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Abstract

need to install any software or databases.

study of regulatory elements in 3" UTRs.

Background: Gene expression in vertebrate cells may be controlled post-transcriptionally through regulatory elements
in MRNAs. These are usually located in the untranslated regions (UTRs) of mRNA sequences, particularly the 3'UTRs.

Results: Scan for Motifs (SFM) simplifies the process of identifying a wide range of regulatory elements on alignments
of vertebrate 3'UTRs. SFM includes identification of both RNA Binding Protein (RBP) sites and targets of miRNAs. In
addition to searching pre-computed alignments, the tool provides users the flexibility to search their own sequences

or alignments. The regulatory elements may be filtered by expected value cutoffs and are cross-referenced back to their
respective sources and literature. The output is an interactive graphical representation, highlighting potential regulatory
elements and overlaps between them. The output also provides simple statistics and links to related resources for
complementary analyses. The overall process is intuitive and fast. As SFM is a free web-application, the user does not

Conclusions: Visualisation of the binding sites of different classes of effectors that bind to 3'UTRs will facilitate the
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Background

The untranslated regions of mRNA sequences (UTRs)
include most of the experimentally determined regula-
tory elements (REs) [1,2]. This post-transcriptional regu-
latory information can affect the site at which a mRNA
is polyadenylated, and then how, when and where it is
translated [3,4]. A number of tools and methods have
been developed to identify cis-regulatory elements
(CREs), many focusing on individual types of CREs in
single sequences [5,6]. These may ignore the detection
of other types of CREs in the neighboring regions [7,8].
For example, although there are a large number of algo-
rithms to predict microRNA (miRNA) binding sites,
reviewed in [9,10], only one has included specific consid-
eration of a nearby RNA binding protein (RBP) site [11].
However, some miRNA targets are known to be affected
by the presence of other elements or sequences nearby
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[1,11-13]. Most regulatory elements are quite small (<12
bases) and many in silico predictions have high false
positive rates. Visualisation of potential sites could im-
prove the utility of predictions.

Some complex RNA elements can be both miRNA tar-
get sites and be bound by proteins [3,14,15]. Recent pub-
lications have shown evidence that specific types of
miRNAs and RBPs work in concert to influence tran-
script decay [11,16,17] or translation [13] and this syn-
ergy has been included in some computational analyses
for proteins [18] and miRNAs [19].

In many studies one specific gene of interest from a
single species is being analysed. Recently developed sys-
tems: RegRNA 2.0 [2], AURA [20], ARESite [6], and
UTRdb [21] have provided increasing support for this
type of analysis. However, the analysis of sequence align-
ments, a representation of overlapping identified ele-
ments, E-value cutoff, and the ability to include custom
sequence motifs in the analysis, are not currently avail-
able in a single tool. Scan for Motifs provides this for
3'UTR regions. It is primarily aimed at the analysis of
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human 3'UTRs, but can be used for any species se-
quences, alignments, or any part of the mRNA.

Implementation

The analysis has three phases: 1. accepting user input, 2.
analysing the sequence(s), and 3. interactive visualization
of the results (Figure 1). The processes to identify and
visualise the regulatory elements for any selected gene or
given sequence(s) is done in parallel for speed. Input can
be the name of a human gene (e.g. TNF) in which case
the standard TargetScan/UCSC vertebrate alignment will
be used. However, the user can also input any sequence
or alignment. The server is a pure LAMP (Linux, Apache,
MySQL and Perl) implementation providing speed and
stability, using HTML, JavaScript and AJAX to provide
seamless user interaction throughout the analysis. SEM
has been tested on commonly used web-browsers: Chrome,
Firefox, Safari and Explorer 10 or later.

Data analysed

The RNA-Binding Protein DataBase (RBPDB) contains a
collection of experimentally verified RNA binding sites,
manually curated from literature. It currently contains
binding data on 272 RBPs, but only 69 that have motifs
in position frequency matrix (PFM) format most useful
for SEM analysis. These PFM can be used to distinguish
between good and poor matches for short motifs. The
other individual binding site sequences from RBPDB
could also be user specified (e.g. CAUY). Other user
specified sequences, regular expressions, or matrices can
also be used in PatSearch format [22].
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Figure 1 Outline of the main modules and steps involved in a
Scan for Motifs analysis. The user input sections are in dashed
boxes. User selected analyses are executed on demand. TargetScan
predictions are also re-mapped to the genomic alignments using

PatSearch

|.~
-

MotifLocator

PERL scripts (labelled MotifMapper).
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Published miRNA sequences are from miRBase [23].
The mature miRNA sequences were downloaded from
miRBase website (file:mature.fa), processed (reverse com-
plemented and 8 leading seed bases extracted) to get a list
of 2042 named 8mer seeds and stored in a reference text
file. The 6mer seed is the middle 6-bases, and both the
two overlapping 7mers are used (7mer-Al, denoted Al in
the output, and 7mer-M8) [8].

The 3'UTR alignments used were obtained from
TargetScan (v.6.2) along with the microRNA-binding site
related files (miR Family, Predicted Conserved Targets
Info, Conserved Family Info) [8]. The ‘UTR_Sequences’
file holds multiple sequence alignments (MSA) of 23
vertebrate genomes aligned to human, extracted from
the USCC human genome (hgl8) databases by the Tar-
getScan authors. The human specific sequences were
extracted and the positional information for the miR-
binding sites provided in “Predicted Conserved Targets
Info” file was compared to and updated where needed)
against the latest release of hgl9 database (from UCSC). A
bed format MySQL database table was created to hold the
positional information for each of these miR-binding sites.

A custom Perl script was written and used for check-
ing and updating the positional information as above.
The program uses sequence similarity between the latest
release of hgl9 (from UCSC) and the UTR sequences
from the TargetScan website. In most of the cases the se-
quences were 100% identical. For 27 genes the sequences
were found to be different in length, the TargetScan pre-
diction data for these were discarded, as they could not be
unambiguously assigned to the sequence.

Accepting user input

The user input is of two types, i) query sequence(s)
and ii) query element(s). Figure 2 shows the different in-
put options available in SFM web-server.

i) Query sequence. Option 1 in Figure 2 shows the
different types of sequence that is accepted by SFM.
It supports input of a standard human gene symbol
(i.e. LIN28A) given as source of the query sequence.
In such cases relative sequence alignments of 23
vertebrates (including human) will be retrieved from
previously processed sequences using the inputted
gene symbol and used as query sequence.
Alternately, users can input FASTA/multiFASTA/
clustalW alignments as well as tabular multiple
sequence alignment (MSA) formatted sequences as
query sequence. SEM supports assigning reference
sequence when the query sequence has more than
one sequence. If a human gene symbol was used to
get the input sequence, the reference sequence is
assigned to be human. In all other cases, the first
sequence is considered to be the reference sequence.
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ScanForMotifs

A webserver for the analysis of regulatory elements in vertebrate 3' UTRs

1. Enter a human gene symbol (e.g. "TNF") : |TNF—NM7000594 | @

OR

Search your own sequence for regulatory elements :
[ The following three formats are supported: 1. FASTA/MuItiFASTA 2. Tabular MSA 3. ClustalW (.aln) |

OR
Upload file containing the sequence in FASTA/multiFASTA/tabular MSA/ClustalW alignment format : (i)
Browse... | No file selected.

2. Select one or more from the following:
¥ A. Automatically select all regulatory elements with an E-value <= [0.175 | per thousand bases from TransTerm. (1)

# 15-LOX-DICE Element (i) Give your own pattern below : (§
¥ Actin Localising Element (/]
+ ADH_DRE Stability Element (1]
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+D. Show all base seed sequence targets from human microRNA's (miRBase) (1)

E. Show elements not found in the reference sequence. (i

Example:
ri={au,ua.gc,cg,gu,ug.ga.ag} p1=2...3 0...4 p2=2..51..5r1~p2 0..4 ~p1

Click here to know more about patterns

2eeeee

Submit || Reset

Figure 2 The input section of Scan for motifs showing the range of supported regulatory elements and background controls. For a
pre-aligned human 3" UTR (e.g. TNF-NM_000594) it defaults to searching for over 60 TransTerm regulatory elements with expectations of E-value
<0.175 by chance in typical human 3" UTR (~1000 nt) (A in Figure) and TargetScan miRNA binding site predictions for ~150 conserved miRNA families
(O). In this case the sites for RNA binding proteins with E-values < 1.0 per thousand (B) and miRBase 8mer seeds (D) are also selected.

ii) Query elements. Option 2. A-E in Figure 2 shows
the range of query elements expect value controls
available in SEM. All the 77 Transterm elements
(option 2. A in Figure 2) are associated with an
background Expect-value (E-value) frequency of
occurrence per thousand bases. These E-values
were calculated by first creating a background set by
dinucleotide shuffling a non-redundant set of 18,895
human 3'UTR sequences, then searching these with
each of the elements. For example an expect value
of 0.175 (the default) corresponds to an expectation
that each element may appear on average by chance
0.175 times in a typical analysis of one human
3" UTR of 1000 nt. Elements can be automatically
selected/deselected by changing the E-value cutoff
(shown in the red box in option 2. A in Figure 2.2).
Additionally, users can give their own pattern or
sequence motif (e.g. AUAGGGU), which will be
searched along with the other selected elements
against the query sequence(s) using PatSearch.

Similarly, option 2.B-D (Figure 2) shows the elements
from RBPDB, TargetScan and miRBase respectively
along with the options to limit the hits based on Moti-
fLocator calculated matches using the 69 RBPDB PEM.

The TargetScan elements are available only when a pub-
lished human gene symbol is used.

Option 2.E (Figure 2) The default behaviour is only to
show elements in non-reference sequences if also found
in the reference sequence (e.g. human). This can be dis-
abled using this option.

Processing sequences

Upon receiving the input, SFM searches for the query
elements using independent parallel processes, where
the output from one process is not affected by another
process (Figure 1). Irrespective of the input sequence
types, all sequences are converted to FASTA format.
The patterns from the selected TransTerm elements and
user given pattern(s) are used to search the input se-
quences using PatSearch [22]. The 69 RNA binding pro-
tein PFM from RBPDB are used to search the sequences
with MotifLocator [24]. The TargetScan miRNA binding
sites and their position of occurrences were retrieved
from the MySQL database table (see section 2.2.1) by
using the input human gene symbol and mapped on the
query sequences using PERL scripts labelled MotifMap-
per in Figure 1. Based on the user given seed length (6,
7 or 8 nucleotides), a list of seed sequences are created
from the 2042 seed sequences. As one seed sequence
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can be associated with multiple miRNAs in a family, a
non-redundant list of seed sequences was made. These se-
quences were used to search the query sequence(s) using
PERL RegEx (regular expressions). Once all the processes
are finished, the results from these processes are com-
bined and sent to the visualisation module.

Interactive output

The output is shown on a scrollable alignment with links
to further information and the ability to show or hide
specific components of the complex results.

Results and discussion

The SFM web-server analyses sequences that may be
aligned vertebrate UTRs, or user inputted sequences or
alignments (Figure 1). Five types of elements are searched
for in these sequences.

(i) Regulatory elements from the TransTerm database,
which includes relevant UTRSite and ARED
elements. This provides a curated collection of
CREs that function as translational control elements
in mRNAs. The computational models (elements)
are selected by the user, and/or filtered on
empirically determined background frequencies
in a shuffled control set. Matches are identified using
PatSearch [22].

(ii) RBP binding sites represented as position
frequency matrices (PFM) from the RBPDB [25].
Matches are identified using MotifLocator [24]
with a user specified E-value filter.

(iii) MicroRNA target sites predicted by TargetScan 6.2
[8]. TargetScan was chosen as it is widely used, and
predicts sites on vertebrate alignments

(iv) Human miRNAs 6 to 8 base seed sequences [23]
using MotifMapper. This simple prediction is
intended to allow visualisation of most of the
potential miRNA binding sites, including likely
false positives, if the user desires to.

(v) User defined patterns in PatSearch format [21].
PatSearch allows searches for simple strings,
optionally with mismatches insertions and
deletions (e.g. GNGNCC), but also more complex
elements (e.g. GCG 3...7 GCG, two GCG separated
by 3-7 bases) and RNA secondary structures (e.g.
pl =10...10 4...7 ~ p1, a ten base stem with a loop
of 4-7 bases). A full description of the syntax is
presented in the help on the SEM server.

On completion of the individual processes, the results
are compiled and presented as interactive visualisation
(Figure 3). As an example, we use the well-studied
tumor necrosis factor alpha (TNF) 3° UTR. TNF is a
multifunctional cytokine, it regulates the expression of
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other genes in inflammation and other processes and its
expression is regulated at main steps [26]. The TNF
3" UTR has been shown to be targeted by both proteins
and miRNA [13,27] and is a classic example of an ARE
containing mRNA. MicroRNAs that are confirmed to
target this UTR in mammals are miR-16 [28], miR-19a
[29], miR-125b [30], miR-130 [31], miR-181a [32], miR-
301 [31]. Unusually, a miR-369-3p containing RNA-
protein complex binds to targets within the ARE and
activates or represses translation in the cell cycle [13].
This ARE may also be bound by the RNABP tristetra-
prolin (TTP) to repress translation [33].

In the SFM analysis using the settings in Figure 2,
highlights several types of elements from the TransTerm
database (Figure 3, yellow): the AU rich element (ARE)
is represented by hits from three overlapping descrip-
tions (Background E-value per thousand bases 0.06, 0.12,
0.12 respectively, Figure 3) [34]; TNF Alpha Stability and
Efficiency Element (E-value 0.000008) [35]; and two de-
scriptions of a Polyadenylation Element at the 3’ end
(E-value 0.03, 0.02). These are all present in a similar
position in the alignment across vertebrates, and the
9-12 base core ARE [34] is repeated [34]. The two pre-
dicted stability elements in the TNF 3" UTR have been
verified experimentally [27,35], and the polyadenylation
signal has a clear match to the consensus (AAUAAA). In
addition a 15-LOX-DICE element is predicted (E-value
0.01) in the same location in only 5 of 17 species. From the
information linked from the small 1 to the TransTerm
entry it can be found that the 15-LOX-DICE is known to
have a role in regulating mRNA stability of mRNAs in early
erythropoiesis [36]. This may be a false positive, or a novel
finding requiring further investigation.

Three predicted overlapping miRNA binding sites are
shown (Figure 3, red). Interesting they flank the ARE. Each
site links to the family of miRNAs that could bind this seed
(e.g. miR181abcd/462) this data is inherited from the Tar-
getScan families and predictions [8]. Included in these pre-
dictions are miR-19a, miR-181a, miR-130/miR-301 they
have been shown to target these regions in the TNF UTR.

Not predicted with the conservative default SFM pa-
rameters are two sites for miR-369-3p within the ARE
[13]. These could be shown when 7mer miRBase seeds
(miR-369-3p, UAUUAUU) are selected overlapping the
ARE. These miR-369-3p sites are also conserved in the
alignment. The TargetScan analysis with 153 ‘broadly
conserved’ and ‘conserved’ miRNA families did not pre-
dict this site, as miR-369 is poorly conserved [8] so they
are not shown in the results from this analysis (Figure 3
red). However, TargetScan does not predict this known
site at all (TargetScan webserver) possibly due to the
weak AU base pairing within this site.

Such short matches (6mer, 7mer) should be inter-
preted with caution, as there are over 4000 possible
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Analysis of Gene: TNF (NM_000594)

Identified regulatory elements from Transterm :

Polyadenylation signal (PAS) UTRSitel)  TNF Alpha Stability and Efficiency Element

Identified protein binding sites from RBPDB : .

1363_QKI L © 2571_ybx2-a i@ 2661_KHSRPi©®

Identified targets of conserved microRNA families as predicted by Targetscan: [Jl|

miR-130ac/301ab/301b/301b-3p/454/721/4295/3666()  miR-181abed/426200) miR-19ab)

Identified 8 base seed sequence targets from human microRNA's (miRBase) : .

hsa-miR-1236-5p i @  hsa-miR-23b-Spi®  hsa-miR-125b-2-3p 10 hsa-miR-148a-5p i O
hsa-miR-185-5p 1 O hsa-miR-361-3p 1 © hsa-miR-377-5p 1 O hsa-miR-513¢-5p 1 &
hsa-miR-939-5pi©  hsa-miR-1184 i O hsa-miR-1468 i O hsa-miR-2467-3p i O

15-LOX-DICE Element®)  ARE database (ARED) Cluster )  ARE database (ARED) Cluster V&  AU-Rich Stability Element (ARE)®) Mammalian Polyadenylation ElementQ

[*lo]Y [, Download complete report and

hsa-miR-150-5p i &
hsa-miR-514b-5p i O
hsa-miR-3121-3p i ©

hsa-miR-3150a-3p i &
hsa-miR-516b-5p i &
hsa-miR-3190-5p 1 ©

hsa-miR-155-3p i &
hsa-miR-5921 @
hsa-miR-3686 i ©

hsa-miR-4292 i & hsa-miR-4306 i O hsa-miR-4310 i O hsa-miR-4436b-5p 1 @ hsa-miR-44521 O hsa-miR-4644 i O hsa-miR-4674 i O
hsa-miR4753-3p L@  hsamiR-5001-5p1 @  hsa-miR-55715p L@  hsamiR-55853pi@  hsa-miR-57871 0

Species  ---67@------- 680------- 690------- 700----~--~ 710------~ 728------~ 73@-~-----' T40------- 75@------~ 760-~----~-~' 770------- 780------~ 790------~ 800-
Hsa AG-CUCCCUCUAUUUAUGUUUGEAE=UUG--~- -~~~ UGAUUAUUUAUUAU- - -UUAUUUA -UUAUUUAUUUAUDUACAGAU- - GAAUGUAUUUAUUUGGGAGACCGGGGUAUCCUGGGGGACCCA -AUG-UAGG-AG
Ptr AG-CUCCCUCUAUUUAUGUUDGCAE=UUG--- -~~~ UGAUUAUUUAUUAU - - -UUAUUUA-UUAUUUAUUUAUDUACAGAU--GAAUGUAUUUAUUUGGGAGGUCGGGGUAUCCUGGGGGACCCA-AUG-UAGG-AG]
Mml AG-CCCCCUCUAUUUAUGUUUGUAC-UUG--- - ---UGAUUAUUUAUUAU- - -UUAUUAU -UUAUUUAUUUAUUUACCGAU- -UAAUGUAUUUAUUUGGGAG GUCGGGGGAUCCCAGGGGACCCA -AUG-UGGG-AG
Oga AG-CUCCCUCUAUUUAUAUDUGERE=UUG- -~ - -=-UGAUUAUUUAUUAU- - -UUAUUUA-UUAUUUZ UUACUGAU--GAAUGUAUUUAUUUGGGAGGUCAGAGUAUCCUGGGAGACCCA-A-G-CAGG-AG
The AU-C-CCCUCUAUUUAUGAUUGCAC-UUG- -- ----ACAUUAUUUAUUAU- - -UUAUUUA-UUAUUUAUUUAUUUACUGAU- - GAAUGUAUUUAUGUGC GAGGCCGGGUGUUCUGGGGCAAGCCA-AUG-GCAG-AG
Mmu AGCCCCOCUCUAUUUAUAUDDGEAC-UU---------- AUUAUUUAUUAU - - -UUAUUUA-UUAUUUAUUUAUUUGCUUAU--GAAUGUAUUUAUUUGGAAGGCCGGGGUGUCCUGGAGGACCCA-GUG-UGGGAAG
Rno ---CCCCCUCUAUUUAUAAUUGCAC-CUG ===UGACUAUUUAUUUA- - -UUAUUUA-UUAUUUAUUUAUUUGCUUAU=-GAAUGUAUUUAUUUGGAAGGCCGGGGCGUCCUGGAGGACCCA -GCGUUGGGAAG
Cpo AA-GCCCCUCUAUUUAUGGUUGCAU-UUG-=========~ UAUUUAUUAU-~--UUAUUUA-UUAUUUAUUUAUUUACUGAU- - GAUUGUAUUUAUUUGGAAGGUUAGAGUGUCCA -~ -GGGCCCA-UCA-GAGG-AA)
Ocu GG-GCCCCUCUAUUUAUAGUUGCAC-UGGUGAUUAUUGAUUAUUUAUUAU - - -UUAUUUA -AUAUUUAUUUAUUUGC CGAU--GAAUGUAUUUAUUUGGAAGCUCAGCGCAUCCUGGGGUACCCA-GCG-UAGG-AG
Sar CG-CUCCAUCUAUUUAUGUUDGERE=UUG--- -~~~ UGAUUAUUUAUUAU- - -UUAUUUA - UUAUUUAUUUAUUUGC CAGU- - GGAUAUAUUUAUUCAGGAGGU - - - - - - -- - CGGGGAGACCCU-ACA-UCGA-AG
Eeu AG-UUCUUUCUAUUUAUGUUDGERE=UUG- - - -- - -UGAUUAUUUAUUAU - - -UUAUUUA-UUAUUUAUL UUACUGAU--AAACCUAUUUAUUCAGGAGGUUAGUGUGUCCUGGGAGAGCCA-GCA-GAGG-GG
Cfa AG-CUCUUCCUAUUUAUGUUDGERE=UUG- - - - -~ -UGAUUAUUUAUUAU- - -UUAUUUA-UUAUUUA 1JUACUGAU- - GGAUGUAUUUAUUUGGGAAGUUGGGGUGUCCUGGAAGACCGA-ACG-UAGG-GG
Fea AG-CUCCCUCUAUUUAUAUDDGEAG-UAG- - - - - - -UGAUUAUUUAUUAU- - -UUAUUUA-UUAUUUZ ACUGAU--GAAUAUAUUUAUUUGGGAGGUUGG GGUGUCCUGGGAGACCAA -AUG-AAGG- GG
Eca GG-CUCCCUCUAUUUAUGUCUGCAC-UUG--- - ---AGAUUAUUUAUUAU - - -UUAUUUA -UUAUUUAUUUAUUUACUAAU--GAAUGUAUUUAUUCAGGAG GUUGAGGUGUCCUGGGAGACCCA-ACA-UAGG-GG
Bta AA-CUCCCUCUGUUUAUGUUUGCAE=-UUG-~-- -~~~ UGAUUAUUUAUUAU - - -UUAUUUA-UUAUUUAUUUAUUUACUAAU==GAAUGUAUUUAUUCAGGAGGUCAAGGUGUCCUGGGAGACACA -AAC-UAAG-GG
Dno CA---CUCCCUAUUUAUGUUDGCAC-UAG-------, -AGGUUAUUUAUUAU- - -UUAUUUA -UUAUUUAUUUAUUGACCAAU-- -UAACUUAUUUAUUCGGGAGGUUGG GGUGUCCCAGGGGACCCA-GCG-UAGG-GA
Laf GG-CCCCCUCUAUUUAUGUUUGUAC-UUG- - - - - - -UAAUUAUUUAUUAU - - -UUAUUUA - UUAULUAUUUAUUUACUGAUGAGAAUGUAUUUAUUCGGGAGGUC GG GG - -CCCUGGGGGACCAA - GGU- - - AA- GG
Ete G----CCCUCUAUUUAUGUUUGEAC-UGA- - - - - - -GAAUUAUUUAUUAUUUAUUAUUUAUAUAUUUAUUUAUUUCCUGGU=-GAAUGUAUUUAUUCAGGAGGUCGG GG - AACCUGGGGGAUCCA -GUGUUGGG -GG
Mdo GG-CUUCUGUUAUUUAUGAUUGGAUAAUA- - - - ==~ UGGUUAL -~ -LUAU - - -UUAUUUA-UUAUUUAUUUAUUUAUUCUU- - AAGUGUAUUUAUUGAGAAG GUUAUCAUUCAUGGGGGGACACAGAUG-UUGA-GG

Figure 3 Scan for motifs’s interactive graphical output for the vertebrate Tumor Necrosis Factor (TNF) 3'UTRs, using the settings
shown in Figure 2. Known protein and miRNA sites are detected, and additional predictions are made. The experimentally confirmed and conserved
ARE mRNA stability elements are shown in the centre (~710-740, yellow). These are flanked by TargetScan miRNA target predictions (red), miR-19a and
miR-181a are known to target these sites. The miR-130 TargetScan prediction almost completely overlaps the miR19 site (left, two intensities of red). Some
of the additional predictions include patterns of lower specificity (green and blue) are not conserved and may be false positives (e.g. the KHSRP protein
binding site to the left (green ~670), or the miR-150-5p (blue ~760). However miR-125 (blue 8mer seed match ~690) does target this UTR. The results can
be downloaded for further study (upper right). See the Results and Discussion section for further analysis.

7mer seeds from the 2043 mature human miRNA seeds in
miRBase. This resulted in over 200 hits in the 17,000 nt
TNF UTR alignment. However, most of these matches are
not conserved (not present in a similar locations in the
alignment) and can therefore be identified as likely false
positives by visual inspection of the SEM output.

SFM visually represents different types of element in
one display (Figure 3). On the output page it also pro-
vides the user the choice to include/exclude any sets
of elements in the analysis, as well as only showing el-
ements also found in the reference sequence (e.g. hu-
man, when a gene symbol is used as input). Along
with the graphical display, SFM also provides a text
report listing the entire user input (selections and in-
put sequence) as well as output of each individual
search process.

Conclusions
SEM is a free web-application, allowing researchers to
use a single tool to identify and investigate a range of

CREs on both alignments and single sequences. Notably,
these include both protein binding sites (Transterm,
UTRSite, ARED) and miRNA binding sites (TargetScan,
miRBase seed match). These elements come from well-
documented databases and are cross-referenced to these.
We believe that SEM will be particularly useful for
researchers to uncover relationships among different
classes of post-transcriptional regulatory elements.
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