesis while similarity, being a measurable
fact, can be attributed to either chance, convergent evo-
lution or common ancestry [11-13]. In other words, high
sequence similarity is a necessary but insufficient condi-
tion for concluding homology.
Fortunately, sequence similarity by chance can be

eliminated via stringent statistical criteria like E-value
cutoffs in Blast [14] or HMMER-based [15,16] sequence
searches. Nevertheless, the statistical cutoff does not
help in reversing the conditional statement p→ q into
q→ p since the issue of distinguishing between conver-
gent evolution and common ancestry among hits of high
similarity is non-trivial. As a guide, similarities to any
types of non-globular segments (coiled coils, low com-
plexity regions, transmembrane regions, long loops, etc.
where either positional sequence conservation is the re-
sult of a very simple, physically induced pattern or rather
integral sequence properties are critical) are pertinent
sources for mistaken homologies [10,17-19]. Although
this issue has been mentioned even in early work [2], re-
gretfully, these considerations regularly escape attention
in large-scale annotation studies since, often, there is
nothing to substitute manual handling of these cases.
Quantitative criteria are required to suppress events of
function annotation transfer as a result of false hom-
ology assignments. Our previous work has shown that
the exclusion of undesirable signal peptides (SPs) and
simple transmembrane helices (TMs) in protein domain
models can suppress many unrelated sequence hits and
even reveal true homologies that, otherwise, would have
disappeared in the noise [10,19-21].
Standard alignment tools (e.g. BLAST [14], HMMER
[15,16,22]) and domain libraries (e.g. SMART [23,24],
Pfam [25,26]) have become the obligatory components
of many modern-day automated annotation pipelines for
detecting homology and, hence, to infer the functions of
many unknown sequences accumulating in the relent-
lessly growing sequence databases. But these automated
packages operate strictly in the similarity space with pre-
set score or, equivalently, E-value cutoffs. Thus, statisti-
cally significant similarities of any aligned pieces following
as the program outputs are declared as homologies with-
out any alternative consideration of convergence cases.
The latter operation q→ p is a non-equivalent converse
statement of the original proof p→ q. Indeed, this is the
bane of current sequence search approaches that, fre-
quently, lead to wrongful protein function predictions or
annotations, especially when one attempts to extrapolate
very deep into sequence space [27-29].
To alleviate the abovementioned issue, we reiterate

that the working principle of the sequence homology
concept is based on the similarity comparison between
the structural elements, the basic building blocks for
conferring the overall fold of a protein which in turn
characterizes its biological function [30]. To note, the
issue of alignment segmentation into blocks of higher
quality more relevant for structure, fold and function
conservation has been discussed widely in context of
multiple alignment generation, fold recognition and
threading [31-34]. Therefore, a viable approach for im-
proving the existing sequence searches is to dissect each
total alignment into two types of segments. The first class
is suggestive of structured, essential components provid-
ing a conserved, complex hydrophobic/hydrophilic se-
quence pattern (termed “fold-relevant”, “fold-critical” or
“structured” segments) possibly complemented by further,
function-critical positions. The other group of segments
includes all types of non-globular segments, very long
loops and other elaborations in 3D structures, etc. that are
not under the same fold/function conservation evolution-
ary pressure (termed “remnant” segments) [17]. The pur-
pose is to independently re-evaluate the respective two
score sums for statistical significance, subsequently. As a
necessary condition to be considered as a valid hit, the
total score of fold segments should either be more statisti-
cally significant than the score sum of remnant segments
or, minimally, be statistically significant on its own.
To further emphasize, the concept of a globular do-

main has a deeply-rooted notion where it implies a se-
quence segment (or several of those, a domain does not
need to be contiguous) having an independent tertiary
structure (i.e., an autonomous hydrophobic core), it folds
and melts autonomously. Its sequence evolves as a unit
in phylogeny [30]. The unsettling thing is that a sizeable
number of domain models in protein domain libraries
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often represent something else, not a globular domain in
the sense as described above. The model might consist
of several globular domains or contain non-globular ad-
ditions. Since the sequence homology-based annotation
transfer in the case of low sequence identity is applicable
only for the single globular domain, some type of model
dissection becomes intuitively important. One can either
go via the work-intensive route of creating new, elemen-
tary domain model libraries or, alternatively, follow the path
of score dissection with regard to the contributing sequence
segments. Generally speaking, the idea of score dissection is
more generic and is applicable to any existing sequence-
based methods (whether Blast-based [14], HMMER-based
[15,16,22] or profile-profile-based [35,36]) as long as one
can reconstruct the alignment scores from the various
parameterization of the search algorithms. In addition,
score dissection does not require the original algorithms to
be modified.
In this work, we achieved four main objectives. First, we

created an algorithm and the software tool DissectHMMER
(provided as supplement to this MS [37]) that can re-
compute the scores of HMMER2 and HMMER3 and
assign the respective contributions to predefined query –
domain model alignment segments. We were able to
achieve good replication of the log-odd scores/E-values
generated by both HMMER2 and HMMER3 across all the
seed sequences in SMART and Pfam domains. Second, we
show the usefulness of this tool in case studies where dis-
secting the alignment scores into fold-critical and remnant
contributions (using PDB/DSSP information) enables us
to identify false hits that are statistically significant for the
total HMM model and, at the same time, we could eluci-
date previously insignificant true hits among the truly false
ones.
Third, to generalize the dissection framework to do-

mains without PDB/DSSP representation, the quality
score based on alignment quality was introduced. Out of
635 SMART and 5876 Pfam domains with structures,
537 SMART and 4771 Pfam domains were found to be
enriched with structural residues in their high-quality
segments. This was more than 80% of the statistically
testable cases. Thus, the quality score is justifiable surro-
gate for estimating fold-related and remnant segments
in domain models. Importantly, this and similar criteria
can be applied to segmenting HMM models in domain
libraries without having the domain alignments to be re-
edited or the HMMER searches to be rerun.
Finally, the application of the dissection framework

(using quality score) on the seed alignments of SMART
and Pfam domains gave an average positive concordance
rates of almost 100% and a negative one of less than 1%.
The latter implies that almost all of the seed sequences
were recognized correctly as true hits. Meanwhile, the
dissection of alignment results from searches against the
UniProt/SwissProt for these SMART and Pfam domains
returned average false-positive rates of less than 1% but
average false-negative (FN) rates of 7.63% (SMART) and
4.86% (Pfam). The latter presents an opportunity to re-
cover previously obscured homologous relationship be-
tween the FN hits and its associated domain model.
Filtering for domain models that have exceptionally high
error rates also allows finding those cases where reconsi-
dering the seed alignment might be useful.

Results
Methodology for the reconstruction of HMMER2 and
HMMER3 scores
In the current implementation of the HMMER packages
(HMMER2 [15,38] and HMMER3 [16,39]), a single, total
log-odd score is returned for each domain-to-sequence
alignment. Fundamentally, each score is composed of
two types of contributions: the positional scores (made
between the HMMER emitted sequence and the hit
sequence) and the position-invariant scores (Figure 1 de-
signed after Figure one in [39]).
The positional scores are composed from a series of

emission (at each state; e.g. M1/D1/I1) scores and transi-
tion (state-to-state; e.g. M1- > I1, M1- >M2) scores where
M/D/I are match, delete and insert states. In the case of
the invariant scores, they account for the fixed transition
entry scores (e.g. N- > B, B- >M) and exit scores (M- > E,
E- > C) for each domain-to-sequence alignment. These are
added to the positional scores to give the final log-odd
score of the alignment. As a rule, these positional and
position-invariant components are retrievable from the re-
spective HMM model files provided with domain libraries.
Then, the reconstruction of the HMMER scores follows
the straightforward arithmetic computations as described
in equation (1) (see Methods).
In fact, the score reconstruction has already been ap-

plied on HMMER2 glocal (align a complete model to a
subsequence) and global (align a complete model to a
full sequence) outputs in one of our earlier works [10].
Therefore, the score reconstruction procedure should
logically be directly applicable to the HMMER3 domain-
to-sequence alignments.
However, two issues ensue to complicate the straight-

forward procedure. First, the current implementation of
HMMER3 [39] lacks support of the glocal/global search
mode. Hence, local alignments are to be expected since
there is no way to enforce glocal/global alignments. For
the cases of seed sequences that are closely related to
the domains, the local alignments will somewhat resem-
ble the glocal/global alignment generated by HMMER2
and the HMMER2 score reconstruction can still achieve
good replication results. But for many cases of fragmen-
ted local alignments, their reconstruction will have less
precision in comparison due to the following issues.



Figure 1 Scheme of an HMM protein domain model. This figure is adapted after Figure one in [39]. Blue lines show transitions for which local
model parameters are not delivered by hmmconvert for HMMER3.
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This problem stems from the exclusion of certain in-
variant score parameters during the conversion of
HMMER3 model files to HMMER2 format. Regretfully,
the conversion is necessary to export the HMMER3 null
model parameters (as part of the log-odd score parame-
ters) since they are embedded in the HMMER3 program
code, the second major issue. In contrast, the HMMER2
null model parameters are already captured in their
model files. To note, the HMMER3 software suite only
allows for model conversion (via hmmconvert -2) from
the HMMER3 local model to the HMMER2 glocal/glo-
bal model. In the process, only the first HMMER state
(B- >M1, B- > D1; see Figure 1) and last state (MK- > E,
DK- > E; see Figure 1) were kept while the other transition
log-odd scores (e.g. B- > M2..K-1 shown by blue lines in
Figure 1) were excluded from the converted HMMER3
model files since these parameters are not part of a glo-
bal model. Therefore, the reconstruction of HMMER3
local alignment score is bound to suffer some estima-
tion errors inherently due to the unavailability of these
parameters for the straightforward summing.
In hindsight though, the estimation is not detrimental

to the overall accuracy of HMMER3 score reconstruc-
tion as demonstrated by the subsequent section. It is in
fact only slightly less accurate than the HMMER2 recon-
struction. Only in cases where HMMER3 returns heavily
fragmented alignments, the reconstruction error be-
comes noticeable; yet, it is still sufficiently small to not
interfere in the significance analysis of the segmental
subscores.
In this work, a program – DissectHMMER, was writ-

ten to compute the reconstructed score relative to pre-
defined alignment segments using the alignment (the
HMM output) and the HMM model file as inputs inde-
pendent on the HMMER suite version used (2 or 3).
The algorithmic detail is described in the Methods sec-
tion. The code is provided as Additional file 1 (as zip
archive and at the accompanying WWW site [37]).

Reproducibility and error estimation of the reconstructed
HMMER log odd scores
To summarize, the score calculation in the various
HMMER versions is a complicated routine with some
parts not explicitly documented in the literature. Besides
algorithmic assumptions, numerical issues such as round-
ing errors also play a role. Thus, it cannot be expected that
the reconstructed scores exactly match the scores re-
ported by HMMER but it is close enough for the purpose
of reconstructing the segmental contributions to the total
score.
To test the score reconstruction workflow, the seed

alignments from SMART version 6 and Pfam release 27
were used. In comparison to SMART, the current Pfam
library is about 12 times larger and, hence, the rigor of
the scores reproduction was truly being tested in this
case. In total, 735 SMART domains (excluding 73 do-
mains with less than 5 seed sequences) and 12121 Pfam
domains (excluding 2711 domains with less than 5 seed
sequences) were examined.
For each domain alignment, the HMMER model is

first built (using hmmbuild with null2 option off ) and,
then, it is searched against (using hmmsearch -F) the
same set of seed sequences. For each seed sequence, the
alignments reported are considered true hits. By this
constraint, both HMMER2 and HMMER3 share the
same search space and, hence, the alignments generated
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by both are expected to be similar (if not identical).
Next, the HMMER log-odd scores for the total align-
ment were reconstructed as described in Methods (see
equations (1 and 2)).
Once this computation was completed for all seed se-

quences of a given domain, linear regression analysis
was performed against the original scores (see equations
(3 and 4) in Methods). The regression analysis output, in

terms of slope (β̂ ) and coefficient of determination (r2) as
goodness of fit, is plotted for both SMART (version 6) and
Pfam (release 27) domains in Figure 2. Figure 2A and B

depict the histograms of the slopes β̂ for the original
versus reconstructed scores for SMART domains calcu-
lated for HMMER2 and HMMER3, respectively, while

Figure 2C and D depict the histograms of the slopes β̂ for
the Pfam domains. Generally speaking, the HMMER2 re-

sults exhibit high reproducibility at an average β̂ with an
ideal value of 1.000 (SMART/Pfam) with small standard
deviations of 0.001 (SMART) and 0.002 (Pfam). In com-
parison, HMMER3 results also show good, though slightly
Figure 2 Regression analysis output (slope β̂ and coefficient of deter

domains. Figure A and B depict the histograms of the slopes β̂ for the ori

HMMER2 and HMMER3 respectively while Figure C and D depict the histog

exhibit high reproducibility at an average β̂ of 1.000 ± 0.001 (SMART) and 1

slightly worse reproducibility with average β̂ of 1.015 ± 0.017 (SMART) and
histograms for the goodness of fit, in terms of r2. Similarly, the HMMER2 re
(SMART) and 1.000 ± 0.007 (Pfam). HMMER3 reconstruction closely followed

larger variation of 0.007 (SMART/Pfam). In hindsight, all values of β̂ and r2 c
reconstruction workflow for HMMER2/3 scores are highly reproducible.
worse reproducibility with average β̂ of 1.015 ± 0.017
(SMART) and 1.017 ± 0.013 (Pfam).
The goodness of fit, in terms of coefficient of determin-

ation (r2), for the original versus reconstructed HMMER2
and HMMER3 scores are depicted in Figure 2E, F, G and
H respectively as histograms. Again, the HMMER2 recon-
struction exhibits excellent fit at an average r2 of 1.000
(SMART/Pfam) and small standard deviations of 0.003
(SMART) and 0.007 (Pfam). HMMER3 reconstruction
closely followed at an average r2 of 0.997 (SMART) and
0.998 (Pfam) over a slightly larger variation of 0.007
(SMART/Pfam). Taken together, the general trend where

all values of β̂ and r2 converges to one with little variation,
implies that the reconstruction workflow for HMMER2/3
scores are highly reliable and reproducible. The recon-
struction works well for the relatively small SMART
library as well as for the huge Pfam library.
Next, the relative error estimates per SMART/Pfam do-

main were examined (Figure 3, see equations (5, 6, 7 and 8)
mination r2) for both SMART (version 6) and Pfam (release 27)

ginal versus reconstructed scores for SMART domains calculated for

rams of the slopes β̂ for the Pfam domains. The HMMER2 results

.000 ± 0.002 (Pfam) while HMMER3 results also show good, though

1.017 ± 0.013 (Pfam). Figures E, F, G and H shows the corresponding
construction exhibits excellent fit at an average r2 of 1.000 ± 0.003
at an average r2 of 0.997 (SMART) and 0.998 (Pfam) over a slightly

onverges to one with little variation and this implies that the



Figure 3 Relative error estimates per SMART/Pfam domain. Figures A, B and C, D show the histograms of the relative errors for the HMMER2
and HMMER3 results and the SMART and PFAM domain databases respectively. The average reconstruction errors by HMMER2 were 0.0028 (SMART)
and 0.0025 (Pfam) and mostly well below the 0.01 margin (or 1% of the average seed score per domain) as depicted by the vertical dashed lines.
Likewise, the average reconstruction errors attributed by HMMER3 are 0.0049 and 0.0010 for SMART and Pfam domains respectively (See vertical
dashed lines). They are well below the 0.05 line (or 5% of the average seed score per domain). Generally speaking, the relative errors tend being
dwarfed by their respective domain-wise alignment scores for all seed sequences.
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in Methods). To note, the scores generated for various
seed sequences of one domain are quite similar to each
other in the case of HMMER2, mostly, because the glo-
cal mode enforces alignments of similar length. In the
case of HMMER3, the alignments are often (almost)
identical with those in the HMMER2 case. Yet, the
alignments for a large number of many other seed se-
quences are heavily fragmented. Since we are interested
in assessing the error of reconstruction over the repre-
sentative domain score and not over each individual
alignment fragment where, especially, the assignment
of gap scores to the individual fragment scores by
HMMER3 is difficult to recover as discussed above, we
rather compare the total error of reconstruction for the
seed sequence – domain alignment with the sum of
scores for all the seed – domain alignment fragments
reported. Therefore, we estimate the error for each do-
main as ratio between the sum of deviations between
original and reconstructed score for each seed sequence
on the one hand and the sum of original scores for each
seed sequence on the other hand. Figure 3A, B and C, D
show the histograms of the relative errors for the
HMMER2 and HMMER3 results and the SMART and
PFAM domain databases, respectively. The majority of the
reconstruction errors by HMMER2 are well below the sat-
isfactory 0.01 margin (or 1% of the average seed score per
domain) and at an average of 0.0028 (SMART) and 0.0025
(Pfam) as depicted by the vertical dashed lines. Similarly,
the reconstruction errors attributed by HMMER3 are well
below the 0.05 line (or 5% of the average seed score per
domain). The average relative errors are about 0.0049
and 0.0010 for SMART and Pfam domains, respectively
(see vertical dashed lines). As a general trend, the rela-
tive errors tend being dwarfed by their respective
domain-wise alignment scores for all seed sequences.
Taken together, the results show that the reconstruc-

tion recovers the original score within a few percent at
worst. Since we wish to make a qualitative conclusion



Wong et al. BMC Bioinformatics 2014, 15:166 Page 7 of 29
http://www.biomedcentral.com/1471-2105/15/166
whether a certain alignment segment of the total query
sequence – domain alignment makes a substantial or
even overwhelming contribution to the total score, the
reconstruction algorithm with all errors taken into con-
sideration appears well suited for the purpose.
This large scale study of seed sequence scores also allows

comparing some aspects of HMMER2 and HMMER3 pro-
gram behaviors. Figure 4 shows the HMMER2 versus
HMMER3 score averaged over all seed sequences for
each domain plotted for all domains (Figure 4A
SMART, Figure 4B Pfam). As a trend, the HMMER3
scores (y-axis) are clearly smaller than the HMMER2
scores (x-axis). They are strongly correlated (the goodness
of fit r2 is 0.9692 for y = 0.6785x in the case of SMART
and 0.9867 for y = 0.6629x in the case of Pfam) but not
equivalent. To note, this work was not planned as a com-
parative study between the two tools and we strived as
much as possible to focus on conclusions supported by
either program.

Dissection of sequence alignments accentuates homology
evidence in true hits while deemphasizes false hits
The idea of dissecting a HMM score into several seg-
ments of a larger alignment stems from the observation
that the influence of well conserved, truly homologous
alignment segments on the score can be overwhelmed
by score contribution from spurious alignment exten-
sions. In our previous work [10,19], we have shown that
the score enhancements from aligning non-relevant SP/
TM hydrophobic stretches can create the appearance of
Figure 4 HMMER2 versus HMMER3 average domain score (averaged
27). Figure A shows the comparison of HMMER2 versus HMMER3 domain
comparison for 12121 (out of 14831) Pfam domains. As a trend, the HMME
(the goodness of fit r2 is 0.9692 for y = 0.6785x in the case of SMART and 0
high scores and significant E-values of alignments be-
tween unrelated sequences.
At the same time, it is well accepted that structural el-

ements are the basic building blocks for conferring the
overall fold of a protein which in turn characterizes its
biological function. Therefore, for the purpose of infer-
ring homology, one should evaluate the score of the
structural, fold-relevant segments independently from
the score associated with remnant segments. Figure 5
shows an example of such a segmentation highlighting
the fold-relevant alignment pieces (based on the seed align-
ment of PF05134.8 T2SL). Furthermore, as a necessary
condition to be considered as a true hit, the structural,
fold-relevant score should either be more statistically
significant than the score for other segments or, at
least, it should be statistically significant on its own.
The postmortem dissection of the alignment can pro-
vide additional insights beyond what a standard single
total score/E-value could, as illustrated through a se-
lected, validated set of 13 hits (some of them are true
and and others are actually false) found by 8 Pfam do-
mains (PF01298.13 Lipoprotein 5, PF04814.8 HNF-1_N,
PF05134.8 T2SL, PF09110.6 HAND and PF10390.4 ELL,
PF00004.24 AAA, PF00106.20 adh_short and PF01226.12
Form_Nir_trans) as listed in Table 1.
In retrospect, all hit examples (see Table 1, column 2)

were retrieved from the results of HMMER2 (glocal-mode)
and HMMER3 when searched against the SwissProt/
UniProt sequence database (see later in the text for the
general results of this test). To note, the hmmsearch
over all seed sequences) for SMART (version 6) and Pfam (release
scores for 735 (out of 808) SMART domains while Figure B shows the
R3 scores are smaller than the HMMER2 scores but strongly correlated
.9867 for y = 0.6629x in the case of Pfam).



Figure 5 Segmentation by DSSP and by quality score for an example alignment. We show the seed alignment of PF05134.8 (T2SL, type II
secretion system protein L). Below the alignment, two segmentations are presented. Red and green segment in the upper line are assigned
labels “H, B, E, G, I, T, S” the DSSP [40] file for the structure 1 W97 (chain L) and together represent the respective fold-relevant part. In the lower
line, the segmentation is based on alignment quality giving rise to black (fold-relevant) and grey (remnant) segments.
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option ‘nobias’ in HMMER3 was turned off to increase
the search sensitivity (ability to detect true hits) as stated
in the manual [39]. For example, the true hit glutamyl-
tRNA reductase (HEM1_METKA) was not detected by
HMMER3 when the ‘nobias’ option was turned on. Next,
the representative structures for the Pfam domains were
obtained by searching against PDB FASTA database for
the most significant hit with E-value < 0.1 using the global
HMM model (HMMER2) for maximum model coverage.
Then, the structural residues (carrying “H, B, E, G, I,

T, S” labels in the DSSP files) were retrieved from the
corresponding DSSP annotations [40] with the purpose
of dissecting each domain alignment into its fold-related/
remnant segments so that the final singular fold-related
and remnant scores with respect to the hits can be derived
using the score reconstruction procedure from the pre-
ceding section. Also, all the hits except for TIP12_MAIZE
were found by both HMMER2 and HMMER3 (see
column 3), although the HMMER3 returned only frag-
mented alignments which offered only partial coverage
with respect to the domain models (see supplementary
website [37] for alignments). The statistical significance
E-value cutoff for the evaluation was 0.1.
Based on a collective view of the standard HMMER out-

put scores/E-values in Table 1 (column 4), the hits pro-
duced HMMER2 E-values of between 3.7e-2 to 5.2 and
between 2.5e-27 to 1.1e-1 via HMMER3. At an E-value
cutoff of 0.1, the overwhelming majority of the hits would
be considered false based on HMMER2, yet true by
HMMER3. And it would be hard-pressed to tell the differ-
ences based on the standard total alignment HMMER
score/E-value alone.
However, once the fold-critical and remnant scores
(see Table 1, columns 5 and 6) were considered, the dis-
tinction between the true and false hits becomes apparent
as depicted in Figure 6. As a general trend, the fold-related
scores of hits 1 to 10 (IF2P_HUMAN, IF2P_MOUSE,
IF2P_PONAB, NUCL1_ORYSJ, MLL2_MOUSE, CORTO_
DROME, DHKL_DICDI, AMOT_MOUSE, NUCL_HUMAN,
PK4_DICDI) were vastly smaller than the remnant
scores indicating that they are spurious hits. The corre-
sponding fold-related E-values spans from 2.9e-2 to 2.6
(HMMER2) and 3.6e + 1 to 2.0e + 5 (HMMER3) against
the more significant remnant segments’ E-values ranges
of 3.6e-6 to 1.0e-4 (HMMER2) and 5.5e-27 to 3.3e-1
(HMMER3).
In contrast, the opposite trend was observed for hits

11 and 12 (CHLI_PORPU, HEM1_METKA) where the
fold-related scores were larger than the remnant scores.
For hit 13 (TIP12_MAIZE), the difference between its
fold-related and remnant scores was marginal. The cor-
responding fold-related E-values of 1.2e-4 to 2.2e-6
(HMMER2) and 3.1e-3 to 1.5e-9 (HMMER3) were more
significant than the remnant segments’ E-values of 9.4e-5
to 1.4e + 2 (HMMER2) and 3.1e + 2 to 5.3e + 5 (HMMER3).
Thus, the latter three hits are rather true homologies in
the segment representing the protein fold.
Furthermore, to investigate the difference in magni-

tudes between the fold-critical and remnant E-values,
their ratios (see Table 1, column 7) were taken. A small
ratio (<<1) is indicative that the fold-related component
is more significant than its remnant counterpart and,
hence, its overall sequence similarity gravitates towards
homology. On the other hand, a large ratio is suggestive



Table 1 Examples of validated false hits from 5 Pfam domains (PF01298.13 Lipoprotein5, PF04814.8 HNF-1 N, PF05134.8 T2SL, PF09110.6 HAND, PF10390.4 ELL)
and validated true hits from 3 Pfam domains (PF00004.24 AAA, PF00106.20 adh_short, PF01226.12 Form_Nir_trans)
Domain name Hit name HMMER

version
Total score
(E-value)

Fold-critical score
(E-value1)

Remnant score
(E-value2)

Ratio of E-value1:
E-value2

PF01298.13 Lipoprotein5 1.sp|O60841|IF2P_HUMAN (Eukaryotic translational
initialization factor 5B)

HMMER2 −183.8 (3.1) −164.6 (7.6e-1) −7.6 (6.7e-6) 1.1e + 5

HMMER3 30.1 (6.7e-8) −2.9 (5.8e + 4) 22.8 (1.0e-3) 5.8e + 7

Domain length: 979 2.sp|Q05D44|IF2P_MOUSE (Eukaryotic translational
initialization factor 5B)

HMMER2 −184.6 (3.3) −150.5 (2.7e-1) −24.9 (2.4e-5) 1.1e + 4

HMMER3 26.5 (8e-7) 4.4 (3.9e + 2) 33.9 (4.6e-7) 8.5e + 8

PDB:3V8U|B 3.sp|Q5RDE1|IF2P_PONAB (Eukaryotic translational
initialization factor 5B)

HMMER2 −185.0 (3.4) −137.5 (1.0e-1) −33.2 (4.5e-5) 2.2e + 3

HMMER3 28.6 (1.8e-7) −2.9 (5.8e + 4) 22.2 (1.5e-3) 3.9e + 7

4.sp|Q7XTT4|NUCL2_ORYSJ (Nucleolin 2) HMMER2 −190.8 (5.2) −130.5 (6.1e-2) −50.2 (1.6e-4) 3.8e + 2

HMMER3 13.2 (8.2e-3) −5.0 (2.0e + 5) 14.5 (3.3e-1) 6.1e + 5

PF04814.8 HNF-1_N (Hepatocyte nuclear factor 1) 5.sp|Q6PDK2|MLL2_MOUSE (Histone-lysine
N-methyltransferase 2D)

HMMER2 −70.2 (1.5) −45.6 (1.1e-2) −15.4 (2.5e-5) 4.4e + 2

HMMER3 24.5 (5.1e-6) 0.0 (2.9e + 4) 32.3 (4.1e-6) 7.1e + 9

Domain length: 250 6.sp|P41046|CORTO_DROME (Centrosomal/
chromosomal factor)

HMMER2 −75.5 (4.4) −55.3 (7.6e-2) −6.1 (3.9e-6) 2.0e + 4

HMMER3 23.0 (1.6e-5) 0.0 (2.9e + 4) 32.9 (2.8e-6) 1.0e + 10

PDB:1IC8|B 7.sp|Q54RP6|DHKL_DICDI (Hybrid signal
transduction histidine kinase L)

HMMER2 −75.6 (4.5) −52.5 (4.3e-2) −6.9 (4.5e-6) 9.6e + 3

HMMER3 32.6 (1.7e-8) 0.0 (2.9e + 4) 47.7 (8.3e-11) 3.5e + 14

PF05134.8 T2SL (Type II secretion system protein L) 8.sp|Q8VHG2|AMOT_MOUSE (Angiomotin) HMMER2 −81.4 (4.5) −69.3 (7.6e-1) 10.5 (6.1e-6) 1.3e + 5

Domain length: 321 HMMER3 18.2 (1.8e-5) 8.4 (3.6e + 1) 28.2 (3.5e-5) 1.0e + 6

PDB:1 W97|L

PF09110.6 HAND (Chromatin remodeling factor ISW1a) 9.sp|P19338|NUCL_HUMAN (Nucleolin) HMMER2 −39.7 (2.1) −40.8 (2.6) 16.7 (3.6e-5) 7.2e + 4

PDB:2Y9Z|A HMMER3 23.3 (2.7e-5) 3.7 (2.3e + 3) 22.1 (5.0e-3) 4.6e + 5

PF10390.4 ELL (RNA polymerase II elongation factor) 10.sp|P34103|PK4_DICDI (Protein kinase 4) HMMER2 −70.7(3.7e-2) −49.4 (2.9e-3) −13.0 (3.9e-5) 7.4e + 1

Domain length: 139 HMMER3 94.5 (2.5e-27) 0.0 (9.2e + 3) 99.8 (5.5e-27) 1.7e + 30

PDB:2E5N|A

PF00004.24 AAA (ATPase family associated with various
cellular activities)

11.sp|P51394|CHLI_PORPU (Magnesium-chelatase
subunit ChII)

HMMER2 −27.2 (1.8) 38.5 (2.2e-6) −48.2 (1.4e + 2) 1.6e-8

Domain Length: 252 HMMER3 11.3 (1.1e-1) 22.4 (3.1e-3) 6.0 (3.1e + 2) 1.0e-5

PDB:1LV7|A HMMER3 5.6 (5.9) 26.4 (1.9e-4) −2.9 (1.4e + 5) 1.4e-9

PF00106.20 adh_short (Short chain dehydrogenase) 12.sp|Q9UXR8|HEM1_METKA (Glutamyl-tRNA reductase) HMMER2 −49.7 (1.7e-1) 13.7 (1.1e-5) −54.6 (9.0e-1) 1.2e-5

Domain length: 230 HMMER3 23.0 (7.9e-6) 43.1 (1.5e-9) −6.4 (5.3e + 5) 2.8e-15

PDB:3MJC|B

PF01226.12 Form_Nir_trans (Formate/nitrate transporter) 13.sp|Q9ATM0|TIP12_MAIZE (Aquaporin TIP 1–2) HMMER2 −109.7 (1.3e-1) −47.5 (1.2e-4) −45.3 (9.4e-5) 1.3

Domain length: 366

PDB:3KCU|E

The segmentation of domain models is based on PDB/DSSP information.
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Figure 6 HMMER2 versus HMMER3 average domain score (averaged over all). When the fold-critical and remnant scores (see Table 1, columns
5 and 6) were considered, the distinction between the true and false hits becomes apparent. The Y = X margin depicts two regions: above is where
the fold-critical E-values were smaller than the reminant E-values and below as vice-versa. As a general trend, the fold-related scores of hits IF2P_HUMAN,
IF2P_MOUSE, IF2P_PONAB, NUCL1_ORYSJ, MLL2_MOUSE, CORTO_DROME, DHKL_DICDI, AMOT_MOUSE, NUCL_HUMAN and PK4_DICDI (see red points)
were much smaller than the remnant scores indicating that they are spurious hits and their corresponding fold-related E-values spans from
2.9e-2 to 2.6 (HMMER2) and 3.6e + 1 to 2.0e + 5 (HMMER3) against the more significant remnant segments’ E-values ranges of 3.6e-6 to 1.0e-4
(HMMER2) and 5.5e-27 to 3.3e-1 (HMMER3). In contrast, the fold-related scores were larger than the remnant scores for hits CHLI_PORPU, HEM1_METKA
(see blue points). For TIP12_MAIZE (see blue point), the difference between its fold-related and remnant scores was marginal. The corresponding
fold-related E-values of 1.2e-4 to 2.2e-6 (HMMER2) and 3.1e-3 to 1.5e-9 (HMMER3) were more significant than the remnant segments’ E-values of 9.4e-5
to 1.4e + 2 (HMMER2) and 3.1e + 2 to 5.3e + 5 (HMMER3).
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of spurious sequence similarity. At a ratio of 1, both
fold-related and remnant segments’ components are on-
par. As such, with the range of ratios between 7.4e + 1 to
1.3e + 5 (HMMER2) and between 4.6e + 5 to 1.7e + 30
(HMMER3), hit 1 to 10 are to be considered as false
hits. And with ratios between 1.6e-8 to 1.3 (HMMER2)
and between 2.8e-15 to 1.0e-5 (HMMER3), hits 11 to 13
are to be labeled as true hits.
For the alleged false hits (rows 1–4 in Table 1), the se-

quence architecture analysis was performed [41-43] and
their false associations with the domains is justified as
follows (see Figure 7, HMMER2/3 alignments are avail-
able at the associated WWW site [37]). The model
Lipoprotein 5 (PF01298.13, row 1) can be represented by
the transferring-binding protein B (TbpB) from various
bacteria. TbpB is part of the transferring receptor and it is
an outer membrane protein that is anchored to membrane
via a lipidated N-terminus segment [44]. In contrast to the
model, IF2P_HUMAN, IF2P_MOUSE and IF2P_PONAB
are translation initialization factors which are essen-
tially cytoplasmic proteins from various eukaryotes while
NUCL1_ORYSJ is a plant nucleolin which binds RNA in
the nucleus. These diverse proteins were related spuri-
ously to the model via an N-terminal disordered/low-
complexity segment with remnant segment’s E-values
of 6.7e-6 to 1.6e-4 (HMMER2) and 4.6e-7 to 3.3e-1
(HMMER3). For the translation initialization factors, this
linker segment contains multiple phosphorylation sites
[45]. Separately, another unrelated domain model HAND
(PF09110.6, row 4), a chromatin remodeling factor [46], hits
the nucleolin (NUCL_HUMAN) again, albeit human, on
the N-terminal disordered/low-complexity segment with
E-values of 3.6e-5 (HMMER2) and 5.0e-3 (HMMER3).
Next, the model HNF-1 N (PF04814.8, row 2) describes

the N-terminus of the homeobox-containing transcription
factor HNF-1 (Hepatocyte nuclear factor 1). The latter
contains a dimerization sequence and an acidic region
which is implicated in transcription activation [47]. In
contrast, the diversely different false hits MLL2_MOUSE,
CORTO_DROME and DHKL_DICDI are a methyltrans-
ferase, a chromosomal protein and a kinase respectively.
They are related to the HNF-1 model merely via a small
stretch of N- or C-terminal disordered segments with
E-values of 3.9e-6 to 2.5e-5 (HMMER2) and 8.3e-11 to
4.1e-6 (HMMER3).
Meanwhile, the model T2SL (PF05134.8, row 3) de-

scribes protein L, an inner membrane protein of the bac-
terial type II secretion system that serves as a critical
link between the cytoplasmic and the periplasmic part of
the Eps-system [48]. In contrast, the mouse angiomotin
(AMOT_MOUSE) is involved in angiogenesis and regu-
lates the action of the angiogenesis inhibitor angiostatin
[49,50]. The angiostatin-binding linker segment of the
angiomotin made a false association to this bacterial do-
main model with remnant segments’ E-values of 6.1e-6
(HMMER2) and 3.5e-5 (HMMER3).



Figure 7 Domain architectures of the 10 false (false-positive)
hits. The domain architectures of 5 Pfam domain models (PF01298.13
Lipoprotein5, PF05134.8 T2SL, PF09110.6 HAND, PF10390.4 ELL) revealed
that the 10 hits (1:IF2P_HUMAN, 2:IF2P_MOUSE, 3:IF2P_PONAS, 4:
NUCL2_ORYSJ, 5:KMT2D_MOUSE, 6:CORTO_DROME, 7:DHKL_DICDI, 8:
AMOT_MOUSE, 9:NUCL_HUMAN, 10:PK4_DICDI) are falsely associated
to the respective domain models through a significant non-structural
segment which is typically low-complexity and disordered.
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Finally, the model ELL (PF10390.4, row 5) is a RNA
polymerase II elongation factor that regulates the polymer-
ase II [51]. Yet, the hit PK4_DICDI, a protein kinase of
slime mold, is related to the model through a small stretch
of disordered/low-complexity linker with segmental E-
values of 3.9e-5 (HMMER2) and 5.5e-27 (HMMER3).
For the alleged true hits, the justification of sequence

similarity between the hit and domain model is best
shown by fold similarity, especially for cases of distant
homologs (indicated by their large E-values) where more
sequence divergence is expected. Therefore, structure
alignment was performed on each pair of representative
PDB structures from the hit and the domain model using
the jCE algorithm [52] (see Figure 8, HMMER2/3 align-
ments are available at the associated WWW site [37]).
The model AAA (PF00004.24, row 6) is a family of

ATPases associated with various cellular activities. The
ATP-dependent metal binding core of the domain’s repre-
sentative PDB structure (1LV7|A) consists of the charac-
teristic Walker A or P-loop motif, Walker B motif and
sensor motif, each extending beyond a ß-strand [53]. The
hit CHLI_PORPU (representative structure PDB:1GP8|A)
from plant is a magnesium chelatase that is involved in
chlorophyll biosynthesis. Its ATP core also consists of the
three hallmark motifs (Walker A/B and sensor motifs)
[54]. Although the total HMM’s E-values between the hit
and model were insignificant at 1.8 (HMMER2) and 1.1e-
1, 5.9 (HMMER3), the fold-relevant E-values were never-
theless significant at 2.2e-6 (HMMER2) and 3.1e-3, 1.9e-4
(HMMER3). In contrast, the remnant segments’ E-values
were large at 1.4e + 2 (HMMER2) and 3.1e + 2, 1.4e + 5
(HMMER3). Independently, a structural alignment re-
vealed that, despite vast differences between the loop
lengths of the two structures, a reasonable RMSD score of
3.91 over an alignment length of 255 positions was achiev-
able over the structural elements (See Figure 5A). The
ATP binding domains of both hit CHLI_PORPU and
model AAA are indeed homologous.
Next, the model adh_short (PF00106.20, row 7) is a fam-

ily of NADP-dependent oxidoreductases. Its representative
PDB structure (3MJC|A) is an A-type ketoreductases con-
sisting of two subdomains, a N-terminal sub-structural
domain and a C-terminal catalytic subdomain that
binds NADP+ and its ß-ketoacyl substrates [55]. On the
other hand, the hit HEM1_METKA (pdb: 1GPJ|A) is a



Figure 8 Structural alignments between representative structures of domain model and hit sequence for the 3 true (false-negative)
hits. The original E-values of these 3 hits (A. CHLI_PORPU, B. HEM1_METKA, C. TIP12_MAIZE) were insignificant against the Pfam domain models
(PF00004.24 AAA, PF00106.20 adh_short, PF01226.12 Form_Nir_trans). However, their structural E-values were nevertheless significant (E < 0.1). Indeed, the
structural alignments of representative structures between domain models and hits showed that their RMSD values were between 3.2 to 3.91 and over
their full-length sequences. This indicated that the domain model and the associated hit sequences were indeed homologous to each other.
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glutamyl-tRNA reductase which essential for initiating tet-
rapyrrole biosynthesis in plants and prokaryotes. Structur-
ally, it consists of 3 domains : a N-terminal RNA-binding
domain, a NADPH-binding domain and dimerization do-
main [56]. The standard E-values of hit to model were in-
significant at 0.17 for HMMER2 but significant at 7.9e-6
for HMMER3 over a small fragmented piece. However,
both fold-related E-values were significant (HMMER2:
1.1e-5, HMMER3: 1.5e-9) while both remnant segments’
E-values were insignificant (HMMER2: 9.0e-1, HMMER3:
5.3e + 5). Separately, a structural alignment between the
two PDB structures gave a good RMSD score of 3.52 over
188 alignment positions between the 3MJC structure and
the NADPH-binding domain of 1GPJ (See Figure 5B).
Again, the structural alignment revealed the major differ-
ences in the loop lengths. Nevertheless, both hit and domain
share a homologous NADP+/NADPH binding structure.
Finally, the model Form_Nir_trans (PF01226.12, row 8)

describes the multi-membrane formate/nitrite transporter
(PDB: 3KCU|E) of bacteria that facilitates the formate/
nitrite transport essential for anaerobic respiration [57].
On the other hand, the hit TIP12_MAIZE is a plant aqua-
porin (representative structure PDB: 1YMG|A) that trans-
port water and small neutral solute across the membrane
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[58]. Interestingly, it has been previously reported that
the fold of the formate transporter is uncannily similar
to the family of aquaporins despite a low sequence
identity of 9-12% [59], thus raising the question if this
transporter is indeed a channel. Consistent with previ-
ous findings, the structural alignment between the two
representative structures produced a good RMSD of 3.2
over 273 alignment positions (See Figure 5C). Mean-
while, the hit TIP12_MAIZE was only detectable by the
HMMER2 domain model at an insignificant standard
E-value of 0.13, but its fold-relevant segments’ E-value
was nevertheless significant at 1.2e-4. Interestingly, its
remnant segments’ E-value also showed high signifi-
cance at 9.4e-5. The latter suggests that, like the diverse
family of GPCRs where the loop regions confers the
sub-family functions [60,61], a similar role might also
be expected with the non-fold-related segments in the
formate/nitrite/aquaporin family.
Taken together, we have illustrated that the dissection

framework provides the segment-based scores (e.g. the
fold-related and other segments’ scores) for a more con-
cise assessment of sequence similarity as evidence for
homology. To emphasize, filtering of compositionally-bias
sequence segment might be unnecessary since false hits
will be occluded under this framework when their non-
fold-related segments appeared significant statistically.
Most importantly, the framework provides an opportunity
to elucidate the obscured true hits hidden among the false
ones in the twilight E-value range of 0.1 to 10.

Quality score as a proxy to identify the structural
segments of domain models for score dissection
In an ideal situation, the combined PDB/DSSP data pro-
vides the best information for dissecting a domain model
into its fold-related and remaining segments for score
reconstruction. But currently, only a small portion of do-
main models have an associated PDB structure. As such,
one needs a surrogate for estimating the potentially
more conserved elements and remaining segments for
the dissection framework to be applicable on a larger set
of domain models.
For this purpose, the alignment quality measure (called

quality score further in the text) that assesses sequence
conservation in CLUSTALX [62] was investigated; yet,
the exact form of the measure is not critical for us here.
For example, one could have relied on the measure used
in Jalview [63,64] or others [65,66]. As a trend, fold-
critical segments will deliver dense parts in multiple
alignments and, thus, generate high quality scores. In
contrast, variable loops and man non-globular types of
sequence will result in poor multiple alignments and,
hence, produce low quality scores. As is illustrated by
Figure 5, the segmentation based on DSSP annotation
will, as a trend, correctly estimate fold-relevant segments
(or underestimate them) whereas the score based on
alignment quality tends to segment more generously in-
cluding also other segments besides the most fold-
relevant ones. Nevertheless, in the subsequent section, we
show that the high-quality alignment segments (represen-
tative for fold-critical segments) still contain significantly
higher fractions of residues engaged in secondary struc-
tural elements compared with low-quality alignment seg-
ments (representative for fold-irrelevant segments).
First, the quality score per position for each domain

alignment in SMART and Pfam were computed (see
equations (10, 11, 12, 13, 14 and 15) in the Methods).
Alignments with less than 5 sequences were not con-
sidered for the analysis due to insufficient statistical
power at a significance level of α = 0.05. Next, each
alignment position is classified as high or low-quality
based on the appropriate thresholds (see equations
(16,17) in Methods). The quality score thresholds are at
least 0.06 (false positive rate 5%, true positive rate 90%;
see Methods section “Determination of domain-wise
score cutoffs …” and the table therein) and 0.14 (false
positive rate 5%, true positive rate 91%; see Methods sec-
tion “Determination of domain-wise score cutoffs …” and
the table therein) for SMART and Pfam domains respect-
ively. Finally, the high-quality and low-quality segments
per domain alignment were derived using equation (18).
Separately, matching structures were searched for. The

global-mode HMM models were built using the HMMER2
software suite to maximize for full coverage. The HMM
models were searched against the PDB FASTA sequences
to obtain the most significant hit (E-value at least 0.1) with
the associated secondary structure residues resolved for
each alignment position using the DSSP annotations [40],
and the number of structural residues (carrying “H, B, E,
G, I, T, S” labels in the DSSP files) is computed.
In total, 635 (out of 808) SMART and 5876 (out of

14831) Pfam domains were able to retrieve a significant
PDB hit that covers the model’s full length. Each of these
domain models was then subjected to the Fisher’s exact
test (see equation (9) in the Methods section “Fisher’s
exact (one-tailed) test …” and also the table therein) to
determine if there is an enrichment of structural resi-
dues in the high-quality segments against the low-
quality segments. Interestingly, at a significance level of
α = 0.05, 537 (out of 635) SMART domains and 4771
(out of 5876) Pfam domains were enriched with struc-
tural residues in their respective high-quality segments
(find lists of domains at the associated WWW site [37]).
This is more than 80% of the testable SMART/Pfam do-
mains. For the remaining 98 SMART domains and 1105
Pfam domains, there is insufficient statistical power to
reject the null hypotheses. This is supported by a control
test where the same 635 SMART and 5876 Pfam do-
mains were tested in the opposite direction to see if



Table 2 Label of individual HMMER hits (TP, FN, FP, TN)
based on E-values of total score, high-quality score and
low-quality score

Type E-value

Total score High-quality score Low-quality score

TN > 0.1 > 0.1 > 0.1

> 0.1 > 0.1 ≤ 0.1

TP ≤ 0.1 ≤ 0.1 > 0.1

≤ 0.1 ≤ 0.1 ≤ 0.1

FP ≤ 0.1 > 0.1 ≤ 0.1

FN > 0.1 ≤ 0.1 > 0.1

? > 0.1 ≤ 0.1 ≤ 0.1

≤ 0.1 > 0.1 > 0.1

Type (?) occurs when the score threshold causes the total score to become
insignificant (despite significant high and low-quality score) or vice versa.
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there is an enrichment of non-structural residues in the
high-quality segments against the low-quality segments
but none was significant. Thus as a trend, high-quality
alignment segments and secondary structures go hand
in hand. At the same time, we emphasize that secondary
structural elements, as a rule, will lead to high-quality
alignments, the opposite is not necessarily true; non-
globular segments might also produce high-quality align-
ments, especially if the number of sequences is not large.
For our purpose, it is enough to have the quality score
as necessary condition for fold-related segments.
It is also noteworthy to mention that the dissection

framework using the quality score were applied to the
13 validated examples from the preceding section. The
conclusions were similar to that of Table 1 except for the
cases of aquaporin TIP12_MAIZE and HEM1_METKA
for HMMER2 (see Additional file 2: Table S1). In addition,
the results of the SEG-derived dissection (see equations
(24 and 25)) for the 13 examples were also included; a
method that find low-complexity regions as surrogate
for long loops and intrinsically unstructured segments
[67]. Based on the SEG-derived HMMER2 results, the
conclusions were generally comparable to that of the
quality score. However, the SEG-derived HMMER3
results suffered from a handful of differences and inaccur-
acies e.g. 5 false hits of the Lipoprotein5 (PF01298) do-
main were concluded as true hits. From this mini study, it
appears that any inaccuracy in the segmentation of do-
main models into its fold-critical and remnant compo-
nents will be amplified in the final dissection results. This
is especially true for the fragmented HMMER3 align-
ments. From the case study examples, the quality score is
a better surrogate of PDB/DSSP information for domain
model dissection when compared to the SEG-derived
ones.

The dissection framework validates the seed sequences in
domain alignments and systematically identifies the
potential false positive and false negative hits in HMMER
searches
In this section, the behavior of the score dissection frame-
work when applied to the hits’ alignments returned by do-
main models from HMMER searches was examined. For
this purpose, 285 (out of 537) SMART and 2381 (out of
4771) Pfam domain models were taken from the preceding
section after filtering domain models with low-quality seg-
ments of less than 10 alignment positions. Furthermore, to
avoid potential bias in outcome due to differences in search
sensitivity by either HMMER2 or HMMER3, both were
used for the generation of the initial result sets where only
common hits by both HMMER2 and HMMER3 were
dissected.
First, each selected SMART/Pfam domain was searched

(via HMMER2/3 hmmsearch) against (i) the seed database
consisting of seed sequences and (ii) UniProt/SwissProt
database to generate altogether 4 sets of scores: HMMER2/
seed, HMMER3/seed, HMMER2/SwissProt and HMMER3/
SwissProt score sets. Next, for each score set, the hit
alignments were dissected into high-quality (enriched
with structural residues) and low-quality segments. The
corresponding sub-scores as well as the total score were
statistically evaluated in terms of E-values independ-
ently for both high- and low-quality parts (see Table 2
and the Methods section “Classification of hits in the
comparative HMMER2 and HMMER3 analysis”).
In the statistical evaluation, the E-values were calculated

using a standard database size of 540261 (UniProt as of
April 2013; using equation (2) in the Methods section).
This implies that the HMMER3 E-values were adjusted
since their original E-values were computed based on the
size of the returned set. On the other hand, the peculiarity
in HMMER2 E-value calculation previously reported in
[20] (jumping between two statistics) was suppressed and
the usage of the extreme value distribution (EVD) was
enforced in all computations. Finally, the significance call
for E-value is set at 0.1 as recommended by the HMMER
authors [38]. Subsequently, all hits were tagged as true-
positive (TP), false-negative (FN), true-negative (TN) and
false-positive (FP) (see Table 2).
Finally, the hits from HMMER2/seed and HMMER3/

seed score sets were paired as long as the hits shared a
common sequence segment to create a unified set be-
tween HMMER2 and HMMER3 results. The same was re-
peated for HMMER2/SwissProt and HMMER3/SwissProt
score sets. Among the paired hits, they can be sub-classi-
fied into the concordance and discordance class. Accord-
ingly, the concordance class contains hit results agreed
upon by both HMMER2 and HMMER3 where the posi-
tive concordance class suggests that the hits are true while
the negative concordance class suggests that the hits are
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false. On the other hand, the discordance class contains
the results where HMMER2 and HMMER3 disagreed
upon. Fundamentally, this class arises due to the differ-
ences in model parameterization and search/alignment
algorithm attributed by the two flavors of HMMER. It is
beyond the scope of this work to resolve which version of
HMMER is better suited for the purpose. In addition, un-
matched or orphaned hits are also excluded since this
touches on the issue of search sensitivity and it is again
not the focus of this work on score dissection (see Table 3
and the Methods section “Classification of hits in the
comparative HMMER2 and HMMER3 analysis”).
Figure 9 shows the base performance of the dissection

framework when applied on the seed score set. Basically,
one would expect a high positive concordance rate (an
ideal value of 100%) and a low negative concordance rate
(an ideal value of 0%) per domain model given that all its
seed sequences are considered to be true hits. This also
necessarily follows that the high-quality scores/E-values
are more dominant than the low-quality counterparts for
these seed sequences.
Table 3 Classification of paired/orphaned hits for
comparative HMMER2 and HMMER3 analysis

Group Classification Type

Paired hits HMMER2TRUEHMMER3TRUE(Positive concordance) TPTP

TPFN

FNTP

FNFN

HMMER2FALSEHMMER3FALSE(Negative concordance) TNTN

FPTN

TNFP

FPFP

HMMER2TRUEHMMER3FALSE(Discordance type 1) TPFP

FNFP

TPTN

FNTN

HMMER2FALSEHMMER3TRUE(Discordance type 2) FPTP

FPFN

TNTP

TNFN

Orphaned hits HMMER2ONLY TP

FN

FP

TN

HMMER3ONLY TP

FN

FP

TN
Figure 9A and B depict the histograms of the positive
concordance rates (see equation (19) in Methods) for
the 285 SMART and 2381 Pfam domain models re-
spectively. Note that the total paired hits included the
discordance hits. Generally speaking, 225 (out of 285)
SMART and 2142 (out of 2381) Pfam domains under
investigation exhibit a perfect positive concordance rate
as depicted by the horizontal dotted lines. On average,
the positive concordance rate was (99.17 ± 3.46)% for
SMART and (99.69 ± 2.13)% for Pfam as depicted by
the vertical dotted lines. This suggests that almost all
the seed sequences were correctly labeled as true hits.
However, there were about a dozen of domains that

have deviated from the ideal rate of 100% quite signifi-
cantly. At below 90% positive concordance rate, there
were altogether 9 Pfam and 4 SMART domains. A de-
tailed breakdown of the seed sequence classification of
these 13 domains was given in Table 4. Among these
domains, the discordance rates of several domains like
SM00185 (ARM), PF10590.4 (PNPOx_C_seed), SM00733
(Mterf), SM00304 (HAMP), PF00433.19 (Pkinase_C) and
PF13894.1 (zf-C2H2_4) stood out at more than 20%
(20.99%, 21.41%, 25.16%, 38.76%, 45.18% and 71.43% re-
spectively). Incidentally, their domain lengths range be-
tween 49 and 159 alignment positions (on average about
100 alignment positions). This implies that for these short
domains, an E-value threshold of 0.1 is not optimal.
There was also another interesting observation with

regard to the differences in search sensitivity between
the HMMER variants. For the cases of SM00320
(WD40) and PF13894.1 (zf-C2H2_4), it was found that
the number of orphaned hits found by HMMER2 only
(see column 5 in Table 4) was more than the number of
common hits that can be paired between HMMER2 and
HMMER3 (see column 4; Table 4). As a side effect, they
suffered a low positive-concordance rate. An investigation
on their domain model revealed that more than half the
alignment positions are made up by gaps rather than se-
quences (see supplementary website [37] for alignments).
Thus, the list of domain models that dramatically differ
from the optimal recovery rate of sequences in this test
can also be seen as a suggestion for domains that might
benefit from seed alignment re-valuation and polishing.
This might include either alignment re-arrangement and/
or exclusion of some of the seed sequences.
Meanwhile, Figure 9C and D show the histograms for

the negative concordance rates (see equation (20) in
Methods) of the same sets of domains. In this case, 283
(out of 285) SMART and 2374 (out of 2381) Pfam do-
mains have a zero negative concordance rate (see hori-
zontal dotted lines). On average, the SMART and Pfam
domains have a negative concordance rate of (0.0033 ±
0.0042)% and (0.0017 ± 0.0341)% respectively (see verti-
cal dotted lines), implying that almost none of the seed
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Figure 9 Histograms of the positive and negative concordance rates when applied to seed sequences of 285 SMART and 2381 Pfam
domain models. High-quality E-values versus low-quality E-values plots for concordance hits from HMMER2 and HMMER3-dissected
results. Figure A and B depict the histograms of the positive concordance rates for the 285 SMART and 2381 Pfam domain models respectively.
On average, the positive concordance rates are (99.17 ± 3.46)% for SMART and (99.69 ± 2.13)% for Pfam, suggesting that almost all the seed sequences
were correctly labeled as true hits (see vertical dotted lines). 225 (out of 285) SMART and 2142 (out of 2381) Pfam domains have a 100% positive
concordance rate as depicted by the horizontal dotted lines. Likewise, Figure C and D show the histograms of the negative concordance rates for the
same sets of domains. On average, the SMART and Pfam domains have a negative concordance rate of (0.0033 ± 0.0042)% and (0.0017 ± 0.0341)%
respectively (see vertical dotted lines), implying that almost none of the seed sequences are mistaken as false hits. 283 (out of 285) SMART and 2374 (out
of 2381) Pfam domains have a zero negative concordance rate as marked by the horizontal dotted lines. Figure E and F plot the high-quality
E-values versus the low-quality E-values of the positive (in red) and negative (in blue) concordance hits of the HMMER2/SMART and HMMER2/
Pfam dissected results respectively. Similarly, Figure G and H show similar plots for HMMER3/SMART and HMMER3/Pfam dissected results respectively.
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sequences are mistaken as false hits. Taken together, the
dissection framework has asserted the validity of the
seed sequences as true hits of their respective domains.
The concordance hits were also plotted in terms of

their high-quality (fold-critical surrogate) E-values and
low-quality (remnant surrogate) E-values in Figure 9E to
H. The positive concordance hits are in red while the
negative ones are in blue. Figure 9E and F shows the
concordance hits generated by HMMER2 for SMART
and Pfam domains. From both plots, the trend where
the high-quality E-values are more dominant than the
low-quality E-values is apparent (in red). This implies that
these positive concordance seed sequences are indeed true
hits of the respective SMART and Pfam domains. Mean-
while, a small number of negative concordance hits reside
in the insignificance quadrant defined by high-quality E-
value > 0.1 and low-quality E-value > 0.1. These are the
hits that had contributed to the non-zero discordance
rates. Meanwhile, Figure 9G and H depict the SMART/
Pfam results for HMMER3. Essentially, the same conclu-
sion can be made.
Table 4 Detail breakdown of the seed sequence classification
concordance rate of < 90%

Pfam/SMART domains Domain length Positive concordance/
Total discordance

Tota

PF00433.19 Pkinase_C 159 108/89 197

PF01426.13 BAH 349 53/10 63

PF02098.11 His_binding 296 19/4 23

PF02965.12 Met_synt_B12 309 14/2 16

PF05594.9 Fil_haemagg 160 122/16 138

PF10590.4 PNPOx_C_seed 112 268/73 341

PF11736.3 DUF3299 235 79/13 92

PF13894.1 zf-C2H2_4 105 2/5 7

PF15612.1 WHIM1 66 29/4 33

SM00185 ARM 66 128/34 162

SM00304 HAMP 122 79/50 129

SM00320 WD40 119 580/137 717

SM00733 Mterf 49 115/39 155
Having established the baseline performance of the
dissection framework, we then attempt to quantify the
level of false-negative (FN) and false-positive (FP) hits
from the results of the unified SwissProt score set gener-
ated earlier (see Figure 7). To emphasize, a FN hit is a
positive hit that has been mistaken as a negative hit due
to its inability to score well against the low-quality seg-
ments while a FP hit is a negative hit that is thought to
be a true hit due to a significant score on the low-
quality segments. The low-quality segment score is espe-
cially redundant for the current domain models under
investigation since these segments harbored mostly resi-
dues which contribute lesser to the overall fold of a pro-
tein than the structural residues. As a measure of FN and
FP rates, the sum of TPFN, FNTP and FNFN hits and the
sum of FPTN, TNFP and FPFP over the total paired hits
was taken respectively (see equations (22 and 23) in
Methods and Table 3).
Figure 10A and B show the histograms of the non-

zero FN rates for 197 (out of 285) SMART and 1195
(out of 2381) Pfam domain models respectively. The
of 9 Pfam and 4 SMART domains with positive

l common hits Orphaned hits
HMMER2/3

Positive
concordance (%)

Total
discordance (%)

55/0 54.82 45.18

4/0 84.13 15.87

0/0 82.61 17.39

0/0 87.50 12.50

17/0 88.41 11.59

0/0 78.59 21.41

0/0 85.87 14.13

577/0 28.57 71.43

3/0 87.88 12.12

7/0 79.01 20.99

91/0 61.24 38.76

1055/0 80.89 19.11

90/0 74.19 25.16



Figure 10 Histograms of the false-negative and false-positive rates of 197 (out of 285) SMART and 1195 (out of 2381) Pfam domain
models when applied to SwissProt/UniProt database. Figure A and B show the histograms of 197 (out of 285) SMART and 1195 (out of 2381)
Pfam domain models with non-zero FN rates respectively. The remaining 88 SMART and 1186 Pfam domains with zero FN rate were excluded from the
plots. In particular, the non-zero FN rate domains potentially generated FN hits in the HMM searches. On average, the FN rates were (7.63 ± 14.98)% and
(4.86 ± 10.27)% for SMART and Pfam as marked by the vertical dashed lines. Similarly, Figure C and D depict the histograms of the non-zero FP rates for
42 (out of 285) SMART and 370 (out of 2381) Pfam domains. The remaining 243 SMART and 2011 Pfam domains with zero FP rates were excluded from
the plots. In contrast to the FN rates, the FP rates were relatively lower. The average FP rate for SMART is (0.377 ± 1.703)% and (0.953 ± 4.707)% for Pfam,
as depicted by the vertical dashed lines. Note that all the averages were taken over 285 SMART and 2381 Pfam domains respectively.
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remaining 88 SMART and 1186 Pfam domains with zero
FN rates were excluded from the plots. In particular, these
197 SMART and 1195 Pfam domains potentially gener-
ated FN hits in the HMM searches. In fact, some of the
FN hits from these domain models were validated as true
hits like the magnesium chelatase (CHLI_PORPU) and
the glutamyl-tRNA reductase (HEM1_METKA) from our
earlier illustration. Henceforth, it is suggestive that there
are many yet to be validated homologous relationship, al-
beit distant, between these FN hits and their associated
domain model that requires case-to-case clarification. On
average, the FN rates were (7.63 ± 14.98)% and (4.86 ±
10.27)% for SMART and Pfam respectively (see vertical
dashed lines).
Meanwhile, Figure 10C and D depict the histograms of

the non-zero FP rates for 42 (out of 285) SMART and
370 (out of 2381) Pfam domains. The remaining 243
SMART and 2011 Pfam domains with zero FP rates were
excluded from the plots. In contrast to the FN rates, the
FP rates were relatively lower where the average FP rate
for SMART is (0.377 ± 1.703)% and (0.953 ± 4.707)% for
Pfam (see vertical dashed lines). Unsurprisingly, since
most domain models were constructed from the well-
curated SwissProt sequences, this resulted in only 42
SMART and 370 Pfam domains with non-zero FP rates.
Indeed, the current domain models have generally very
low false hits inclusion as expected. Note that all the av-
erages above were taken over 285 SMART and 2381
Pfam domains respectively.
In hindsight, SMART and Pfam domain models have

never been constructed to find all true hits (to ensure
low FN rates) and this is not a matter to worry. It is
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more important in this context that the FP rate is ex-
treme low (<1%) for most domain models. The few ex-
ceptional models with high FP rates deserve re-visiting
and some modifications in their seed alignment. How-
ever, it is important to bear in mind that the error rates
estimated here are suggestive of baseline rates since the
searches have been performed over UniProt/SwissProt,
which is a relatively small database. The expected error
rates might be higher when a larger database such as
NCBI’s non-redundant protein database is considered.

Discussion
Sequence homology concept in its current
implementation and the necessity of dissecting sequence
alignments
The sequence homology concept is backed by an induct-
ive proof. It originates from the observation that hom-
ologous proteins share a high degree of sequence
similarity, protein fold and biological function. The key
to sharing a similar fold, implying a similar function, be-
tween the homologs is dependent on the similarity be-
tween the more conserved parts, most importantly the
structural elements. As such, the evidence for homology
should stem from the similarity between the aligned
structural elements and key functional motifs with less
emphasis from the other sequence segments. As we
delve deeper into the search space, higher sequence di-
vergence is to be expected and it will dilute overall se-
quence similarity and consequently, the homology signal.
Therefore, the emphasis on similarity between the struc-
tural elements in alignments is the key to finding the ho-
mologs (both the close and the distant ones) while
keeping the false ones at bay.
Despite its simplicity and elegance, the sequence hom-

ology concept is not readily computable since homology
has no direct measure. It can at best be formulated into
a hypothesis to be tested from the sequence similarity
which is a necessary but insufficient condition for con-
cluding homology. Although similarity by chance can be
removed by some statistical criterion like E-value, often,
the main issue is dealing with the statistically significant
similarities of any aligned pieces (as the program out-
puts) that are concluded as homologous instead of con-
vergence as alternative. Since current sequence search
packages can only operate strictly in similarity space, this
has a tendency to promote, to some extent, the fallacy
that ‘high sequence similarity implies homology’.
Even in current times, this fallacy is still being exten-

sively discussed by several authors, e.g. by Varshavsky
and coworkers who coined the term “sequelog” in an at-
tempt to differentiate homology from high sequence
similarity [68] and by Theobald who highlighted the sins
of sequence similarity derived p-values in concluding
common ancestry [69]. However, there was no proposed
quantitative solution on the fallacy issue. In mitigation,
certain convergence cases in the form of compositional
bias segments can be suppressed by pre-filtering with SEG
prior to BLAST searches or by turning on ‘null2’ and
‘nobias’ options in HMMER searches, but this also comes
with the price of sacrificing some sensitivity (i.e., the abil-
ity to detect true hits) [10]. On top of that, not all loop
segments are compositionally-biased per se. For example,
the extracellular loops of GPCR are important in function-
ally distinguishing the diverse GPCR families [60].
Thus, the sequence homology concept has yet to be

fully implemented in current sequence homology search
packages because mindful distinction between contribu-
tions from evolutionary important pieces versus spurious
similarity pieces was never explicitly dealt with; hence,
this necessitates for the dissection of an alignment for
explicit segments to be reevaluated. As we emphasized
in the Introduction, a (globular) domain is a special pro-
tein sequence unit with structural (autonomous hydro-
phobic core), thermodynamic (independent folding and
melting) and evolutionary (domain shuffling) implications
[30]. Protein domain libraries widely used for homology-
based annotation contain a sizeable number of entries that
do not represent domains in this sense. Thus, score dis-
section becomes an option to deal with this problem. As a
necessary condition to be considered as a true hit, the
fold-relevant segments should either be more statistically
significant than the other segments or minimally be statis-
tically significant on its own.

The dissection framework and its implications in evaluating
and detecting homology in annotation pipelines
In our proposed dissection framework, an alignment is
dissected into its high-quality segments (representing
fold-relevant residues) and low-quality segments (repre-
senting other residues) with the subsequent purpose of
statistically evaluating the two segment-based score
sums. Together with the original scores/E-values, these
segment-based sums provide a new level of granularity
to the dissection framework for determining if a hit is
true (true-positive and false-negative) or false (true-
negative and false-positive). In a nutshell, the dissection
framework has created a new paradigm in which hom-
ology can be evaluated more concisely and, at the same
time, more faithful to the sequence homology concept.
And for the purist of the homology concept, sequence
searches now have a better chance to escape the fallacy
of ‘high sequence similarity implies homology’.
For the true-positives of the domain model, the dissec-

tion framework can reassert their validity as legit hits
with respect to the domain. Indeed, when the framework
was applied to the seed sequences of 285 SMART and
2381 Pfam domain models (with PDB/DSSP informa-
tion; selected based on enriched structural residues in
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their high-quality segments), they exhibited the average
positive and negative concordance rates of 99% and al-
most 0% respectively. These results imply that the seed
sequences were recognized correctly by the framework
as true hits of the domains.
On the other hand, cases of false hits (false-positives

and true-negatives) will be occluded by the framework
due to their significant low-quality scores/E-values. This
scenario was played out by the case study of the 10 false hits
(IF2P_HUMAN, IF2P_MOUSE, IF2P_PONAB, NUCL1_
ORYSJ, MLL2_MOUSE, CORTO_DROME, DHKL_DICDI,
AMOT_MOUSE, NUCL_HUMAN, PK4_DICDI) where
their original HMMER2 E-values were insignificant yet
significant for HMMER3. Despite a contradictory con-
clusion from the HMMER variants, their remnant
segment-based E-values were indisputably significant for
both HMMER versions. Thus, HMMER3 hits were tagged
as false-positives while the same hits by HMMER2 were
labeled as true-negatives. In both cases, they were consid-
ered as false hits by the framework. Interestingly, pre-
filtering of compositionally-bias sequence segment may
become less critical under the dissection framework since
these hits will anyhow exit as false hits due to their signifi-
cant remnant segments’ E-values. This also meant that the
‘null2 model correction’ and the ‘nobias’ option in
HMMER2/3 can be turned off to maximize for search
sensitivity to allow more hits.
Given the results in this work, a quantitative criterion

for assessing segmented HMM scores in annotation pipe-
lines might include the expectation (i) for the fold-
relevant contribution resulting in a low E-value (e.g., <0.01
or <0.001) independently of the E-value for the total align-
ment and/or (ii) for the ratio between the E-value of the
fold-critical part versus that of the remnant contribution
clearly below 1.
To emphasize, score dissection with regard to fold-

critical and other segments is a generic concept that can
be applied to any sequence or multiple aligment com-
parison technique. This idea can be easily extended, for
example, to the BLAST-based approach with minor ad-
aptations: first, the extraction of the EVD parameters
from the blast statistics and second, the parameters
used for score reconstruction need to be extracted
from BLOSUM/PAM for BlastP algorithm and PSSM for
PSI-Blast algorithm.
Most importantly, the dissection itself should aim

squarely at approximating the location of globular do-
mains by applying either tertiary structure finding algo-
rithms or any tools for detecting non-globular segments.
We can only warn against applying non-physical, non-
evolutionary dissection principles such as cutting se-
quences arithmetically first in two parts, then in four
and then, maybe, in eight as many might be tempted to.
This approach is likely to distribute fold-critical residues
to many of the segments, hence diluting evolutionary in-
formation instead of enriching it in one class.

The dissection approach helps finding yet unexplored
homology relationships
Perhaps, the most interesting additional capability of the
dissection framework, aside from being able to isolate
false hits, is its proposal of unexplored homologous rela-
tionships between the hits and domain models. This
means the recovery of hits presently being falsely labeled
as negatives. When the dissection framework was ap-
plied to the search results against UniProt/SwissProt for
these 285 SMART and 2381 Pfam domains, it revealed
an overall average false-positive rate of less than 1% but
the average false-negative rates of 7.63% for SMART and
4.86% for Pfam. Although the low false-positive rate im-
plies that the current domain models have generally very
low false hits inclusion, the moderate false-negative rates
suggest that there are many potential true hits that are
obscured by bad E-values. This situation was exemplified
by our case study where the previously insignificant true
hits (CHLI_PORPU, HEM1_METKA, TIP12_MAIZE)
were obscured as a result of heavy score penalties on the
low-quality alignment segments. However, they were sub-
sequently rescued by their significant fold related seg-
ments’ E-values.
In particular, the discovery of the homologous relation-

ship between the plant aquaporin (TIP12_MAIZE) and
formate/nitrate transporter (PF01226.12), which indicates
that the latter is actually a channel, was essentially exclu-
sive to the structure-alignment based approaches. Even
though certain sequence search methods might detect
some level of sequence similarity between aquaporin and
formate transporter but their E-values remain statistically
insignificant (e.g. the HHPred server [36] returns E-value
of 20 between aquaporin and formate transporter). How-
ever, with the proposed dissection framework, this evolu-
tionary relationship can be rediscovered in sequence
similarity space through the justification of a statistically
significant fold-critical E-value. Taken together, we have
shown that it is possible to explore deeper into sequence
space to recover novel true hits without admitting the
false ones. Surprisingly, this is achievable without tweak-
ing or modifying the existing search algorithms but by
simply performing postmortem dissection of alignments
and re-evaluation of the segment-based scores.

Estimation of evolutionary segments in domain models
It is neither practical nor reasonable to create domain
models without their non-fold-related segments so iden-
tifying these pieces is a matter of necessity. A critical
component in the proposed dissection framework is the
pre-definition of the evolutionary-related pieces in the
domain models. The PDB/DSSP data gave the best
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delineation of fold-critical segments from the remaining
ones. However, it suffices only as a proof of concept for
the dissection framework and is not readily applicable to
domain models that do not have a significant PDB struc-
ture representation. Hence, a more generalized measure is
required as a reasonable surrogate for estimating struc-
tural segments of domain models. As such, the quality
score from CLUSTALX [62] as representative of similar
alignment quality scales, which measures sequence con-
servation for each alignment column, was investigated.
As it turns out, the Fishers’ exact test showed that 537

SMARTand 4771 Pfam domains were enriched with struc-
tural residues in their respective high-quality segments.
This was out of 635 SMART and 5876 Pfam domains with
a representative PDB structure. Correspondingly, the high-
quality and low-quality segments were able to reasonably
estimate the fold-critical and remaining segments respect-
ively. This was further reinforced when the examples from
the case study were reexamined by the dissection frame-
work using the quality score instead of PDB/DSSP. Overall,
the conclusions were similar with the exception of 2 hits
(TIP12_MAIZE, HEM1_METKA for HMMER2 results).
For the cases of these 2 hits, this signifies that quality score
is an overestimate of fold-critical segments and as a result,
it tends to underestimate the false-negative hits by adding
part of the negative remnant sum to the fold-critical sum.
Indeed, a scrutiny on the high-quality segments of the as-
sociated domain models for these 2 hits revealed that some
of these segments were covered by loop residues when
compared against the PDB/DSSP annotations.
In hindsight though, one should err on the side of con-

servativeness; i,e., one needs to be more stringent with
claiming a true hit. Therefore, the quality-score is still a
reasonable estimate for partitioning the fold-relevant and
remnant segments. Nevertheless, one can easily add more
estimates like low-complexity/disorder predictors (SEG
[67], IUPred [70], GlobPlot [71], tools for predicting
regions with certain posttranslational modifications and
translocation signals [72,73], etc.) on top of the existing
quality score measure so that a more comprehensive def-
inition of fold- and domain function-critical versus other
segments can be derived.
However, this task of selecting/combining predictors

to mimic the PDB/DSSP information to perform domain
segmentation is not straightforward. When compared to
the quality-score results, the application of SEG-based
dissection to the 13 case study examples worked equally
well for the HMMER2 hits but less so for many of the frag-
mented HMMER3 hits. This revealed the sub-optimality of
SEG in elucidating the fold-critical domain segments when
compared to the quality-score. Consequently, the effect is
more pronounced in the short fragmented HMMER3 hits
than the longer HMMER2 hits. Despite so, the SEG-
derived segments can still help to identify well-conserved
low-complexity segments (to be marked as remnant
segments) that will otherwise be missed by the quality-
score. Hence some combination of the two predictors
makes sense.
In any case, the creation of a catalogue of segmenta-

tions for existing protein domain libraries such as Pfam
or SMART will be necessary in the absence of complete
PDB/DSSP information for a foreseeable future and it
will be considered in our future work.

Conclusions
As sequence homology can only be concluded inductively
and overall sequence similarity is a measurable, necessary
but insufficient criterion to justify homology, additional
considerations are required to decide about homology rela-
tionships between biomolecular sequences. To distinguish
the true cases from the false background might be possible
in a manual study for individual cases; yet, a computerized
pipeline for large-scale annotation requires quantitative
conditions.
The complex hydrophobic/hydrophilic sequence pat-

tern necessary for fold formation and conserved during
evolution can be used for this purpose by dissecting the
similarity score into fold-critical contributions and other
parts originating from non-globular segments, long
loops, etc. This work serves as a proof of concept for
this idea. The dissection framework and the software
tools provided with this article are useful for systematic-
ally suppressing otherwise generated false-positive hits
in sequence similarity searches.
The dissection approach allows also extracting more

value out of existing protein domain model databases
without the need to re-edit them simply by defining seg-
mental contribution and, thus enhancing or deemphasiz-
ing certain parts of the seed alignments.
Surprisingly, this approach was also successful in re-

covering hitherto hidden homology relationships by
stripping away the noise created by score contributions
from non-fold-critical, non-globular protein regions.

Methods
Reconstruction of HMMER scores and E-values
Generally speaking, the log-odd score of an alignment v
between the HMM hidden sequence X and an observed
hit sequence Y of length L can be re-computed by sum-
ming up a set of emission, transition and a fixed score f.
The general equation for the total score of an alignment,
where eHMM, tHMM and enull, tnull are the emission and
transition parameters of the hidden and null model re-
spectively, is given as:

v ¼ log2
P Y ;X; eHMM; tHMMð Þ
P Y ;X; enull; tnullð Þ þ f



Wong et al. BMC Bioinformatics 2014, 15:166 Page 22 of 29
http://www.biomedcentral.com/1471-2105/15/166
¼ log2

YL
i¼0

P
�
Y ijXi; eHMMÞ

YL
i¼0

P
�
Y ijXi; enull

� �
P X0; tHMMð Þ

YL
i¼1

P
�
XijXi−1; tHMM

�
P
�
X0; tnull

�YL
i¼1

P
�
XijXi−1; tnullÞ

266664
377775þ f

¼
XL
i¼0

log2
P
�
Y ijXi; eHMM

�
P
�
Y ijXi; enull

� þ
XL
i¼1

log2
P
�
XijXi−1; eHMM

�
P
�
XijXi−1; enull

�
þ log2

P X0; tHMMð Þ
P X0; tnullð Þ þ f

¼
XL
i¼0

log2e
�
Y ijXi

�þXL
i¼1

log2t Xi Xi−1
�þ log2t X0ð Þ þ f

���
ð1Þ

The respective transition and emission (match or in-
sert state) score for each position can be retrieved from
the respective HMM model file (created by hmmbuild).
In the case of HMMER3 model files, we added an add-
itional step to convert them to HMMER2 format (via
hmmconvert −2) prior to the reconstruction step. Note
that the fixed score is independent of the alignment and
it is essentially constant for the same domain model.
The fixed score is made up of the additional special
transition scores (N- > B, N- > N, E- > C, E- > J, C- > T,
C- > C, J- > B, J- > J) and annotated in ‘XT’ line of the
model file.
For the computation of E-value, the maximum Gumbel

extreme value distribution is used and is given as:

E ¼ N ⋅PEVD S≥vð Þ

¼ N⋅ 1−e−e−λ v−μð Þ
� �

ð2Þ

where N is the size of the database that was searched
against, (μ, λ) are the summary statistics of the HMM
domain model file (‘EVD’ line for HMMER2, ‘STATS
LOCAL FORWARD’ line for HMMER3).
For the creation of the domain models, the following

command and options were used:

(HMMER2) hmmbuild -F –amino –fast –gapmax 1
hmmcalibrate –seed 0 –num 5000
(HMMER3) hmmbuild –amino –fast –symfrac 0.0
hmmconvert −2

For searching domain models against sequence data-
bases, the following command and options were used:

(HMMER2) hmmsearch –null2 -E 10
(HMMER3) hmmsearch –nonull2 –nobias -E 10

As an initial consideration, the ‘null2 correction model’
and the ‘nobias’ options were turned off since (i) it was un-
clear how these penalties were calculated and on which part
of the alignment, particularly for HMMER3, and (ii) it im-
proves search sensitivity according to the manuals [38,39].

Regression and fit
Here, the linear relationship W = v is tested to affirm the
reproducibility of the HMMER scores. For each domain,
a linear regression (without intercept) is performed be-
tween a set of original scores v and reconstructed scores
W for each domain (with P hits) and the associated slope

β̂ and the coefficient of determination r2 is computed.
It is important to note that the regression will be per-

formed on a set of seed sequences’ scores per domain.
Therefore, it is inevitable that these scores would cluster
closely. As such, an extra point at the origin (i.e. 0,0) is
added to each set of scores to alleviate the bias towards
the high scores. For a set of scores that is well spread,
the additional point has little impact.

The slope β̂ is given as:

β̂ ¼

XP
i¼1

wivi

XP
i¼1

v2i

ð3Þ

The coefficient of determination r2 is given as:

r2 ¼

XP
i¼1

viwi−

XP
i¼1

vi
XP
i¼1

wi

P

0BBBB@
1CCCCA

2�
XP
i¼1

v2i −

XP
i¼1

vi

 !2

P

XP
i¼1

w2
i −

XP
i¼1

wi

 !2�
P

ð4Þ

Derivation of error estimates model
With respect to a given domain model, an alignment be-
tween the HMM emitted sequence and the hit sequence
can be recomputed by summing the appropriate emission,
transition and fixed scores taken from the HMMER2/3
model parameters. This reconstructed score W can be
subjected to (i) rounding errors, (ii) parameter conversion
estimation and (iii) unavailability of local model parame-
ters ((ii) and (iii) applies to HMMER3 hmmconvert, see
also Figure 1). Here, an error model ε can be derive to
quantify the approximation error where εeN με; σ

2
ε

� �
for

each given domain model. Collectively, the reconstructed
score W is related to the original score v by:

W ¼ vþ ε ð5Þ
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It follows that the mean and variance of the component-
wise error model ε are given as:

με ¼
1
P

XP
i¼1

wi−við Þ ð6Þ

σ2ε ¼
1
P

XP
i¼1

wi−við Þ− 1
P

XP
i¼1

wi−við Þ
" #2

ð7Þ

for P pairs of original and reconstructed scores.
As a measure against the representative domain score,

the error estimate can be written as a relative measure
given as:

εr ¼ με
μv

ð8Þ

where the representative domain score is estimated by

μv ¼ 1
P
XP
i¼1

vi.

Fisher’s exact (one-tailed) test for structural/loop residues
in high-quality versus low-quality segments in domain
alignment
First consider an alignment between a HMMER sequence
and a hit sequence with its associated DSSP annotations.
Then, let the DSSP structure residue be denoted by a set
RS = {H, B, E,G, I,T, S} where H = alpha helix, B = residue
in isolated beta-bridge, E = extended strand that partici-
pates in beta ladder, G = 3-helix (3/10 helix), I = 5 helix
(pi helix), T = hydrogen bonded turn and S = bend. On
the other hand, let the unstructured set be denoted by
RU = {'',−} where ‘’ and – represent loop residue and
alignment gap respectively. Furthermore, let the total
high-quality and low-quality residue counts be R1 and
R2 respectively while the total structure and non-
structural residue counts be C1 and C2 respectively (See
Table 5). The total count of all residues is N. As such,
the null hypothesis is stated as:
H0: The proportion of high-quality residues containing

structure residues Rs is no greater than the low-quality
residues containing structure residues Rs.
Table 5 2-by-2 contingency table setup for Fishers’ exact
test

Outcome

#{H,B,E,G,I,T,S} #{",−}

High-quality residues f11 f12 R1

Low-quality residues f21 f22 R2

C1 C2 N
Consequently, the p-value to be tested at a significance
level of α = 0.05 is evaluated via the hypergeometric
cumulative density function in the following form:

P X > f 11ð Þ ¼ 1−P X ≤ f 11ð Þ ð9Þ
where P X ¼ f 11ð Þ ¼ R1

f 11

� 	
N−R1

C1−f 11

� 	�
N
C1

� 	
Domain quality score
We use the alignment quality measure as adapted from
CLUSTALX [62]. The domain quality score can be cal-
culated for each column in the sequence alignment to
measure the consensus level of amino acid per align-
ment position. Suppose we have an alignment of amino
acid residues a of M sequences with N positions. This
can be expressed as:

a11 a12 a13 :::::::::: a1N
a21 a22 a23 :::::::::: a2N
:
:

aM1 aM2 aM3 :::::::::: aMN

The consensus vector for column j over R amino acid
residues a = {1, 2, 3,…, R} is written as:

Xj ¼ 1
M

F1j

F2j

⋮
FRj

2664
3775
T c11 c12 ⋯ c1R

c21 c22 c2R
⋮ ⋮ ⋱ ⋮
cR1 cR2 ⋯ cRR

2664
3775

¼ X1j X2j ⋯ XRj

 �

ð10Þ
where Frj is the count of residue r in column j, crt is the
score (taken from BLOSUM62 matrices) of between residue
r and residue t. At the same time, the score vector of residue
aij for sequence i at position j over R residues is given as:

Sij ¼ c1aij c2aij ⋯ cRaij

 �

For each sequence i and position j, the distance meas-
ure between the consensus column j and the residue aij
over R residues is then given as:

Dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXR
r¼1

Xrj−craij
� �vuut ð11Þ

Finally, the quality score, Q for column j overM sequences
is given as:

Qj ¼

XM
i¼1

Dij

M
ð12Þ

Since quality score Q as a distance measure is ex-
pected to be near zero for high consensus while large for
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low consensus, it would be more intuitive to invert and
limit the range of Q as follows:

Q̂j ¼ 1−
Qj−min Q1;Q2;⋯;QNf g

max Q1;Q2;⋯;QNf g−min Q1;Q2;⋯;QNf g ; 0≤Q̂≤1

ð13Þ

Finally, inverted quality score Q̂j for column j is normal-
ized by multiplying the ratio of amino acids (less gaps)
over the total sequences given as:

~Qj ¼
k
M

� Q̂j ð14Þ

where k is the count of valid amino acid residues.

Minimum number of sequences in an alignment
Given an alignment, for each position, let M be number
of sequences (excluding gaps in the particular column)
and let k be the sum of Bernoulli random variable I (an
Figure 11 The distributions of the two classes of quality score for SM
positions of 5 or more amino acids. It is a trimodal distribution, most likely,
average-quality scores from the typical alignments (center peak) and high-
Figure B shows mostly the low quality scores from weaker alignment posit
indicator variable). The indicator variable emits either a
value of one for a positive prediction or zero for a nega-
tive prediction. Collectively, this can be written as the
Binomial random variable.

P X ≥ kð Þ ¼
XM
x≥k

M
x

� 	
px 1−pð ÞM−x ð15Þ

Under equal chance condition, the null and alternate
hypotheses are stated as Ho : p ≤ 0.5,HA : p > 0.5 to be
tested at a significance level of α = 0.05. Under this
setup, the minimum number of sequences per align-
ment position is determined to be at least 5 since there
is insufficient power to reject the null hypothesis for se-
quences below 4. This is because the smallest p-values
for M = 4 is P(X ≥ 4) = 0.0625, M = 3 is P(X ≥ 3) = 0.125,
M = 2 is P(X ≥ 2) = 0.25 and M = 1 is P(X ≥ 1) = 0.5. All
these p-values are larger than the significance level of
α = 0.05.
ART version 6. Figure A depicts the quality scores alignment
arising from low-quality scores from weak alignments (left peak),
quality scores from homogenous alignments (right peak). In contrast,
ions of less than 5 valid amino acids.
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Determination of domain-wise quality score cutoff for low
and high-quality segment
Here, the appropriate cutoff to declare if a quality score
is high or low is determined. With respect to a domain
alignment, (i) the quality score per position and (ii) the
number of valid amino acids per position ignoring gaps
are first determined. Then, each quality score per pos-
ition is classified into the following two classes: (i) if the
alignment column has less than 5 valid amino acids and
(ii) if alignment column has at least 5 or more amino
acids.
The distributions of the two classes of quality score

for SMART (version 6) is shown in Figure 11. Figure 11A
(quality scores for 5 or more amino acids) depicts an
interesting trimodal distribution, most likely, arising
from 3 unique distributions of low-quality scores from
weak alignments (left peak), average-quality scores from
the typical alignments (center peak) and high-quality
scores from homogenous alignments (right peak). In
contrast to Figure 11B, it is apparent that the lower
quality scores mainly originate from alignment posi-
tions with less than 5 valid amino acids which are indi-
cative of weak alignment segments. Conservatively
speaking, the latter distribution forms the minimal
negative set or the null hypothesis. To select the de-
sired false-positive rate (FPR) and true-positive rates
(TPR) for subsequent application, the quality score cut-
off is permuted from 0 to 1 and tabulated in Table 6.
Based on the table, the FPR of 5% corresponds to a
quality score of at least 0.06 and renders a TPR of 90%.
Note that FPR and TPR are given as:
Table 6 Error rates (false-positive and true-positive rates)
of quality scores at various quality score cutoffs for
SMART (version 6)

Cutoff TP FN FP TN FPR TPR

0.01 113960 3217 12650 19966 0.38785 0.973

0.02 111450 5727 6610 26006 0.20266 0.951

0.03 109530 7653 4157 28459 0.12745 0.935

0.04 107900 9277 2813 29803 0.08625 0.921

0.05 106480 10702 2070 30546 0.06347 0.909

0.06 105260 11919 1608 31008 0.04930 0.898

0.10 101690 15491 789 31827 0.02419 0.868

0.20 95355 21823 294 32322 0.00901 0.814

0.30 86126 31052 169 32447 0.00518 0.735

0.40 69734 47444 72 32544 0.00221 0.595

0.50 48713 68465 47 32569 0.00144 0.416

0.60 31278 85900 15 32601 0.00046 0.267

0.70 20413 96765 1 32615 0.00003 0.174

0.80 12727 104450 0 32616 0.00000 0.109

0.90 7473 109710 0 32616 0.00000 0.064
TPR ¼ TP
TP þ FN= ð16Þ

FPR ¼ FP
FP þ TN= ð17Þ

Similarly, the same procedure was performed on Pfam
(release 27). In a similar fashion, Figure 12A exhibits the
same trimodal distribution while Figure 12B once again
depicts that the low-quality scores originates from align-
ment positions with less than 5 amino acids or sparsely
aligned segments. Table 7 gives the respective error rates
(FPR, TPR) for various quality score cutoff. Based on the
table, the FPR of 5% corresponds to a quality score of at
least 0.14 and renders a TPR of 91%.
Consequently, we are interested to find segments in a

domain alignment of length N. Hence each segment can
be written in set notation such that:

A ¼ ak ; akþ1; akþ2;…; aNf g; ak∈A; akþ1−ak ¼ 1

ð18Þ
where ~Qak < cutoff (for low-quality segment) or ~Qak≥
cutoff (high-quality segment)

Classification of hits in the comparative HMMER2 and
HMMER3 analysis
In the proposed comparative analysis, the hits are first
generated from both HMMER2 and HMMER3 using the
same domain alignment and searched against a common
database (e.g. UniProt). In addition, only hits with E-
value of 0.1 and below (as suggested by Sean Eddy in his
original HMMER2 manual) are considered.
Using this E-value criterion, one can then define each

hit (whether HMMER2 or 3) as true positive (TP), false
negative (FN), true negative (TN) and false positive (FP)
based on the E-values of its total score, high-quality seg-
ment score and low-quality segment score. Essentially,
the TP and FN hits belong to a positive set while the FP
and TN hits belongs to a negative set.
The type of hits and associated conditions are listed in

Table 2. For completeness sake, undefined type (?) has
been included. The latter can occur when the fixed score
causes the total score to become insignificant (despite
significant high and low-quality score) or vice versa. In
practice, these cases are almost non-existing.
Consequently, the intersection of HMMER2 and

HMMER3 hits will result in mainly two large groups: a
paired group and an orphaned group. To elaborate, a
paired hit is a hit covering the same sequence segment
by both HMMER2 and HMMER3. An orphaned hit is (i)
a hit scored on the same sequence but non-overlapping
segments by HMMER2 and HMMER3; or (ii) a hit cov-
ered by either HMMER2 or HMMER3 only.
In the paired group, one can further sub-divide the

HMMER2/3 hits into four classes of (i) positive concord-
ance hits where both HMMER2/3 mark the hits as



Figure 12 The distributions of the two classes of quality score for Pfam release 27. Compared to the distributions from SMART (version 6),
Figure A exhibits the same trimodal distribution while Figure B also depicts mainly the lower quality scores from weaker alignment positions
with less than 5 amino acids.
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positive, (ii) negative concordance hits where both
HMMEr2/3 mark the hits as negative (iii) discordance
type 1 where HMMER2 marks the hits as positive but
HMMER3 marks them as negative and (iv) discordance
type 2 hits where HMMER2 marks the hits as negative
but HMMER3 marks them as positive. The orphaned
groups contain mutually exclusive hits that are found by
either HMMER2 or HMMER3. See Table 3 for details. As
such, the positive and negative concordance rates are
given as:

PositiveConcordance ¼ TPTP þ TPFN þ FNTP þ FNFN
countPairedhits

ð19Þ

NegativeConcordance ¼ TNTN þ FPTN þ TNFP þ FPFP
countPairedhits

ð20Þ
TotalDiscordance ¼ discordanceType1þ discordanceType2
countPairedhits

ð21Þ
Meanwhile, classes that contain the FN and FP hits

are of high interest in this work. A FN hit is a positive
hit that has been obscured due to a need to score an
alignment for the low-quality segment while a FP hit is a
negative hit that has been carried over to significance
due to the high-scoring low-quality segments. To quan-
tify the false-negative and false-positive rates in a given
domain model, the formulas are given as:

FNrate ¼ ≥1FN
countPairedhits

¼ TPFN þ FNTP þ FNFN
countPairedhits

ð22Þ

FPrate ¼ ≥1FP
countPairedhits

¼ TPFN þ FNTP þ FNFNF ¼
countPairedhits

ð23Þ



Table 7 Error rates (false-positive and true-positive rates)
of quality scores at various quality score cutoffs for Pfam
(release 27)

Cutoff TP FN FP TN FPR TPR

0.01 2479900 21831 265240 267000 0.49835 0.991

0.05 2384300 117450 79402 452830 0.14919 0.953

0.10 2314800 186960 38684 493550 0.07268 0.925

0.12 2292300 209440 31629 500610 0.05943 0.916

0.13 2281400 220350 28938 503300 0.05437 0.912

0.14 2270400 231360 26412 505820 0.04963 0.908

0.15 2259500 242240 24371 507860 0.04579 0.903

0.20 2201800 299960 16844 515390 0.03165 0.880

0.30 2027300 474450 8670 523570 0.01629 0.810

0.40 1718400 783320 4060 528180 0.00763 0.687

0.50 1277700 1224000 1990 530250 0.00374 0.511

0.60 857990 1643800 978 531260 0.00184 0.343

0.70 571700 1930100 21 532210 0.00004 0.229

0.80 361280 2140500 0 532240 0.00000 0.144

0.90 217480 2284300 0 532240 0.00000 0.087
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SEG-derived domain model probabilities and high/low-
complexity segments
For each seed sequence in a domain alignment, the gaps
were first removed and then predicted using the SEG
low-complexity sequence predictor [67] with the follow-
ing parameters: windows size = 25, lower cutoff = 2.9 and
upper cutoff = 3.2.
If a residue is flagged as low-complexity by SEG, then

its corresponding position in the domain alignment is
marked as 0 to indicate a negative prediction, otherwise,
it takes a value of 1 to indicate a positive prediction. Es-
sentially, each column in the alignment will be marked
by 1’s or 0’s and can be viewed as a sum of Bernoulli
random variables. Then to test for the significance of
positive predictions in each alignment column, a p-value
(see equation (15)) is calculated and tested at a signifi-
cance level of 0.05. If the null hypothesis is rejected, the
expected positive prediction count kexp is calculated as:

kexp ¼ P X≥kð Þ � k ð24Þ
Otherwise, kexp is set to zero. Finally, the per-column

probability indicating that the consensus column (with
M sequences) is representative of a high-complexity resi-
due (or fold-critical surrogate) is given as:

pexp ¼
0:01 if kexp ¼ 0

kexp


M if otherwise

8<: ð25Þ

Consequently, the SEG-derived segments of the do-
main alignment can be obtained via equation (18) at a
cutoff of 0.8 (i.e. pexp ≥ cutoff implies high-complexity
while pexp < cutoff implies low-complexity).

Additional files

Additional file 1: Zip-archive of the software DissectHMMER. This
archive contains all files to create a program executable for dissecting the
score for a given HMMER2/3 protein domain model – query sequence
alignment.

Additional file 2: Table S1. This table contains the examples of validated
false hits from 5 Pfam domains (PF01298.13 Lipoprotein5, PF04814.8 HNF-1 N,
PF05134.8 T2SL, PF09110.6 HAND, PF10390.4 ELL) and validated true hits from
3 Pfam domains (PF00004.24 AAA, PF00106.20 adh_short, PF01226.12
Form_Nir_trans). The segmentation of domain models is based on the
alignment quality score. The data presented is complementary to Table 1
in the main text.
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