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Abstract

Background: Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the
reads are longer than the target DNA/RNA fragments. Although typically used in small RNA sequencing, adapter
trimming is also used widely in other applications, such as genome DNA sequencing and transcriptome RNA/cDNA
sequencing, where fragments shorter than a read are sometimes obtained because of the limitations of NGS
protocols. For the newly emerged Nextera long mate-pair (LMP) protocol, junction adapters are located in the middle
of all properly constructed fragments; hence, adapter trimming is essential to gain the correct paired reads. However,
our investigations have shown that few adapter trimming tools meet both efficiency and accuracy requirements
simultaneously. The performances of these tools can be even worse for paired-end and/or mate-pair sequencing.

Results: To improve the efficiency of adapter trimming, we devised a novel algorithm, the bit-masked k-difference
matching algorithm, which has O(kn) expected time with O(m) space, where k is the maximum number of differences
allowed, n is the read length, andm is the adapter length. This algorithm makes it possible to fully enumerate all
candidates that meet a specified threshold, e.g. error ratio, within a short period of time. To improve the accuracy of
this algorithm, we designed a simple and easy-to-explain statistical scoring scheme to evaluate candidates in the
pattern matching step. We also devised scoring schemes to fully exploit the paired-end/mate-pair information when
it is applicable. All these features have been implemented in an industry-standard tool named Skewer (https://
sourceforge.net/projects/skewer). Experiments on simulated data, real data of small RNA sequencing, paired-end RNA
sequencing, and Nextera LMP sequencing showed that Skewer outperforms all other similar tools that have the same
utility. Further, Skewer is considerably faster than other tools that have comparative accuracies; namely, one times faster
for single-end sequencing, more than 12 times faster for paired-end sequencing, and 49% faster for LMP sequencing.

Conclusions: Skewer achieved as yet unmatched accuracies for adapter trimming with low time bound.

Keywords: Next generation sequencing, Adapter trimming, Approximate string matching, Local sequence
alignment, Barcode demultiplexing

Background
Adapter sequences are short oligonucleotides used to be
ligated to the ends of DNA fragments of interest, so
that they can be combined with primers for amplifica-
tion. When the sequencing read length is greater than
that of the target DNA, the adapter sequence is read out,
sometimes partially, next to the unknown target DNA
sequence. To recover the target DNA sequence, it is essen-
tial to identify the adapter sequence and trim it.
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Adapter trimming was first used in small RNA (sRNA)
sequencing, where typical lengths of the target fragments
range from 18 nucleotides (nt) to 30 nt, while the typi-
cal read length is 36 nt. Another important application
for adapter trimming is DNase-Seq, which is a high-
resolution technique used to profile hypersensitive sites
that are frequently bound by transcription factors. Recent
studies showed that the sequencing of short reads (50–100
base pairs (bp)) gives better results [1].
For all the next-generation sequencing (NGS) applica-

tions including chromosomal DNA sequencing or com-
plementary DNA (cDNA) sequencing, double-stranded
DNA is first fragmented using nebulization or ultrason-
ics to obtain lengths of several hundreds bp. The ends of
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the fragments are then repaired and ligated with adapters.
After purification, the adapter-ligated fragments are either
poured on slides/chips as water-in-oils or attached to
flow-cells for cluster generation. After several cycles of
emulsion-PCR or bridge-PCR, the amplified templates are
ready for sequencing. Fragmentation is a stochastic pro-
cess that is influenced by the varied force field and ther-
modynamic stability of different parts of the sequence;
e.g. parts with different GC content. To improve the
enrichment rate and to cover the target genome or tran-
scriptome more evenly, the sample preparation protocol
usually requires fragments to be enriched in a specified
length range. Even when longer average fragment lengths
are chosen, the inherent nature of fragment size selec-
tion cannot always prevent short fragments and primer-
dimmers from going on to the next stage. Therefore,
there are nearly always reads that need to be trimmed.
For the newly emerged Nextera long mate-pair (LMP)
protocol, junction adapters that connect paired target
fragments exist in all properly constructed fragments;
thus, adapter trimming is essential to gain correct paired
reads.
Adapter trimming is different from contaminant re-

moval and is usually associated with NGS protocols where
adapters are synthesized and specified by the reagent ven-
dors. Given a known adapter pattern and a read sequence,
adapter trimming is usually modeled as a semi-global
sequence alignment, also called end-space free alignment,
where any space at the end of or beginning of the align-
ment does not incur penalties.
Semi-global sequence alignment can be performed

using the Smith-Waterman algorithm [2] with minor
revisions of the boundary condition as implemented in
Cutadapt [3], which has a time complexity of O(mn),
where m is the pattern length, and n is the sequence
length. A trickier solution, i.e. Ukkonen’s algorithm for k-
difference matching [4], has an expected time of O(kn),
where k < m is the maximum number of differences
allowed. Further improvements in Ukkonen’s algorithm
by bitwise parallelism were proposed by Myer [5] and
implemented in Btrim [6], which has a time complexity
of O(mn/w), where w is the word length of the com-
puter; e.g. w equals 64 for a 64-bit machine. In practice,
Myer’s bit-vector dynamic programming algorithm is the
fastest k-difference matching algorithm currently avail-
able. However, Myer’s algorithm is more appropriate for
searching patterns in text and is difficult to adapt to deal
with sequencing quality values in NGS data.
Other popular adapter trimmers are available; e.g.

Fastx_clipper in the FastX-Toolkit (http://hannonlab.cshl.
edu/fastx_toolkit/), SeqTrim (https://github.com/dariogf/
SeqtrimNext) [7], TagCleaner [8], and EA-Tools (http://
code.google.com/p/ea-utils/). Recently published trim-
mers are: SeqPrep (https://github.com/jstjohn/SeqPrep)

which focuses on paired-end (PE) reads; Flexbar [9], a
flexible barcode demultiplexer that uses the Needleman-
Wunsch algorithm [10] for pair-wise global sequence
alignments, which has the same time complexity as that of
Smith-Waterman algorithm; Trimmomatic (http://www.
usadellab.org/cms/index.php?page=trimmomatic), which
is a part of an integrated tool RobiNA [11]; Scythe
(https://github.com/vsbuffalo/scythe), which uses a Naive
Bayesian approach to classify contaminants in reads;
TrimGalore (http://www.bioinformatics.babraham.ac.uk/
projects/trim_galore/), which internally invokesCutadapt
with an extension to handle PE reads; AdapterRemoval
[12], which is carefully tuned for trimming adapters from
both single-end (SE) or PE reads; AlienTrimmer [13],
which is based on k-mer decomposition for contami-
nant detection; and NextClip [14], which is dedicated to
trimming adapters within Nextera LMP reads.
For sRNA sequencing data, a simple script can han-

dle the adapter trimming task with acceptable accuracy
and speed. However, trimming adapter sequences from
genome sequencing data requires tools that are much
more efficient, because the volume of data is much
larger. Some very fast tools such as Btrim and Trimmo-
matic tend to over-simplify the underlying model. Btrim
neglects the quality values associated with base calls for
adapter trimming although it does use quality values
for quality trimming [6]. Trimmomatic adopts a hash-
based search followed by a simple score-based search,
both of which neglect insertions and deletions for adap-
ter matching (http://www.usadellab.org/cms/index.php?
page=trimmomatic). To gain sufficient accuracy, most of
the adaptor trimming algorithms use conventional pair-
wise alignment algorithms such as the Smith-Waterman
or Needleman-Wunsch algorithms; however, these align-
ment algorithms are inefficient for adapter trimming
compared with more sophisticated algorithms [5].
In a typical application of adapter trimming, e.g. for

sRNA sequencing, usually only a short prefix of the full-
length adapter is scanned to reduce run time. However,
this strategy may increase the possibility of random hits
and cause biases in the trimmed sequences. Even when the
specified pattern is of sufficient length, for reads where the
3’ end overlaps with a short prefix of the adaptor pattern,
it is hard to judge whether the overlap is from finding the
adapter sequence or from sequence homology. On the one
hand, over-trimming of a bona fide part of the sequence
causes loss of information; on the other hand, leaving
an adapter untrimmed causes noise in the downstream
analysis.
In this paper, we propose a bit-masked k-difference

matching dynamic programming algorithm with O(kn)

expected time and O(m) space in which the informa-
tion within the adapter sequences is transferred into bits.
We developed a carefully designed statistical scheme that
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incorporates quality values (and PE information when
applicable), and implemented an industry-standard Linux
program called Skewer to address the trimming problem
accurately and efficiently.

Results and discussions
Features
The algorithm and statistical scoring schemes are imple-
mented as a Linux program Skewer using C++. A compar-
ison of the main features of Skewer with those of existing
mainstream adapter trimmers are presented in Table 1.

Experiment environment
The server that was used for the experiments had 4 × 8-
core Intel® 2.67GHz CPUs, 1T memory, and RAID with
bandwidths of 266MB/s and 262MB/s for reading and
writing respectively. The operating system (OS) was the
Red Hat Enterprise Linux Server release 6.3.

Experiments on simulated data
General information
We simulated 10 million 100 bp + 100 bp PE Solexa
reads from the Arabidopsis thaliana genome using ART,
a NGS read simulator [15], with some revision on the
source codes for simulating adapter-contaminated reads
(http://sourceforge.net/projects/skewer/files/Simulator/).
The trained profile was from the real sequencing data

of A. thaliana where about 36% of the reads were con-
taminated with adapters. We compared Skewer with
mainstream adapter trimmers that can handle PE reads
as well as four representative adapter trimmers that can
handle only SE reads.
To assess trimming quality, we defined the following

metrics: FP (false positive) as the number of reads that
were over-trimmed, either for trimming non-contaminant
reads (false trimming), noted as FP_ft, or for over-
trimming contaminant reads, noted as FP_ot; FN (false
negative) as the number of reads that were under-
trimmed, either for not trimming contaminant reads (false
retaining), noted as FN_fr, or under-trimming contami-
nant reads, noted as FN_ut; and TN (true negative) as the
number of untrimmed non-contaminant reads.
From these numbers, we defined the positive predic-

tive value (PPV) as the ratio of the number of correctly
trimmed reads to the number of trimmed reads; sensitiv-
ity (Sen) as the ratio of the number of correctly trimmed
reads to the number of contaminant reads; and specificity
(Spec) as the ratio of the number of untrimmed non-
contaminant reads to the number of non-contaminant
reads as follows:

PPV = TP/(TP + FP_ft + FP_ot + FN_ut) (1)

Sen = TP/(TP + FN_fr + FN_ut + FP_ot) (2)

Spec = TN/(TN + FP_ft) (3)

Table 1 Main features of various adapter trimmers

Adapter trimming Quality control Other

Method 5’ 3’ SE PE LMP Multi Ns Q Barcode Merge gzip Files MT

FastX × © © × × × © × © × × ×
SeqTrim × © © × × © © © × × © ©
TagCleaner © © © × × × × × × × × ×
EA-Tools × © © © × × © © © × © ×
Cutadapt © © © © × © × © × × © ×
TrimGalore × © © © × × × © × × © ×
SeqPrep × © × © × × × × × © × ×
Btrim © © © © × × × © © × × ×
Scythe × © © × × × × × × × © ×
Flexbar © © © © × © © © © × © ©
Trimmomatic × © © © × © × © × × © ©
AdapterRemoval © © © © × × © © × © × ×
AlienTrimmer © © © © × © × © × × × ×
NextClip × × × × © × × × × × × ×
Skewer © © © © © © © © © × © ©
For each method, the table shows if it is able to: i) identify adapters in the 5’ end of reads, ii) identify adapters in the 3’ end of reads, iii) process single-end (SE) reads, iv)
process paired-end (PE) reads, v) process Nextera long mate-pair (LMP) reads, vi) search for multiple different adapters (Multi), vii) trim subsequences of multiple
degenerative characters (Ns), viii) trim low-quality nucleotides (Q), ix) separate multiplexed reads based on barcodes, x) merge overlapped pairs into longer single-end
reads, xi) process gzip files directly, and xii) run with multiple threads simultaneously (MT). (©: Yes; ×: No).

http://sourceforge.net/projects/skewer/files/Simulator/
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Finally, we defined the Matthew’s correlation coefficient
(mCC), which is a quality measure for pattern recognition,
as:

mCC = TP · TN − FP · FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(4)

Primary result
Each method was run with its default parameters, except
that the minimum output fragment length and the thread
number (if applied) were set to 1.
The results obtained from these runs are listed in

Table 2 and details are available in Table S1 of Additional
file 1. FastX, an earlier and widely adopted NGS adapter
trimmer, had a relatively lowmCC (0.6683) and a low pro-
cessing speed (0.92Mbp/s); SeqTrim had a similar overall
performance as FastX (0.6618), but it had the slowest
processing speed (0.03Mbp/s) of all the trimmers tested
despite its extensive logging utility;TagCleaner was clearly
the most conservative of the trimmers (FP = 0), but it

had the lowest sensitivity (45.50%) and was notably slower
than FastX (58.7% of the speed); EA-Tools had the high-
est sensitivity (99.72%) for processing SE reads and was
orders of magnitude faster (13X ∼ 400X) than the slow
trimmers; Cutadapt, the most widely accepted adapter
trimmer, exhibited a good compromise between sensi-
tivity and specificity (96.27% vs. 96.93%), and had the
highest mCC (0.9286) among the existing tools for pro-
cessing SE reads; TrimGalore, a wrapper for Cutadapt,
had a performance that was equivalent to EA-tools with
default settings, but it was considerably slower than EA-
tools (28.2% ∼ 31.6% of the speed); SeqPrep, a dedicated
PE reads adapter trimmer and merger, had the highest
mCC (0.9975) among the existing tools for processing PE
reads, but it was slow (0.64Mbp/s); Btrim had the highest
speed (23.63Mbp/s) for adapter trimming, but it had low
sensitivity (53.44%); Scythe had an mCC similar to that of
Cutadapt for SE reads adapter trimming, but was more
conservative; Flexbar had slightly lowermetrics and about
20% lower processing speed than TrimGalore; Trimmo-
matic was among the most conservative ones, but it had

Table 2 Performance of adapter trimmers on 2Gbp simulated data

Method (Single End/Paired End) Speed (Mbp/s) Memory (Mb) PPV (%) Sen. (%) Spec. (%) mCC

FastX SE 0.92 13.8 68.90 90.84 77.97 0.6683

SeqTrim SE 0.03 115.7 67.07 85.27 81.24 0.6618

TagCleaner SE 0.54 37.6 100.0 45.50 100.0 0.5898

EA-Tools
SE 12.04 17.7 59.24 99.72 61.32 0.6010

PE 11.54 30.0 59.16 99.43 61.36 0.5983

Cutadapt
SE 4.36 34.5 94.55 96.27 96.93 0.9286

PE 3.44 42.8 94.55 96.00 96.93 0.9266

TrimGalore
SE 3.81 19.4 59.24 99.72 61.32 0.6010

PE 3.26 19.6 59.16 99.44 61.36 0.5984

SeqPrep PE 0.64 22.0 99.84 99.82 99.92 0.9975

Btrim
SE 23.63 11.2 99.96 53.44 100.0 0.6503

PE 5.79 15.3 99.89 53.30 100.0 0.6490

Scythe SE 3.15 11.2 99.56 90.86 99.92 0.9283

Flexbar
SE 2.82 9.5 57.90 99.12 59.48 0.5814

PE 2.70 9.7 57.77 99.09 59.29 0.5795

Trimmomatic
SE 16.73 2593.0 99.99 72.31 100.0 0.7907

PE 16.40 2292.0 100.0 71.54 100.0 0.7850

AdapterRemoval
SE 1.67 6.3 75.09 97.74 81.89 0.7675

PE 0.73 8.3 99.93 94.47 99.97 0.9566

AlienTrimmer
SE 1.64 2319.9 85.62 57.11 99.96 0.6769

PE 1.61 2248.9 83.71 55.67 99.95 0.6659

Skewer
SE 8.79 13.6 94.56 96.32 96.93 0.9291

PE 8.88 22.2 100.0 99.86 100.0 0.9989

Methods that process only single-end (SE) or paired-end (PE) reads are indicated.
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an acceptable sensitivity (72.31%) and a relatively high
speed (16.73Mbp/s); AlienTrimmer had similar metrics to
Btrim, but was much slower (1.64Mbp/s); and AdapterRe-
moval had a similar overall performance as SeqPrep for PE
reads processing, but unlike SeqPrep it can also handle SE
reads.
The results of the runs listed in Table 2 show that

Skewer outperformed all the mainstream tools in terms
of mCC for both SE and PE trimming (0.9291 and 0.9989
respectively), although Skewer was only marginally better
than Cutadapt and Scythe in SE trimming. Furthermore,
Skewerwas substantially faster (one times faster for SE and
more than 12 times faster for PE trimming) than the tools
that had comparative performances.
Trimmomatic and AlienTrimmer both used above 2G

bytes peak memory. Most of the other trimmers used
less than 50M bytes memory except SeqTrim, which used
115.7M bytes. Although Skewer did not have the least
memory usage, its memory consumption (less than 35M
bytes, see Table S2 of Additional file 1 for details) was far
from a bottleneck on a 64-bit computer. In fact, Skewer
uses additional memory to facilitate the processing of
IUPAC (International Union of Pure and Applied Chem-
istry) characters and for parallel computing.

Scalability for parallel computing
We ran various adapter trimmers that support multi-
threading to compare their scalability under a parallel
computing environment. SeqTrim was excluded because
it is too slow to gain comparative speed even with tens
of threads. In addition, Cutadapt, AdapterRemoval, and
other tools were not included because they currently lack
a multi-threading function. In the eight threads case, for
both the uncompressed and compressed inputs, Skewer
achieved the highest speedup among the adapter trim-
mers tested (7.87 for uncompressed input, and 4.54 for
compressed input) (see Table S2 of Additional file 1 for
details).

Receiver operating characteristic (ROC) curves
ROC curves for various adapter trimmers under different
stringencies were plotted and are shown in Figure 1 and
Figure 2 (see Table S3 of Additional file 1 for details).
In high stringency (left) regions, both Trimmomatic and

Cutadapt performed well in that they had low FPRs (false
positive rates) and high TPRs (true positive rates); how-
ever, as the stringency decreases, both their performance
degrade gradually (Figure 1). A similar trend was seen for
TrimGalore where the ROC curve shifted to the upper-
right region. This implies that these trimmers greedily
picked up the first candidate that met the stringency
rather than select the optimal one. The ROC curve for
AlienTrimmer was similar to the above ones, but with a
worse performance. FastX may adopt some optimization

technique, however, its performance was worse than those
of Trimmomatic and Cutadapt within all the stringency
range. Other adapter trimmers showed advantages on a
specific metric; e.g. AdapterRemoval, Flexbar, and EA-
Tools were the most sensitive, while TagCleaner, Btrim,
and Scythe were the most conservative. SeqTrim appeared
only as a dot in the ROC curves plot, because it does not
provide a stringency threshold. Skewer outperformed the
other adapter trimmers in that it had the least FPR to gain
a specific TPR, when TPR > 95%.
ROC curves for the adapter trimmers that are aware of

PE information were plotted and are shown in Figure 2.
Other trimmers that can process PE reads have worse
ROC curves than corresponding ROC curves for process-
ing SE reads since the second reads usually have lower
sequencing qualities. From Figure 2, we can see that
Skewer had a nearly perfect ROC curve close to the upper-
left corner. For example, it achieved a TPR of 99.951%with
a FPR of 0.001%.

Experiments on real data
sRNA sequencing data for Caenorhabditis elegans
A recently published real sRNA data set (short read arc-
hive [SRA:SRR014966]) [16], which includes 14,251,981
reads of small non-coding RNA (ncRNA) from C. elegans,
was used to evaluate the adapter trimmers. Because it is
hard to recover all the underlying sRNA fragments for
sequencing, we aligned the trimmed reads to the refer-
ence genome and used delta of the number of uniquely
aligned reads relative to the number of uniquely aligned
raw reads, noted as TT (true trimming), as a substi-
tute for true positive. We also used delta of number of
non-uniquely aligned reads relative to the number of non-
uniquely aligned raw reads, noted as FT (false trimming),
as a substitute for false positive. The rationale was that
correct-trimming tends to change unaligned fragments
to uniquely aligned fragments (true positive), while over-
trimming tends to change uniquely aligned fragments to
non-uniquely aligned fragments (false positive). Note that
these metrics tolerate tiny mistakes that can be rescued
by the alignment software and are useful for practical
evaluation.
To evaluate the performances under various trimming

stringencies, all the tools were used to trim adapter
sequences from the C. elegans data set using various trim-
ming stringency. Next the processed reads were aligned to
theC. elegans genome [17] (version 10) using Bowtie2 [18]
(version 2.1.0). We then used the above metrics for final
plotting, with higher FT representing lower stringency.
The results are presented in Table S4 and Table S5 of

Additional file 2, and illustrated in Figure 3. AdapterRe-
moval and Flexbar exhibited similar performance curves,
while AdapterRemoval was slightly better than Flexbar
within all the tested stringency range; and TrimGalore
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Figure 1 ROC curves of various adapter trimmers for processing single-end reads of simulated data. ROC: receiver operating characteristic.

and Cutadapt had similar curves, while TrimGalore was
slightly better thanCutadapt at all the stringencies. Under
high stringency, EA-Tools, Skewer, and TrimGalore shared
the first rank in terms of low FT and high TT ; Trimmo-
matic, AdapterRemoval, and Schythe were ranked second
under middle stringency, middle low stringency, and low
stringency respectively; and Skewer ranked first at all the
stringencies.

Paired-end RNA sequencing data for Drosophila simulans
A real RNA-Seq data set with 27,005,344 pairs of 101
bp reads (short read archive [SRA:SRR330569]) from the
gonads and carcasses of D. simulans was used to compare
the performances of the adapter trimmers in trimming
artificial contaminants from PE reads.
For the evaluation, we first used each of the tools

that can deal with PE reads with default setting to trim

Figure 2 ROC curves of various adapter trimmers for processing paired-end reads of simulated data. ROC: receiver operating characteristic.
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Figure 3 Performance of various adapter trimmers on real small RNA data [SRA:SRR014966].

adapters from the reads, with the exception that the min-
imum output fragment length was set to 20 and quality
trimming was inhibited. We then used TopHat [19,20]
(version 2.0.10) to align the processed reads to the ref-
erence genome of D. simulans [21] (dsim revision 1.4).
Finally the number of uniquely and concordantly aligned
pairs was used as the performance metrics.
The results are presented in Table S6 of Additional

file 3 and illustrated in Figure 4. Skewer outperformed
the other adapter trimmers in terms of the number of
uniquely and concordantly aligned pairs of the trimmed
PE reads. Trimmomatic and AdapterRemoval, both of
which performed well in processing the sRNA data, per-
formed poorly in processing the long PE data. This
finding implies that these tools may be tuned specifi-
cally for trimming adapters from sRNA data. Similarly,
Btrim also performed less well with the PE data in this
experiment. After investigating the processed data, we
found that Btrim could recognize only the occurrence
of the whole adapter sequence with a limited tolerance
for insertions and deletions. It should be noted that all

quality trimming was inhibited from these experiments
to compare the adapter trimming performance alone.
However, in real applications, quality trimming, which is
outside of the scope of this paper, has been reported to
improve the mapping rate and facilitate downstream data
analysis [22].

Nextera longmate pair (LMP) data for Arabidopsis thaliana
A 5-kb insert size Nextera LMP library of A. thaliana
Col-0 with 6,602,426 pairs of 251bp reads (European
Nucleotide Archive [ENA:ERA264981]) and a 400-bp
insert size Illumina HiSeq PE library of the same species
with 17,341,797 pairs of 100 bp reads [ENA:SRR519624]
were sequenced previously and used to demonstrate the
utility of NextClip [14], a dedicated tool for trimming
adapters from Nextera LMP libraries.
To compare Skewer with NextClip, we followed a valida-

tion procedure similar to the one described for NextClip
[14]. Briefly, the LMP library was first trimmed using
the adaptor trimmer. Then the trimmed LMP reads and
the PE reads were de novo assembled using ABySS [23].
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Figure 4 Performance of various adapter trimmers on real paired-end data [SRA:SRR330569].

The time needed for the adapter trimming and the N50
lengths of the scaffolds were used as the metrics for the
evaluation.
The result is listed in Table 3 (see Additional file 4 for

relevant commands in detail), from which we can see
that Skewer marginally outperforms NextClip in terms of
assembly statistics (N50 length etc.) of the trimmed reads.
In addition, Skewer is about 49% faster than NextClip in
single thread mode.

Conclusions
We presented a novel algorithm and applied it to adapter
trimming. The inherent advantage of the proposed bit-
masked k-difference matching dynamic programming
algorithm makes it possible to search adapter sequence

pattern in an exhaustive yet efficient manner. Moreover,
by using carefully designed scoring schemes for adapter
pattern matching in both SE and PE sequencing data, the
resultant Skewer tool was shown to achieve accuracies
that were not matched by other similar tools that are cur-
rently available. Importantly, Skewer was not optimized
for specific applications (e.g. sRNA sequencing); however,
compared with other adapter trimmers, it performed well
over all NGS applications.
Read lengths and throughputs of NGS technolo-

gies are likely to keep increasing; therefore, efficient
and accurate adapter trimming methods will con-
tinue to be important in the preprocessing steps in
applications such as genome resequencing, de novo
sequencing, transcriptome sequencing, as well as sRNA
sequencing.

Table 3 Comparison of NextClip and Skewer in processing Nextera longmate-pair (LMP) reads (ERA264981)

Reads for scaffolding Time for trimming adapters from Nextera LMP library (s)
Assembly

Pieces N50 length Total length (Mbp)

None N/A 14097 19150 105.80

Paired end (PE) only N/A 11781 23496 104.84

PE and NextClip processed 1480.39 6080 309342 111.55

PE and Skewer processed
993.49 (single thread)

5806 312317 112.52
155.96 (8 threads)
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Methods
Problem definition
Notation
TheLevenshtein distance between two stringsA = a1a2 . . .

a|A|, B = b1b2 . . . b|B|, noted as ‖A,B‖lev, is given by a
recursive formula (assuming |A| > 0, |B| > 0):

‖A,B‖lev := min

⎧⎪⎨
⎪⎩
∥∥a1a2 . . . a|A|−1, b1b2 . . . b|B|−1

∥∥
lev + δa|A| ,b|B|∥∥a1a2 . . . a|A|−1,B

∥∥
lev + 1∥∥A, b1b2 . . . b|B|−1

∥∥
lev + 1

where δa,b = 1 if a �= b, otherwise δa,b = 0. When
min(|A|, |B|) = 0, ‖A,B‖lev := max(|A|, |B|).
k-difference problem
Given a sequence S = s1s2 . . . sn, a query pattern P =
p1p2 . . . pm, and a threshold k(0 ≤ k < m), search all
substrings of S, noted as {P′}, such that

∥∥P′,P
∥∥
lev ≤ k.

Extended k-difference problem
Given a sequence S = s1s2 . . . sn, a query pattern P =
p1p2 . . . pm, and a threshold e(0 ≤ e < 1, 	n × e
 =
k), search all substrings of S, noted as {P′}, such that∥∥P′,P

∥∥
lev ≤ k; and all suffixes of S, noted as {S′}, such that

∃ a prefix of P, noted as P′, and
∥∥S′,P′∥∥

lev ≤ |S′| × e

Algorithms
For the k-difference problem, the classic approach [2] com-
putes a (m + 1) × (n + 1) dynamic programming matrix
C[0..m,0..n] using the following recurrence:

C[ i, j]= min

⎧⎪⎪⎨
⎪⎪⎩
C[ i − 1, j − 1]+δij

C[ i − 1, j]+1

C[ i, j − 1]+1

where

δij =
{
0, if pi = sj,

1, otherwise.

with initialization at the upper boundary by C[ 0, j]= 0,
and at the left boundary by C[ i, 0]= i, for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n. Finally, the algorithm tests the last row
of the matrix, i.e. C[m, j], and reports those elements that
are no greater than k. This algorithm has O(mn) time and
O(mn) space complexity.
The space bound can be easily reduced toO(m) if matrix

C is computed by columns, noted as Cj for j = 1, 2, . . . n,
and report a match each time Cj[m]≤ k, because com-
puting column Cj requires only the knowledge of previous
column Cj−1. With careful design, Cj and Cj−1 can share
one column vector, as proposed by Ukkonen [4].
Ukkonen also observed that for columns that have the

last element greater than k, there is a boundary index ofCj,
noted as lac(Cj), such that Cj[ lac(Cj)]= k and Cj[ l]> k
for l = lac(Cj) + 1, . . .m. It is easy to prove that lac(Cj) ≤

lac(Cj−1) + 1. Using this observation, Ukkonen reduced
the time from O(mn) to expected O(kn) [4].
Our algorithm was developed from Ukkonen’s algo-

rithm; however, we use a queue instead of an array to
store all elements of current column above the boundary
index. When there is a new element that corresponds to
the topmost element of the new column, all elements in
the queue shift automatically to the next (lower) position,
just as elements transfer in the diagonals of matrix C. This
process inherently keeps the basic properties of Ukkonen’s
algorithm and facilitates subsequent improvements.

Lemma 1. In the dynamic programming matrix C for
tackling the k-difference problem, the values of elements
along each diagonal are monotonically non-decreasing.

The proof is provided in Additional file 5 Appendix A.

Theorem 1. All the matched elements of the query pat-
tern and sequence are equal to their precursors in the
diagonal and do not need to be updated in the dynamic
programming process.

Proof. This theorem is a direct consequence of Lemma 1
and the dynamic programming recurrence, when δij = 0.

In other words, only mismatched elements need to
be updated in the dynamic programming process. If
bit-vectors that denote mismatched positions of com-
parison between the adapter sequence and each of the
four nucleotide characters are pre-computed and a bit-
vector that marks all positions of the queue elements
that exceed the k-difference constraint is maintained, then
unnecessary computations in updating the column vector
can be inhibited. This is the key point that led to the main
improvement of our algorithm over Ukkonen’s algorithm.
As listed in Algorithm 1, the bit-masked k-difference

matching algorithm has the following characteristics:

• Use a queue instead of an array to store all elements
of the current column above boundary index.

• In preprocessing, calculate for each of four
nucleotide characters a bit-vector that denotes the
mismatched positions compared with the adapter.

• Mark the internal cells that exceed the k-difference
constraint by a bit-vector which shifts as the queue
pushes it.

• When processing the column starting from each
input nucleotide, update only the cells that
mismatch and have not been marked.

This algorithm uses a queue of size m and several bit
vectors of size �m/w
, where w is the word length of the
computer (for example w equals 64 for a 64-bit machine),
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and hence has a space of O(m). For each of the n charac-
ters in a target sequence, the character enters the queue
once and exits from the queue at most once. For a random
sequence, the expected size of the queue is O(k); hence,
generally the algorithm has O(kn) expected time. How-
ever, because it is restricted by the bit-mask operations,
each element in the queue usually updates at most k + 1
times. Because bit operations are negligible compared
with element update operations, this algorithm achieves
O(kn)worst-case time in practice, which is better than the
O(kn) expected time for Ukkonen’s algorithm.

Algorithm 1 bit-masked k-difference matching algorithm
1: for a in [A,C,G,T ,N] do
2: calculate a bit-vector misBits[ a] in comparison

with P
3: end for
4: legalBits = 0
5: for i = 1 to k do
6: Q.pushBack(idx=−i, dif=i)
7: legalBits = (legalBits << 1) | 1
8: end for
9: for j = 0 to n − 1 do

10: d = (P0 �= Sj)
11: Q.pushFront(idx=j, dif=d)
12: legalBits = (legalBits << 1) | 1
13: bits = legalBits |misBits[ Sj];
14: for i in 1..Q.size()-1 && bits(i) do
15: q = arg mini+1

r=i−1(Q[ r].dif )
// r �= i + 1 for the last iteration

16: Q[ i].dif= Q[ q].dif + 1
17: Q[ i].idx= Q[ q].idx
18: if Q[ i].dif > k then
19: legalBits = legalBits&∼ (1 << i) // clear bit i
20: end if
21: end for
22: while Q.back().dif > k do
23: Q.popBack()
24: end while
25: if Q.size() ==m then
26: report Q.back().idx;
27: Q.popBack()
28: end if
29: end for

Algorithm 1 can be improved further by avoiding all
unnecessary updates through constant time bit operations
within each iteration cycle of the target nucleotide. The
basic principle is that when an element in a diagonal of the
original dynamic programming matrix has a value that is
derived from an adjacent diagonal (i.e. an indel occurs in
the corresponding path), the score and associated index
of the element will remain unchanged if the precursor
remains unchanged.
Although the above improvement can reduce the theo-

retical time complexity from expectedO(kn) to worst-case
O(kn), experiments on large volumes of real data showed
that the reduced element update operations did not com-
pensate for the additional bit operations.
For the extended k-difference problem, an additional step

bounded by O(m) is performed to check all the elements
remained in the queue if no hit was found in previous
steps.

Deal with base-call qualities
Themain advantage of the bit-masked k-difference match-
ing algorithm overMyer’s bit-vector algorithm is that it can
be extended to handle base-call quality values.
To handle base-call quality values, we introduce the fol-

lowing parameters: Pmin = −log10(1/3), the minimum
penalty for a mismatch; Pmax = −log10(1040/(−10)/3),
the maximum penalty for a mismatch; delta = Pmax,
the penalty for an insertion or deletion. The penalty of a
mismatch with quality value q is calculated as:

P(q) =

⎧⎪⎪⎨
⎪⎪⎩

Pmin q ≤ 0

Pmin + q/40 × (Pmax − Pmin) 0 < q < 40

Pmax q ≥ 40

It is trivial to prove that P(q) = −log10(10q/(−10)/3)
when 0 < q < 40. This score is the negative logarithm
of the probability that the corresponding base is actually a
match to the adapter sequence with sequencing error.
Note that the scoring scheme herein only induces

penalties for mismatches and insertions/deletions. For
matches, because the possibility of false matching based
on sequence homology reduces exponentially as the
matching length increases, the false matching possibil-
ity can be reduced by setting a longer alignment length.

Figure 5 Layout of paired-end reads that have adapter contaminants.
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When PE information is available, the false matching
possibility can be reduced to a minimum.
The extended version of Algorithm 1 that can take qual-

ity values into consideration is outlined in Additional file 6
Appendix B.

Deal with paired-end information
Unlike the standard SE sequencing, PE sequencing reads
out each DNA template twice, in opposite directions
from different ends. The underlying fact is that all the
PE reads that need to be trimmed must have the pre-
served paired sequences reverse-complement to each
other, as illustrated in Figure 5 and Additional file 7
Appendix C.
Using this property, the program first finds all k-

difference occurrences of adapters in both paired reads
using the extended version of Algorithm 1 with qual-
ity values considered. Then the reverse-complementary
property of each trimmed paired sequences is checked.
Next, all candidates are evaluated with a scoring scheme
that takes into account the fitness of adapter sequences in
paired reads and the alignment of reverse-complementary
counter-parts. Finally, the program outputs the optimal
occurrence, if any.
The scoring scheme we used is as follows:

score(idx)= pscore(read1[idx . . . readLen−1] , adapter1)

+ pscore(read2[idx . . . readLen−1], adapter2)

+ pscore(read1[ 0 . . . idx − 1] ,

revComp(read2[ 0 . . . idx − 1] ))

where idx is the start position for trimming, pscore(x, y) =
|x| × Pmax − penalty(x, y), Pmax is the maximum penalty
for a difference, penalty(x, y) is the penalty for match-
ing x and y as calculated by the k-difference matching
algorithms, and revComp(x) denotes the reverse comple-
mentary sequence of x. The goal is to find the idx that
meets the k-difference requirement and maximizes the
score function.

Deal with Nextera LMP information
Mate-pair library sequencing allows the generation of
long-insert PE libraries that are useful in the scaffold-
ing process of de novo genome assembly and in the
detection of long-range genome structural variations. In
the Nextera LMP library construction process, there are
additional reactions called “tagmentation” and “circular-
ization” before the normal PE library construction. The
tagmentation reaction uses a specially engineered trans-
posome to fragment the DNA sample and tag the DNA
fragments by attaching a pair of biotinylated junction

adapters simultaneously to the ends. Next, the tagmented
DNA molecules are circularized and sheared by ultrason-
ics, and the sub-fragments containing the original junc-
tion parts are enriched via the biotin tag in the junction
adapter.
Trimming adapters from Nextera LMP reads is like a

reverse process of Nextera LMP library construction. To
process Nextera mate-pair reads, the program first trims
the adapters as if it is dealing with PE reads. Then, it
trims junction adapters from the processed paired reads
separately using the extended version of Algorithm 1.

Availability of supporting data
The data sets supporting the results of this article are avail-
able from high-throughput DNA and RNA sequence read
archive: http://www.ncbi.nlm.nih.gov/sra/?term=SRR014966,
http://www.ncbi.nlm.nih.gov/sra/?term=SRR330569, http://
www.ncbi.nlm.nih.gov/sra/?term=ERA264981, and http://
www.ncbi.nlm.nih.gov/sra/?term=SRR519624.
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