Maiji et al. BMC Bioinformatics 2014, 15:167
http://www.biomedcentral.com/1471-2105/15/167

BMC
Bioinformatics

METHODOLOGY ARTICLE Open Access

PVT: An Efficient Computational Procedure to
Speed up Next-generation Sequence Analysis

Ranjan Kumar Maji'", Arijita Sarkar'", Sunirmal Khatua?, Subhasis Dasgupta® and Zhumur Ghosh'”

Abstract

Background: High-throughput Next-Generation Sequencing (NGS) techniques are advancing genomics and

molecular biology research. This technology generates substantially large data which puts up a major challenge to
the scientists for an efficient, cost and time effective solution to analyse such data. Further, for the different types of
NGS data, there are certain common challenging steps involved in analysing those data. Spliced alignment is one
such fundamental step in NGS data analysis which is extremely computational intensive as well as time consuming.
There exists serious problem even with the most widely used spliced alignment tools. TopHat is one such widely
used spliced alignment tools which although supports multithreading, does not efficiently utilize computational
resources in terms of CPU utilization and memory. Here we have introduced PVT (Pipelined Version of TopHat) where
we take up a modular approach by breaking TopHat's serial execution into a pipeline of multiple stages, thereby
increasing the degree of parallelization and computational resource utilization. Thus we address the discrepancies in
TopHat so as to analyze large NGS data efficiently.

Results: We analysed the SRA dataset (SRX026839 and SRX026838) consisting of single end reads and SRA data
SRR1027730 consisting of paired-end reads. We used TopHat v2.0.8 to analyse these datasets and noted the CPU usage,
memory footprint and execution time during spliced alignment. With this basic information, we designed PVT, a pipelined
version of TopHat that removes the redundant computational steps during ‘spliced alignment” and breaks the job into
a pipeline of multiple stages (each comprising of different step(s)) to improve its resource utilization, thus reducing the
execution time.

Conclusions: PVT provides an improvement over TopHat for spliced alignment of NGS data analysis. PVT thus resulted
in the reduction of the execution time to ~23% for the single end read dataset. Further, PVT designed for paired end
reads showed an improved performance of ~41% over TopHat (for the chosen data) with respect to execution time.
Moreover we propose PVT-Cloud which implements PVT pipeline in cloud computing system.

Keywords: NGS-data analysis, RNA-Seq, Cloud computing, Big data, Parallel computing, Paired end read analysis, Single

end read analysis, Pipeline architecture

Background

Biological systems are extremely complex and as such
the information content within them is huge. Thus bio-
logical research is facing ‘big data’ problem [1]. Next-
Generation Sequencing (NGS) has made this problem
vastly more challenging. Today’s sequencing-based ex-
periments provides a better understanding of complex
biological systems allowing for various novel functional
assays, including quantification of protein—-DNA binding

* Correspondence: zhumur@jcbose.ac.in

"Equal contributors

'Bioinformatics Centre, Bose Institute, Kolkata 700054, India

Full list of author information is available at the end of the article

() BiolVled Central

or histone modifications (ChIP-seq) [2], transcript levels
(RNA-seq) [3], spatial interactions (using Hi-C) [4],
DNA methylation modifications (MethylC-Seq) [5] and
others [6]. Hence, proper interpretation of sequencing
data has become particularly important. Yet such inter-
pretation relies heavily on complex computational ana-
lysis — a new and unfamiliar domain to many of the
biologists — which, unlike data generation, is not uni-
versally accessible to everyone.

NGS data analysis comprises of several steps [7]. Of
these, ‘spliced alignment’ which involves alignment of the
fragment (read) sequences to the reference genome, is one
of the most crucial steps. During this step, the unknown

© 2014 Maji et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.

mailto:zhumur@jcbose.ac.in
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Maiji et al. BMC Bioinformatics 2014, 15:167
http://www.biomedcentral.com/1471-2105/15/167

reads as obtained from the sequencer are aligned with
the reference genome, extended across the neighbouring
aligned reads and annotated as genes, transcripts, or
transcript isoform variants. This step thus reveals the
identity and significance of the reads with respect to the
reference genome. Moreover this is the most time-
consuming and computationally resource intensive step
for such analysis [8]. In this work, we have tried to put
forward a solution so as to overcome the problem of
longer execution time and computational resource in-
tensiveness involved in ‘spliced alignment’ step of NGS
data analysis.

Spliced alignment can be achieved using various soft-
ware packages [9]. These packages can be broadly classi-
fied into two classes: Unspliced aligners like BWA
[10,11], SOAP [12], Bowtie [13] and spliced aligners like
GSNAP [14], QPALMA [15], AbySS [16], Trans-ABySS
[17], TopHat [18]. The spliced aligners are capable of
aligning reads to the reference genome as well as allows
for the identification of novel splice junctions. Among
the several available spliced aligners, TopHat is the most
widely used alignment tool. TopHat is built on an ultrafast
short read mapping program Bowtie. At first it maps the
reads to the genome to obtain the potential exons. This
initial mapping information provides TopHat with all the
plausible splice junctions. The unmapped reads are then
mapped against these plausible junctions to obtain the
transcripts with annotated and novel splice junctions.

Though TopHat is one of the extensively used spliced
aligners and its execution supports multithreading, it does
not utilize CPU efficiently, leaves a large memory footprint
during its execution and hence increases the time of exe-
cution. Moreover the alignment protocol executes certain
steps repeatedly while running on individual data sets
belonging to the same experiment. Such execution of
redundant steps increases the execution overhead. Thus
there is a scope for considerable improvement of TopHat,
with regard to execution time, CPU and memory utilization
without affecting the output. This can be achieved by modi-
fying the execution workflow of TopHat. Thereby, the
execution of the steps that underutilizes CPU can be run
in parallel, the garbage memory can be cleared after com-
pletion of each execution step and the repetitive execution
of the redundant steps can be skipped.

In this work, we have developed Pipelined Version of
TopHat (PVT), wherein we take up a modular approach
by breaking TopHat’s serial execution into a pipeline of
multiple stages. We have implemented this modified
spliced alignment execution pipeline for single end reads
in a standalone system. The execution workflow for
PVT utilizes CPU and memory comparatively more effi-
ciently and reduces execution time without sacrificing
the transcript annotation output of a typical TopHat
run. Moreover we have customized PVT pipeline for

Page 2 of 13

paired end reads that ensures better performance over
TopHat.

The volume of NGS dataset has reached an order of
terabase and can reach upto zetabase in the near fu-
ture. These massive sequencing datasets demand high-
performance computational resources, rapid data transfer,
large-scale data storage, and competent data analysts. This
increasing volume appears to impede data mining and
analysis by researchers. Hence standalone workstations
will not be sufficient to handle such huge dataset. This ne-
cessitates the use of scalable, fast and computation inten-
sive resources. A computational system known as ‘cloud’
[19], consisting of computation and data service provided
via the Internet, has recently been developed. Cloud
computing allows users to avail services provided by
data centres without building their own infrastructure.
The infrastructure of the data centre is shared by a large
number of users, reducing the cost to each user. To
manage the flood of NGS data, several large-scale com-
puting framework have been implemented in cloud by
Crossbow [20], Galaxy [21] and STORMSeq [22]. Im-
plementation of TopHat in cloud cannot utilize the
cloud resources efficiently due to lack of pipelined exe-
cution workflow.

Here we propose an efficient execution workflow termed
as PVT-Cloud to facilitate execution of spliced alignment
step in NGS analysis (both for single end and paired end
reads) in a cloud computing system. This will allow low
maintenance, cost effective, scalable and dynamic control of
the extensive computational resource.

Results and discussion

We designed a new execution workflow termed as PVT
to expedite the ‘spliced alignment’ step in NGS data ana-
lysis. We ran PVT on the dataset containing single end
reads (as given in Additional file 1: Table S1) and paired
end reads (as given in Additional file 2: Table S2). We
compared its performance (with respect to CPU
utilization, memory utilization and execution time) with
that of TopHat. Results show that PVT outperforms
TopHat.

Single end reads

TopHat and its pitfalls

The different steps along with their corresponding func-
tions involved in the ‘spliced alignment’ is discussed in de-
tails in Methods section (summarised in Additional file 3:
Table S3). The order of execution of these steps during
‘spliced alignment’ using TopHat is shown in Additional
file 4: Figure S1. The execution time for the single end
read input dataset using TopHat is shown in Additional
file 5: Figure S2. Computational resource (ie. CPU and
memory) utilization at different steps of ‘spliced align-
ment’ was noted for the entire single end read dataset. We

Maiji et al. BMC Bioinformatics 2014, 15:167
http://www.biomedcentral.com/1471-2105/15/167

have shown the result for SRR094775 data only in Figure 1,
since this data consists of maximum number of filtered
reads.

For the find_juncs step, we found that the CPU remains
significantly underutilized (~12% utilization) for a consid-
erable span of time as compared to other steps. Moreover,
the average CPU utilization throughout the entire execu-
tion period for a single dataset is ~39%. Further cache
memory utilized by TopHat during find_juncs step is also
more compared to other steps These observations from
the utilization graphs (Figure 1) gave us the clue that
find_juncs is that step which can be modified to bring sig-
nificant improvement in the efficiency of TopHat. Hence,
parallelizing find_juncs would lead to an increase in CPU
and memory utilization and decrease execution time.
However, care should be taken towards the extent of
parallelization so as to ensure no buffer overflow or
CPU overutilization.

While analyzing the steps and workflow of ‘spliced
alignment, in details we found a redundant step in
TopHat where the alignment tool builds the bowtie indi-
ces for aligning the reads with the genome repeatedly for
processing each data file of the same experiment. This
adds on to the resource consumption. These indices can

Page 3 of 13

be built once and used for different data files unless the
reference genome is updated or a new reference organ-
ism is being worked upon. We could increase the effi-
ciency of TopHat and reduce its execution time by
building the bowtie reference indices only once for the
analysis of the entire data set of an experiment.

PVT

The performance analysis reports obtained on executing
TopHat for single end read dataset (as shown in Figure 1)
motivated us to develop PVT (Pipelined Version of
TopHat) wherein we modified the execution workflow
of TopHat for efficient utilization of CPU, memory and
time. In PVT, the steps filter_reads, gene_align and geno-
me_align are executed serially but we parallelized the
find_juncs step so as to ensure proper utilization of
computational resources, thereby reducing the execution
time. Figure 2 shows the PVT alignment pipeline and its
order of execution for single end reads. Rather than
searching for the plausible junctions in the whole reference
genome at a go, we looked for the junctions simultan-
eously across all reference chromosomes of the genome.
Thus we were able to parallelize find_juncs by first split-
ting the reads that mapped to the genome (i.e. the output

-

100 gy
Wl AW
-
80 fresesertn giom P A vl
| | 11t
60 ! | 1
w \
20 ‘ UWAH
prery f ‘ - TR oo I o O | AR
ol Y Ul
ST S T = G R o = e e = s I o e e T g I o e ¥ 8 % 2 g
4 = I‘: N & & & o ; ~ & 5 8 8 8 4 s =& = ;; s ‘JGIS 2 & & g
e 3 a e R T—
last min ag max
M CPU usertime (avgl) (avg) 1119 031 389 9874
792G8
FAS GB |orererrivnrrnmminammsmnsisassansstarssrssssssssnssnsinmssnrabersssnnsissanssrrinssrsns s s —
698 G8B
652G8
605 G8
559G8
512G8
-~ 66 ca ~ - “w w - w o “ o w w “w b “w “ - w “w b3 “w “w b4
4—>|ﬂ 23 > >< > | > 4
) 3) 4 5 g 7 3
last min avg max
B Cached memory [avg] 66GB 90.11MB 6.49GB 876G
Figure 1 Time (x-axis) vs performance parameters (y-axis) (CPU utilized in the top panel and cache memory in the bottom panel)
during TopHat run for single end reads (SRR094775). The standalone system has 16 GB of onboard RAM and 8 cores (3.3 GHz) CPU. Black
box indicates the region where CPU is underutilized. Numbers in bold below the arrows indicate the time span of execution of different steps of
TopHat: 1: filter_reads. 2: gene_align. 3: genome_align. 4: find_juncs. 5: junc_align. 6: span_reads. 7: report.

Maji et al. BMC Bioinformatics 2014, 15:167 Page 4 of 13
http://www.biomedcentral.com/1471-2105/15/167

I splitBy_chromReference J

[concatenate_segments

span_reads
D Foreground_process
D Background_process m

Figure 2 PVT pipeline and its order of execution for single end reads based on maximum CPU usage and memory utilization.

of genome_align), based on chromosomal reference and are concatenated (using concatenate_segments). This
then concatenating the split files into comparable chromo- is followed by serial execution of the steps- junc_align,
somal reference (using splitBy_chromReference). The span_reads and report. Parallel execution was achieved
find_juncs is then run on separate chromosomal file ref- by executing the steps in both foreground and back-
erences in parallel and the output of possible junctions ground. The blue and green bordered boxes in Figure 2

11868
93168 F/\m
74568 | oo [{
559 GB et ey / /
37368 i / X

I.BGGBf /

oB

I
A\
1
\
\
—

oa1s
a0 |

]

03:50 |~
04:45 |—>—
\u

19.05 01:39
01:45
0150
0155
0200
02:05
02:10
0215
02:20
02:25
02:30
02:35

2

2
02:5%
03:00
03:05
03:10
03:15
03:20

32
5338
0335
03:40
93.45
0355
04:00
04:05
0410
0425 ||
04:30 ||
oass ||
0440
0450
04ss
05:00
05:05
05:10
[
05:20
05:25
05:30
05:35
05:40

eak
05:50
1511
06:00
06:05
06:10
06:15

3
06:25
06:30

19.05 06:35

13
x

last min avg m)|
B Cached memory avg) 29 GB 59.71 MB 393 GB 10.4) GB
100

80 R
e

60

E
z

o e wme] we we gugvdreesvsunldvnsydarvnevevesnuesnsyancseesltengsegdahegsnsns
aY2Nge2nunseinsganaLgnsgansgea2nznansyansezpmagsnsyapse=aznan
m m] MM A NN MM NN RN Mmoo m g mm mmmy o o 44 d o4 A% A AR NN A RN Ay e e e B,
Zess]eseessees 5888285835858 g1e5ccccccoecn83888888% ancoooocS
% > >
s 1 z 3 -~ S
a 5 7 >

4 b 6 =

o

last min avg max
B CPU user time (avgl) [ava) 23.39 017 50.64 99

Figure 3 Time(x-axis) vs performance parameters (y-axis) (cache memory in the top panel and CPU utilized in the bottom panel)
during PVT run for single end read (SRR094775). This is the result using PVT in a standalone system with 16 GB onboard RAM and 8 cores
(3.3 GHz) CPU. Numbers in bold below the arrows indicate the time span of execution of different steps of PVT: 1: filter_reads. 2: gene_align.

3: genome_align a: splitBy_chromReference. 4: find_juncs. b: concatenate_segments. 5: junc_align. 6: span_reads. 7: report.

Maiji et al. BMC Bioinformatics 2014, 15:167
http://www.biomedcentral.com/1471-2105/15/167

represent the processes run in the foreground and back-
ground respectively. The parallelization of this step and
the execution of the subsequent steps is scheduled in
such a way that no dependent step begins its execution
before the completion of the previous step.

Prior to executing an independent step of the pipeline,
clearing cache facilitates further parallelization. In PVT,
the cache memory is cleared at every step to save the
memory and meet the demand of other steps with high
memory requirement. This helps avoid thrashing due to
memory shortage and hence brings down the memory
requirement for find_juncs (as shown in Figure 3).

In PVT, we have also addressed the problem of add-
itional resource consumption for building bowtie indices.
Here, the bowtie indices were built just once for analyzing
the entire dataset, thereby removing the redundancy in-
volved in the process followed by TopHat. This indexing
took ~10 minutes in our standalone configuration for the
single end read analysis, which reduces 6.25% of the total
execution time taken by TopHat.

Improvement in find_juncs: The CPU utilization during
the execution of PVT pipeline for the entire single end
read dataset (SRX026839 and SRX026838) was monitored.
Results for SRR094775 are given in Figure 3 since this data
consists of highest number of filtered reads. Results for
other datasets have been provided in Additional file 6:
Figure S3. The CPU utilization in the find_juncs increases
from a meagre ~12% to approximately 50% with our
modified pipeline i.e. by parallelizing the find_juncs (com-
paring Figure 1 and Figure 3). We also observed that
parallelization of find_juncs is limited to a CPU utilization
of ~50% in an 8 core CPU standalone system. Increasing
the extent of parallelization to more than 4 processes with
such dataset in an 8 core machine, increases the time of
execution thereby putting the other processes in back-
ground to halt. However, the degree of parallelization can

Page 5 of 13

be extended provided find_juncs is executed in a standa-
lone system having greater number of cores. Overall, the
performance gain using PVT will vary depending on the
volume of the input data, availability of number of CPU
cores and memory of the standalone system.

PVT outperforms TopHat
(a) Execution time:

The execution time for each step involved in TopHat
and PVT pipelines, run on the entire dataset was noted.
As SRR094770 and SRR094775 (each chosen from the
test and control data set) has larger number of filtered
reads, the results for this data has been shown only
(Additional file 7: Figure S4). Overall there was a signifi-
cant reduction of ~23% in execution time using PVT,
when compared to TopHat execution. The improvement
of PVT over TopHat in find_juncs step for the entire
single end read dataset is shown in Additional file 6:
Figure S3.

We compared the performance (with respect to total
execution time) of PVT with that of TopHat throughout
the entire ‘spliced alignment’ step (shown in Additional
file 8: Figure S5) for the 16 input single end read data-
sets (as given in Additional file 1: Table S1). Figure 4
shows that there is a strong correlation between the
number of filtered reads and the total execution time in
case of both TopHat and PVT. Thus we were able to
predict the execution time based on the volume of the
input data (maximum prediction error was within 30%
of deviation). We also assessed the prediction accuracy
(prediction of execution time based on the volume of
the input data) of the two pipelines by fitting a linear
regression model to the curve, plotting time vs. number
of filtered reads as shown in Figure 4. We obtained an

09:36.00

08:24:00

07:12:00

06:00:00

04:48:00

03:36:00 1

02:24:00 -

Time (Hrs: min: sec)

01:12:00

00:00:00 T T
0 20 40

is fitted with a linear regression line.

Number of Filtered Reads (Millions)

Figure 4 Comparison of the trend of PVT execution time with that of TopHat for all the 16 lanes of single end reads. Each of the curves

R? = 0.8753
TR = 09231

—— TopHat
PVT

80 100 120 140
Millions

Maiji et al. BMC Bioinformatics 2014, 15:167
http://www.biomedcentral.com/1471-2105/15/167

R-squared value of 0.87 for TopHat whereas for PVT
pipeline, R-squared value improved to 0.92. In case of
TopHat there is a steep increase in the execution time
when the input data size exceeds the available RAM size.
This may be due to the fact that TopHat does not clear
garbage memory after every step of execution thereby
increasing memory thrashing. However, the steepness of
the slope decreases for PVT (observed with increase in
R-squared value) when we modified the execution by
clearing the garbage memory at every step of the pipeline.
We also observed that for smaller datasets (i.e. datasets
with input size less than the available RAM size) the per-
formance gain of PVT over TopHat was low but as the
number of filtered reads increases, the performance gain
increases.

(b) CPU utilization:

Using PVT for ‘spliced alignment, the average CPU
utilization increased from ~39% (as obtained from TopHat)
to as high as ~66% for the entire single end read dataset
(the average cache memory and CPU utilization for all the
datasets used is given in Additional file 9: Figure S6 (A)
and Additional file 9: Figure S6 (B) respectively).

Paired end reads

TopHat and its pitfalls

Paired end reads (or mate pair) consist of sequence
reads that occur in pairs (a constant distance of a few kb
is maintained between the reads) and are obtained on
sequencing both ends of the RNA simultaneously. This
technique is used mainly to resolve large structural ar-
rangements like insertions, deletions and inversions or
repetitive regions of the transcriptome and is also useful

Page 6 of 13

for de novo transcriptome assembly. Here we modified
PVT for efficient ‘spliced alignment’ of paired end reads.
The dataset SRR1027730 (obtained from NCBI) for
paired end reads (Additional file 2: Table S2) comprises
of 45 M reads (9.5 Gbases).

The workflow of TopHat for paired end read analysis
is given in Additional file 4: Figure S1. Additional file 10:
Figure S7 gives the utilization graphs (CPU utilization
(%) and cache memory usage) during TopHat execution
of the paired end read dataset, where the steps denoted
by ‘L’ are the ones for the left kept reads and ones denoted
by ‘R’ are the right kept reads. The execution time for the
different steps is shown in Figure 5 for SRR1027730. The
total execution time for ‘spliced alignment’ of paired end
reads using TopHat takes 4 hrs 44 mins for this dataset in
the specified system configurations (as mentioned in
Methods Section).

On analysing the execution log file for TopHat, we ob-
served that during the execution of the steps gene_align,
genome_align , junc_align and span_reads, the left kept
reads and right kept reads are processed independently
of each other. These independent steps can be executed
simultaneously which can reduce the entire job execution
time. But TopHat performs sequential execution of the in-
dependent steps along with the dependent steps, thereby
increasing the waiting time for the dependent step to
begin execution. This increases the overall execution time
for analysing paired end read data set using TopHat.

Moreover, TopHat breaks the read into segments. Since
these segments are mapped against the reference genome
(during genome_align execution) and against the spliced
junctions (during junc_align execution) independently,
these steps can be parallelized for both the left and right
kept reads. Execution time of TopHat can be further

300

250

I

Time (mins)
= M
& 8
3 8

=
=]
=]

50

Gain of ~41%

uPVT
® TopHat

5 &
¥ L) & R a8
2\ g

0 -
o & & R &
& 5 Y &
& A @7 & A 57
& & <

Steps during spliced alignment execution
Figure 5 Bar chart representing the effective time comparison between PVT and TopHat in paired end reads (SRR1027730) for

different stages. T, _, indicates transferring of files from host machine to remote machine while T _, 1y indicates the transferring of files from
remote machine to host machine to be accounted for PVT execution only.

> & ,bb%
&

oF
F o

Maiji et al. BMC Bioinformatics 2014, 15:167
http://www.biomedcentral.com/1471-2105/15/167

reduced by building the bowtie reference indices only
once for the analysis of the entire data set of an experi-
ment. These motivated us to design PVT for paired-end
reads where we have addressed these disadvantages.

PVT

In PVT for paired end reads, we scheduled the pipeline
so as to run the independent jobs simultaneously on the
‘host machine’ as well as on the ‘remote machine’ so as
to reduce the entire job execution time. The workflow is
shown in Additional file 11: Figure S8.

The execution of the filter_reads step generates two out-
put files corresponding to the left and right kept reads re-
spectively. While running TopHat, we observed that the
output containing lesser number of filtered reads (either
of left kept or right kept) after executing filter_reads takes
lesser execution time for subsequent steps as that com-
pared to an output having higher number of reads. Again,
there was a waiting time for the dependent processes to
begin their execution while running TopHat. Hence, for
an efficient analysis it is evident to transfer and further
process the output of the step filter reads containing
lower number of reads to the remote machine since its
transfer time (both uplink and downlink) and execution
time would be less than the transfer and execution of its
counterpart with higher number of reads. Thereby, the
execution of the steps (gene align and genome_align;
junc_align and span_reads) and required transfers for the
low read files, would complete simultaneously with the
execution of aforementioned steps for higher read files.
This will effectively reduce the waiting time for execut-
ing the dependent steps.

We denoted the output containing lower number of fil-
tered reads by Riow (coming from either left kept or right
kept) and the other having higher number of filtered reads
by RHigh . Hence for efficient execution of subsequent
steps, Riow is transferred to the remote machine while
RHigh is executed on the host machine. After filter reads,
the execution for Rjoy and Rpjgn can be forked into two
simultaneous alignment processes executing the consecu-
tive steps, gene_align and genome_align.

During find_juncs, the output of genome_align from
both Riow and Ry are required as input to find the
spliced junctions. This requires transfer of the output gen-
erated in the remote machine (on the execution of gene_
align, genome_align on R,) to the host machine. Thus
find_juncs is a dependent step, which waits for the two
simultaneous processing of the outputs (ie. Rion and
RHign) of genome_align to complete. After the spliced junc-
tions are found, the output for R;,, is again transferred to
the remote machine for consecutive execution of the steps
junc_align and span_reads. Simultaneously these steps for
RHign is executed on the host machine. In the final step

Page 7 of 13

report, the aligned output obtained from Rjoy and Rhign
after execution of the previous steps (as mentioned above)
can be concatenated, thereby generating the final align-
ment output and possible spliced junctions.

Theoretically the total time required for the execution
of PVT and TopHat (equation (1a) and (1b)) for paired
end reads can be calculated as follows:

Ti pvr = max|[(troRy, + R + TR0y) s 1ERMg)

(1a)

Ti_topHat = tER 0, T tERmq (1b)

Here i denotes the sets of independent steps executed
simultaneously in the host machine and remote ma-
chine. For i=1, the set of independent consecutive steps
to be executed are gene_align and genome_align and for
i=2, the set of independent consecutive steps to be exe-
cuted are junc_align and span_reads.

T; pyr = the effective time required for completion
of each independent steps of PVT

T topHat = the effective time required for completion
of each independent steps of TopHat

tr—g,,, = transfer time of Ry, to the remote machine
for executing each set of independent steps

ter,,, = execution time R; oy in the remote machine
for each set of independent steps

trg,,, = transfer time of R;,, from remote machine
after execution of each set of independent steps

fERy, = €xecution time Ryjgh in the home machine
for each set of independent steps

Thereby, the total execution time Trota pyr (for PVT)
and T7otal TopHat (for TopHat) is given as follows:

2
Trotel_pvr=Ter+ Y _Ti pur+ Trs+ Tr
i1

(2a)
2
Ttotal_TopHat = TFR + Z Ti topHat + Trs+ Tr (2b)
=1
Here

Trr = time contribution from the step filter _reads

2
Z Tj,,, = time contribution from the two sets of
i=1 independent steps defined above for PVT.

Maiji et al. BMC Bioinformatics 2014, 15:167
http://www.biomedcentral.com/1471-2105/15/167

Tiropree= time contribution from the two sets of

2
=1
Tp = time contribution from the step find _juncs
Tr = time contribution from the step report

The improvement (in percentage) in the total execution
time of PVT over that of TopHat can be given by

TTotal_ TopHat— 7-TotaliPVT

x 100 (3)
TTotaL TopHat

Using the above equations (1) and (2), we theore-
tically estimated the total PVT execution time for
SRR1027730 based on TopHat execution time needed
for each step. We obtained all the execution times
(tERLon» tERygr> TFR: TFy @nd Tgr) from TopHat execution
times noted for paired end read analysis. The transfer
times in PVT (t7_,r,,, and trg,,,) for the required inputs
and outputs (for the different sets of independent steps)
using scp were noted for the corresponding inputs and
outputs in TopHat.

Substituting the execution time required for each step
using TopHat and the transfer times for the independent
steps (given in Table 1) in equations (1), (2) and (3),we
obtained a significant reduction of ~34% in execution
time using PVT for SRR1027730, when compared to that
using TopHat.

In the experiment, we implemented the PVT pipeline
for SRR1027730 in two similar standalone configurations

independent steps defined above for TopHat.

Page 8 of 13

and obtained the time duration for each of the steps as
given in Table 1. The improvement of PVT over TopHat
as observed for the same data (shown in Additional file 12:
Figure S9) experimentally was ~41% which is more than
that as obtained by theoretical calculation i.e. ~34%. Such
added improvement might be due to additional modifica-
tion of PVT over TopHat which has been done by parallel-
izing sub-steps of genome_align and junc_align. This time
reduction couldn’t be taken into account while calcu-
lating performance improvement of PVT over TopHat
theoretically.

PVT- Pipeline setup for processing multiple data files
Processing of multiple data files (with SRR IDs) in an ex-
periment consists of repeated computation for spliced
alignment. Hence, pipelined execution of spliced align-
ment increases the speedup. PVT enables implementa-
tion of the execution workflow as a pipeline, consisting
of multiple stages [23]. Each stage can work on different
execution steps at the same time thus requiring the
pipeline to be run on separate instance(s)/standalone
configurations.

In PVT we have defined five stages (given in Additional
file 13: Table S4) based on the steps executed for
spliced alignment (Figure 2 for single end reads and
Additional file 11: Figure S8 for paired end reads). We
have selected the steps in each stage so that there is bal-
anced length of pipeline stages which will increase the
speedup. Based on our analysis of execution time for
both single end read and paired end reads (Figure 3 and

Table 1 Comparison of the time of execution for the paired end reads (SRR1027730) using TopHat and PVT pipeline in

the host and remote machines respectively

Steps TopHat PVT
Execution Time Execution time (mins) in Execution time (mins) in Time (mins) considered for PVT
(mins) Host machine Remote machine of paired end reads
Filter_reads 22 21 - 21
Transfer to remote Not applicable 5 92%
Building Bowtie indices 6 6
Gene_align 83 42(L) 37(R)
Genome_align 94 39(L) 41(R)
Transfer from remote Not applicable 3
Find_juncs 12 9 - 9
Transfer to remote Not applicable Negligible (~22 s) 5%
Junc_align 17 2(L) 2(R)
Span_reads 10 3(L) 3(R)
Transfer from remote Not applicable ~24's
Report 40 41(L+R) 41
Net execution time 284 168

(L) and (R) denotes the execution time for left and right kept reads respectively.

*Time calculated using equation (1).

Maiji et al. BMC Bioinformatics 2014, 15:167
http://www.biomedcentral.com/1471-2105/15/167

Additional file 12: Figure S9), we merged the steps to build
each stage of the pipeline as shown in Additional file 11:
Figure S8.

As Stage II, (consisting of genome_align) is most time
consuming, we can choose a larger instance/higher ma-
chine configuration or a cluster of instances to bring
down the execution time of this stage to a comparable
length as that of the other stages in the pipeline. Thus,
we are able to overlap the execution of multiple data
files i.e. when a job is executed in a particular instance
(s)/standalone configuration(s) (executing a specific stage
of the pipeline), the next submitted job is executed in an-
other instance(s)/standalone configuration(s) (executing
the previous stage of the pipeline).

The stages of the PVT pipeline have different delays.
Hence we need to put appropriate buffers (storage) in

Page 9 of 13

between the stages to synchronize their executions.
Since a buffer can be mounted to a single instance at a
time, it will create problem for parallel execution of the
consecutive stages in the PVT pipeline. To solve this, we
can use two buffers and mount them to the consecutive
stages in an alternate fashion as shown in Figure 6(A).
Considering a particular instance executing stage i of the
pipeline, instance (i+ 1) executes its next stage. While
executing multiple SRR files submitted in the job queue
in descending order, the head of the queue has the
higher job number, Thus the job with higher number i.e.
SRRy, will be called in for execution before the job hav-
ing lower job number SRR ;. The buffers are mounted
to the instances as shown by the solid lines at every even
time slots and by the dotted lines at every odd time slots
of the pipeline.

Buffer 1 Buffer 1) Buffer 1
A Stage i Stage (i+1)
@ Instance Instance
SRR, e ~ SRR;.
Buffer 2 Buffer 2 Buffer 2
SRR; SRR;. SRR;.,

>
[Unified Client API |

Alert Definition

Notification

[unified Provider API |

Alert Message {

Figure 6 (A): Pipeline buffer management for two consecutive stages of PVT (-»> denotes the buffer mounted in the even time slots,
-> denotes the buffer mounted in the odd time slots). (B): Middleware based cloud architecture which is based on MOVR proposed by

Khatua et al. [24].

{) Monitoring
i Agent L
Cluster]
Monitoring @ 3
* Yool EBS N o

VM

Application Resources

Maiji et al. BMC Bioinformatics 2014, 15:167
http://www.biomedcentral.com/1471-2105/15/167

The PVT pipeline, described above, does not suffer
from any kind of pipeline hazards [23] since PVT stages
do not have any dependency on each other. Overall,
there will be a significant reduction in execution time in
PVT as compared to that in TopHat.

The dynamic reservation of the instances and set up of
the pipeline buffers as discussed above, can be faithfully
implemented in the cloud computing system which pro-
vides an efficient and manageable architecture for PVT.

PVT-Cloud: pragmatic cloud architecture
The presence of huge sequence data for alignment analysis,
requires an extensive computational resource. Although
TopHat in multithreaded mode can be implemented in
cloud, it would reserve the instances for a longer duration
of time, increasing the reservation cost and hence is in-
capable of taking the advantage of such an extensive
computational resource to process extensive dataset. Direct
implementation of TopHat in cloud fails to utilize the elastic
feature of cloud resources. As PVT is able to overlap the
execution of multiple data files and each pipeline stage (as
given in Additional file 13: Table S4) works on a different
execution step at the same time, it brings upon a huge
improvement compared to TopHat. Here we propose an
architecture termed as PVT-Cloud which can be im-
plemented in a middleware based cloud architecture (in
Figure 6(B)) based on that as proposed by Khatua et al. [24].
We have defined an application as a set of NGS data,
each of which is specified by an URL to corresponding
databases. The end user submits such an application to
application repository for analysing each NGS data using
PVT. The end user may set their policy, QoS (Quality of
Service) etc. to control analysis of their NGS data, if re-
quired. The deployer module sets up the pipeline for
PVT and finds the initial optimal resources for the PVT
and the QoS provided. Once the PVT is setup, either in
a standalone or cluster system, the required monitoring
agents are automatically installed within the deployed
resources. The monitoring agents send the status of the
resources as well as PVT execution dynamically to the
monitor module. The monitor module correlates the in-
formation sent by the agents to generate events for the
controller module. Each event designates a significant
change (e.g. CPU over provisioned, CPU under used,
memory over provisioned, memory under used, comple-
tion of a PVT stage etc.) required in the PVT execution.
Once an event is received, the controller module takes
the necessary action to optimize the current stage of PVT
execution. For example, at the completion of a PVT stage,
the controller module will schedule the current sequence
data to the next stage while allocating the current stage to
the next submitted sequence data. The monitor module
sends notification to the user on successful completion of
analysis of the submitted dataset. In this way, analysis of

Page 10 of 13

multiple NGS data will be carried out concurrently within
PVT using a limited amount of resources.

Presently, due to lack of resources, we are unable to show
the performance of pipelined execution of PVT-Cloud.

Conclusion

NGS data helps to understand the biomolecular inter-
actions in depth. In order to analyze such large volume
of data with high degree of accuracy, an efficient proto-
col is necessary that improves computational resource
utilization. These days biologists are facing problems to
manage ‘big data’. This demands better and enhanced
insight into various NGS data. In any kind of sequence
data analysis, alignment to the reference genome is the
most important step to annotate and extract the signifi-
cance of the read. TopHat is the most widely used spliced
alignment tool that determines transcript variants for both
novel and annotated ones based on the alignment of the
read sequences with the reference genome.

In this work we modified the TopHat workflow for both
single end and paired end reads in order to increase its
efficiency with respect to its computation time and com-
putational resource utilization (in terms of CPU and
memory utilization). In PVT for single end reads, we par-
allelized the steps where the computational resource is
underutilized and removed the redundant steps during
the execution of each dataset which improved its effi-
ciency and enforced utilization of computational resource
along with the reduction of the execution time. For paired
end reads we rescheduled the execution of each steps and
distributed the job in separate machines, in addition to re-
moving the redundant steps during the execution of each
dataset. For single end read analysis, PVT resulted in re-
duction of the execution time to ~23% as compared to
TopHat, whereas for paired end read analysis the execu-
tion time reduced to ~41%. Further, we proposed a cloud
architecture PVT-Cloud for running single end and paired
end reads in cloud for a time effective method of processing
NGS data. Our modified protocol thus increases the degree
of parallelization, computational resource utilization and
thereby reduces the execution time in both standalone
and distributed system architecture.

Overall, our approach suggests betterment towards exe-
cuting the spliced alignment step efficiently with a signifi-
cant reduction in execution time and proper utilization of
computational resources. PVT in cloud system ensures bet-
ter performance than that in a standalone system. Imple-
menting PVT will speed up the execution process and will
provide a cost-effective solution for NGS data analysis.

Methods

Input data set

We downloaded the sequence data corresponding to sin-
gle end and paired end reads from NCBI (http://www.

http://www.ncbi.nlm.nih.gov/

Maiji et al. BMC Bioinformatics 2014, 15:167
http://www.biomedcentral.com/1471-2105/15/167

ncbi.nlm.nih.gov/) for single end and paired end reads
(Additional file 1: Table S1 and Additional file 2: Table S2)
which are as follows:

For single end reads: The data for single end reads was
downloaded from NCBI (SRA database: Accession Num-
ber: SRX026839 and SRX026838). The dataset corresponds
to mRNA sequence reads (transcripts) of adipose de-
rived induced pluripotent stem cells (ADS_iPSC) test
sample (SRX026838-test sample) and human embryonic
stem cell (hESC) control sample (SRX026839). Each test
and control sample has 8 runs with a total of 308.9 M
reads (13.2 Gbases) and 446.9 M reads (19.2 Gbases) re-
spectively. Corresponding reference annotations for the
human genome were downloaded from NCBI (build 37/
hgl9) [www.ncbi.nlm.nih.gov].

For paired end reads: The SRR1027730 was downloaded
from NCBI which comprises of 45 M reads (9.5 Gbases).
Corresponding reference annotations are the same as that
used for single end reads. The dataset corresponds to
mRNA sequence reads of pancreatic islets.

Standalone configuration
For single end reads: The analysis for single-end reads
was carried out in a standalone system with an Intel Xeon
E3-1245 8 core processor, 16GB RAM 64 bit and a proces-
sor speed of 3.3 GHz with Ubuntu. We ensured no other
processes were running in the background (450 MB mem-
ory consumption for init processes) except ZABBIX-client
(http://www.zabbix.com/) to monitor resource utilization.
The ZABBIX server was configured on another system
which collected the performance report for TopHat and
PVT.

For paired end reads: The analysis for paired-end reads
was carried out in two standalone systems:

(a) Host machine: Intel Xeon E3-1245 8 core processor,
16GB RAM 64 bit and a processor speed of
3.3 GHz with Ubuntu.

(b) Remote machine: Intel Xeon E3-1245 8 core processor,
16GB RAM 64 bit and a processor speed of 3.4 GHz
with Ubuntu.

Processing the reads

The archived reads were decompressed using SRA-
Toolkit 2.1.10 (http://eutils.ncbi.nih.gov/Traces/sra/sra.
cgi?view=software) and spliced alignment was carried out
with TopHat v 2.0.8. Bowtie 2.1.0 was used for short read
alignment and Samtools 0.1.18 [25] was used for conver-
sion between various alignment formats and processing of
the alignment outputs.

We ran the spliced alignment tool using TopHat v 2.0.8
on the entire data set for both single and paired end reads
in the above mentioned standalone configuration. The
time of execution for each run was noted. The CPU and

Page 11 of 13

memory performance were constantly monitored during
the execution period using ZABBIX.

TopHat

A typical TopHat execution comprises of steps as given
in Additional file 3: Table S3 (along with its abbrevia-
tions and functions of each step). The dataflow for the
execution is shown in Additional file 4: Figure S1. In the
first step (filter_reads), TopHat prepares the sequence
reads for alignment by filtering out the low quality score
reads (in fastq format). It then aligns the filtered reads to
the set of reference genes (exonic sequences) using the
short read aligner bowtie in the gene_align step. The un-
mapped reads from the gene_align step are aligned with
the reference genome in genome_align step which
returns the set of mapped reads and the initial set of un-
mapped reads. The initial mapping information is used
to build a database of possible splice junctions in the
find_juncs step. The segments which did not align with
the reference genome (i.e. in genome_align step) are then
mapped against these possible spliced junctions (junc_a-
lign). During span_reads the aligned segments are spanned
across the neighbouring exon alignments to form the
novel and annotated transcripts according to the splice
junctions detected. In the final step report, all the un-
aligned and the aligned reads are finally reported along
with the potent junctions. For paired end reads, the
TopHat execution step is the same; just that the left and
right kept reads are processed separately.

PVT

For single end reads: The PVT pipeline for single end
reads consists of the following steps (flow diagram shown
in Figure 2). Input read sequences are filtered based on
quality scores (filter_reads). The filtered reads are then
aligned with the gene annotations downloaded from NCBI
using Bowtie (gene_align). The unmapped reads are fur-
ther aligned with the genome annotations downloaded
from NCBI (genome_align). The reads that mapped with
the genome were split based on chromosomal references
(using splitBy_chromReference) to enable forking of the
find_juncs step. This enables us to parallelize the step and
increase the efficiency of computational resource usage.
This step is followed by concatenation of segments (using
concatenate_segments) where the sequences of the pos-
sible junctions are concatenated The junctions are then
aligned with the reads that mapped with the genome (jun-
c_align), the output being the possible spliced junctions.
The span_reads step then extends the neighbouring reads
that mapped to the genome to obtain the spliced reads. Fi-
nally the report step provides the output containing the
accepted alignments that are possible with the read se-
quences, along with the unaligned reads and the potent
junctions. A pseudo-code for the execution of the PVT

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.zabbix.com/
http://eutils.ncbi.nih.gov/Traces/sra/sra.cgi?view=software
http://eutils.ncbi.nih.gov/Traces/sra/sra.cgi?view=software

Maiji et al. BMC Bioinformatics 2014, 15:167
http://www.biomedcentral.com/1471-2105/15/167

pipeline for single end reads is given in Additional file 14:
Table S5. Overall, PVT increases the degree of parallelization
for the less CPU utilized step to achieve efficient resource
utilization. Moreover to reduce the total execution time,
we removed the redundant steps that are executed repeti-
tively, thereby reducing the execution overhead.

For paired end reads: A flow diagram of PVT pipeline
for the paired end reads is shown in Additional file 11:
Figure S8. Here, we schedule the execution of the inde-
pendent steps comprising the entire execution pipeline
in such a manner, so that the job can be distributed into
multiple systems, thereby reducing the execution time
significantly. All the steps here are similar as those de-
scribed in for single end reads, except that the steps
gene_align, genome_align, junc_align and span_reads
are executed independently for the left and right kept
reads in host and remote machines. Moreover, mapping of
the segments against the reference genome (during geno-
me_align execution) and against the spliced junctions
(during junc_align execution) are parallelized for both the
left and right kept reads. A pseudo-code for the execution
of the PVT pipeline for paired end reads is given in
Additional file 15: Table S6.

Additional files

Additional file 1: Table S1. Description of the input files downloaded
from NCBI (SRA database: Accession Number: SRX026839 and SRX026838)
for single end read analysis (A) corresponds to mMRNA sequence reads of
human embryonic stem cell (hESC)-control sample, (SRX026839) (B)
corresponds to mMRNA sequence reads of adipose derived induced
pluripotent stem cells (ADS_iPSC)-test sample.

Additional file 2: Table S2. Description of the input file for paired end
reads (SRR1027730) downloaded from NCBI. The data corresponds to
mRNA sequence reads of pancreatic islets.

Additional file 3: Table S3. Sequential steps for ‘spliced alignment’ in
NGS data analysis.

Additional file 4: Figure S1. TopHat pipeline and its order of execution
both for single end and paired end reads (- indicates unmapped
outputs, — indicates mapped outputs).

Additional file 5: Figure S2 TopHat Execution time corresponding to
the entire single end read dataset (SRX026839 and SRX026838).

Additional file 6: Figure S3. Improvement of PVT over TopHat for the
entire single-end read dataset in the find_juncs step.

Additional file 7: Figure S4. Time comparison between TopHat and
PVT for all the sub-steps for (A) SRR094770 (B) SRR094775.

Additional file 8: Figure S5. Bar Graph representing the comparison of
PVT execution time with that of TopHat for the entire single end read
dataset.

Additional file 9: Figure S6. Comparison of (A) Cache memory (in GB)
utilization (B) average CPU utilization (in %) for the entire single end read
dataset.

Additional file 10: Figure S7. Time(x-axis) vrs (A) CPU utilized (B) cache
memory utilized in a standalone system with 16 GB of onboard RAM and
8 cores (3.3 GHz) CPU during the run for paired end read (SRR1027730)
using TopHat. Abbreviations indicated in bold below arrow denotes the
different steps of execution: L- left kept reads, R- right kept reads,
numbers- denotes the step number 1: filter_reads. 2: gene_align.

3: genome_align. 4: find_juncs. 5: junc_align. 6: span_reads. 7: report.

Page 12 of 13

Additional file 11: Figure S8. PVT pipeline showing the order of
execution and different stages for single end and paired end reads. The
step(s) comprising each stage is based on balanced length of pipeline
stage. Single end read analysis pipeline is presented within black
bordered box.

Additional file 12: Figure S9. Time (x-axis) vs (A) CPU utilized in the
host machine (B) CPU utilized in the remote machine (C) cache memory
utilized in the host machine and (D) cache memory utilized in the
remote machine during the run for paired end reads (SRR1027730) using
PVT. Abbreviations indicated in bold below arrow denotes the different
steps of execution: L- left kept reads, R- right kept reads, numbers- de-
notes the step number 1: filter_reads. 2: gene_align. 3: genome_align. 4:
find_juncs. 5: junc_align. 6: span_reads. 7: report.

Additional file 13: Table S4. Spliced alignment steps corresponding to
each pipeline stage.

Additional file 14: Table S5. Pseudo-code of PVT for single end read
analysis.

Additional file 15: Table S6. Pseudo-code of PVT for paired end read
analysis.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

RM and AS: conception and design, collection and/or assembly of data, data
analysis and interpretation, manuscript writing, SK and SD: design and
assembly of data, ZG: conception and design, data analysis and
interpretation, drafting the manuscript and revising it critically for important
intellectual content. All authors read and approved the final manuscript.

Acknowledgement
We are grateful to Council of Scientific and Industrial Research (CSIR) and
Department of Biotechnology (DBT) for financial support.

Author details

'Bioinformatics Centre, Bose Institute, Kolkata 700054, India. “Department of
Computer Science and Engineering, University of Calcutta, Kolkata 700009,
India. *Electronics and Communication Sciences Unit (ECSU), Indian Statistical
Institute, Kolkata 700108, India.

Received: 2 January 2014 Accepted: 7 May 2014
Published: 4 June 2014

References

1.

2.

Marx V: Biology: the big challenges of big data. Nature 2013,
498(7453):255-260.

Mardis ER: ChIP-seq: welcome to the new frontier. Nat Methods 2007,
4(8):613-614.

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008,
5(7):621-628.

Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T,
Telling A, Amit |, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein
B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA,
Lander ES, Dekker J: Comprehensive mapping of long-range interactions
reveals folding principles of the human genome. Science 2009,
326(5950):289-293.

Hawkins RD, Hon GC, Ren B: Next-generation genomics: an integrative
approach. Nat Rev Genet 2010, 11(7):476-486.

Soon WW, Hariharan M, Snyder MP: High-throughput sequencing for
biology and medicine. Mol Syst Biol 2013, 9:640.

Haas BJ, Zody MC: Advancing RNA-seq analysis. Nat Biotechnol 2010,
28(5):421-423.

Lindner R, Friedel CC: A comprehensive evaluation of alignment
algorithms in the context of RNA-seq. PLoS One 2012, 7(12):52403.
Garber M, Grabherr MG, Guttman M, Trapnell C: Computational methods
for transcriptome annotation and quantification using RNA-seq.

Nat Methods 2011, 8(6):469-477.

http://www.biomedcentral.com/content/supplementary/1471-2105-15-167-S1.doc
http://www.biomedcentral.com/content/supplementary/1471-2105-15-167-S2.doc
http://www.biomedcentral.com/content/supplementary/1471-2105-15-167-S3.doc
http://www.biomedcentral.com/content/supplementary/1471-2105-15-167-S4.tiff
http://www.biomedcentral.com/content/supplementary/1471-2105-15-167-S5.tiff
http://www.biomedcentral.com/content/supplementary/1471-2105-15-167-S6.tiff
http://www.biomedcentral.com/content/supplementary/1471-2105-15-167-S7.tiff
http://www.biomedcentral.com/content/supplementary/1471-2105-15-167-S8.tiff
http://www.biomedcentral.com/content/supplementary/1471-2105-15-167-S9.tiff
http://www.biomedcentral.com/content/supplementary/1471-2105-15-167-S10.tiff
http://www.biomedcentral.com/content/supplementary/1471-2105-15-167-S11.tiff
http://www.biomedcentral.com/content/supplementary/1471-2105-15-167-S12.tiff
http://www.biomedcentral.com/content/supplementary/1471-2105-15-167-S13.doc
http://www.biomedcentral.com/content/supplementary/1471-2105-15-167-S14.doc
http://www.biomedcentral.com/content/supplementary/1471-2105-15-167-S15.doc

Maji et al. BMC Bioinformatics 2014, 15:167 Page 13 of 13
http://www.biomedcentral.com/1471-2105/15/167

10. Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 2009, 25(14):1754-1760.

11, Li H, Durbin R: Fast and accurate long-read alignment with Burrows-Wheeler
transform. Bioinformatics 2010, 26(5):589-595.

12. LiR YuC LiY, Lam TW, Yiu SM, Kristiansen K, Wang J: SOAP2: an
improved ultrafast tool for short read alignment. Bioinformatics 2009,
25(15):1966-1967.

13. Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2.
Nat Methods 2012, 9(4):357-359.

14. Wu TD, Nacu S: Fast and SNP-tolerant detection of complex variants and
splicing in short reads. Bioinformatics 2010, 26(7).873-881.

15. De Bona F, Ossowski S, Schneeberger K, Ratsch G: Optimal spliced
alignments of short sequence reads. Bioinformatics 2008, 24(16):i174-180.

16. Birol |, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD, Zhao
Y, Hirst M, Schein JE, Horsman DE, Connors JM, Gascoyne RD, Marra MA,
Jones SJ: De novo transcriptome assembly with ABYSS. Bioinformatics
2009, 25(21):2872-2877.

17. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K,
Lee S, Okada HM, Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard T,
Butterfield YS, Newsome R, Chan SK, She R, Varhol R, Kamoh B, Prabhu AL,
Tam A, Zhao Y, Moore RA, Hirst M, Marra MA, Jones SJ, Hoodless PA, Birol I:
De novo assembly and analysis of RNA-seq data. Nat Methods 2010,
7(11):909-912.

18. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: TopHat2:
accurate alignment of transcriptomes in the presence of insertions,
deletions and gene fusions. Genome Biol 2013, 14(4)R36.

19. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I: Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering computing
as the 5th utility. Future Gener Comp Sy 2009, 25(6):599-616.

20. Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL: Searching for SNPs with
cloud computing. Genome Biol 2009, 10(11):R134.

21. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y,
Blankenberg D, Albert |, Taylor J, Miller W, Kent WJ, Nekrutenko A: Galaxy: a
platform for interactive large-scale genome analysis. Genome Res 2005,
15(10):1451-1455.

22. Karczewski KJ, Fernald GH, Martin AR, Snyder M, Tatonetti NP, Dudley JT:
STORMSeq: an open-source, user-friendly pipeline for processing
personal genomics data in the cloud. PLoS One 2014, 9(1):e84860.

23, Mano MM: Computer system architecture. 3rd edition. Prentice Hall:
Englewood Cliffs, N.J; 1993.

24. Khatua S, Ghosh A, Mukherjee N: “Optimizing the utilization of virtual
resources in cloud environment”. In Virtual Environments Human-Computer
Interfaces and Measurement Systems, IEEE International Conference.
2010:82-87.

25. LiH, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,
Durbin R, Proc GPD: The sequence alignment/map format and SAMtools.
Bioinformatics 2009, 25(16):2078-2079.

doi:10.1186/1471-2105-15-167

Cite this article as: Maji et al: PVT: An Efficient Computational
Procedure to Speed up Next-generation Sequence Analysis. BMC
Bioinformatics 2014 15:167.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at (-
www.biomedcentral.com/submit BiolVed Central

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Single end reads
	TopHat and its pitfalls
	PVT
	PVT outperforms TopHat

	Paired end reads
	TopHat and its pitfalls
	PVT

	PVT- Pipeline setup for processing multiple data files
	PVT-Cloud: pragmatic cloud architecture

	Conclusion
	Methods
	Input data set
	Standalone configuration
	Processing the reads
	TopHat
	PVT

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgement
	Author details
	References

