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Background: Supertrees combine disparate, partially overlapping trees to generate a synthesis that provides a
high level perspective that cannot be attained from the inspection of individual phylogenies. Supertrees can be
seen as meta-analytical tools that can be used to make inferences based on results of previous scientific studies.
Their meta-analytical application has increased in popularity since it was realised that the power of statistical tests for
the study of evolutionary trends critically depends on the use of taxon-dense phylogenies. Further to that, supertrees
have found applications in phylogenomics where they are used to combine gene trees and recover species

Results: Here, we present the L.U.St package, a python tool for approximate maximum likelihood supertree
inference and illustrate its application using a genomic data set for the placental mammals. L.U.St allows the
calculation of the approximate likelihood of a supertree, given a set of input trees, performs heuristic searches to
look for the supertree of highest likelihood, and performs statistical tests of two or more supertrees. To this end,
L.U.St implements a winning sites test allowing ranking of a collection of a-priori selected hypotheses, given as a
collection of input supertree topologies. It also outputs a file of input-tree-wise likelihood scores that can be used
as input to CONSEL for calculation of standard tests of two trees (e.g. Kishino-Hasegawa, Shimidoara-Hasegawa

Conclusion: This is the first fully parametric implementation of a supertree method, it has clearly understood properties,
and provides several advantages over currently available supertree approaches. It is easy to implement and works on any

Availability: bitBucket page - https://afro-juju@bitbucket.org/afro-juju/l.u.st.git.

Keywords: Supertrees, Maximum likelihood, Phylogenomics, Tests of two trees

Background

Supertree methods are generalisation of consensus methods
to the case of partially overlapping input trees, and any
method that can be used to amalgamate a collection of
such trees is a supertree method [1]. Supertrees were
formally introduced to the realm of the classification
sciences by Gordon [2], who described a Strict Consensus
Supertree method. However, the first supertree algo-
rithm was introduced by Aho and colleagues [3] as an

* Correspondence: davide pisani@bristol.ac.uk

'Department of Biology, The National University of Ireland, Maynooth,
Maynooth, Kildare, Ireland

“School of Biological Sciences and School of Earth Sciences, The University of
Bristol, Woodland Road, BS8 1UG Bristol, UK

Full list of author information is available at the end of the article

( BiolMed Central

application to merge partially overlapping databases.
Since these early works, there has been a lot of interest
in supertree reconstruction particularly in evolutionary
biology where supertrees have found an application as
meta-analytical tools used to combine, and derive infer-
ences from, published phylogenetic trees. Purvis [4]
presented the first application of a supertree in this
context merging primate phylogenies obtained from the
literature to generate a supertree, and using it to test
evolutionary hypotheses. Since then, the application of
supertrees and more specifically their use for recon-
structing large phylogenies in evolutionary biology has
continued to be on the rise, paralleled by a substantial
interest in the development of supertree methods. More
recently, supertrees have also found important applications
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in genomics where they have been used to combine gene
trees and derive species phylogenies [5-9].

A large number of supertree methods have been devel-
oped since the time of the Aho algorithm. However,
most actual supertrees have been derived using the
Matrix Representation with Parsimony (MRP) method of
Baum [10] and Ragan [11]. This is due to the availability
of excellent parsimony software and the general good
understanding of the theory underlying parsimony. Yet
theoretical justifications for the application of parsimony
to the supertree setting are weak, and MRP is mostly
implemented due to the fact that it is easily applicable
in practice and tends to return well-resolved trees [12].
More generally, most available supertree methods are
ad hoc, their properties being often poorly known, and
the rationale for their application unclear [13-15]. The
only exceptions seem to be those based on generalisations
of well-known consensus methods [16], and the maximum
likelihood (ML) method of Steel and Rodrigo [17].

We present a Python implementation of the ML super-
tree method of Steel and Rodrigo [17]. The method has
been shown to be consistent on general statistical condi-
tions unlike other approaches like MRP [17], and it is
closely related to the majority rule (-) supertree method
[16], with which it has been suggested to share important
properties, in particular the fact that the supertrees it
generates have been suggested to be, like those derived
using majority rule (-), median trees for the input set [17].

The method is “approximate” in the sense that, likeli-
hood vales are not normalised for tree size. However, it
has been pointed out that at the least in the context of
Maximum Likelihood analyses, given the parametric
conditions under which our software is limited to work,
this should not be a problem [18].

The ML supertree method is available as part of the
Likelihood Utility for Supertrees (L.U.St) package. L.U.St
is licensed under the GNU General Public License. Once
downloaded, L.U.St can be run on any platform on which
python is installed.

Implementation

L.U.St’s estimation of the ML supertree operates by tak-
ing as input a file containing a set of newick-formatted
trees (i.e. the input trees). L.U.St’s ML supertree method
navigates the tree space using four alternative heuristic
search strategies, varying in their speed and heuristic
nature (these are compared elsewhere [19]). These are
all based on Subtree Pruning Regrafting (SPR) algorithm.
The user can either provide a starting supertree for the
search or L.U.St can generate a random starting supertree
using a stepwise addition technique. It should here be
noted that as in standard ML phylogenetic analyses,
providing a non-random starting tree (in the case of
supertree reconstruction this could be a MRP supertree)
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would speed up the analysis. The likelihood score of the
proposed supertree is calculated by first estimating the
likelihood of each input tree, given the current supertree.
After that, all input-tree wise likelihood values are sum-
med to get the likelihood of the proposed supertree. Input
tree wise likelihood values are calculated assuming that
each input tree can be considered a subsample of the
proposed supertree generated by pruning taxa and recon-
structed with or without some topological distortion or
incongruence. To calculate an input tree-wise likelihood
value the proposed supertree is pruned to have the same
taxon set of the considered input tree. After that the sym-
metric difference on full splits (i.e. the Robinson-Fould’s
distance) [20], designated as d, between the pruned super-
tree and the input tree is calculated, in order to evaluate
how dissimilar the input tree and the supertree are. The
symmetric difference (d) is then used to calculate the
input-tree likelihood using Steel and Rodrigo’s formula:

Pr Y{T’} —a exp[—ﬁd(’f,T‘Y)}

Where o is a normalising constant and [ is a value
representing the quantity and quality of the data used
to infer the input tree. An exponential distribution is
used to model phylogenetic error. This implies that the
probability that a given input tree is a sample of the
proposed supertree decrease exponentially as d increases.
The likelihood of each proposed superteee is then calcu-
lated summing across all tree-wise likelihood scores.

The method is “approximate” in the sense that, likelihood
vales are not normalised for tree size. This means that the
likelihood we calculate is a “weighted” sum of the input
tree likelihoods, where the weights correspond to the
tree-specific normalising constant (a). Albeit calculating
these normalising factors is in theory possible [18], it is
computationally very time consuming. However, Bryant
and Steel [18] pointed out that if one uses small [ values,
the normalising constants simplify to a value that can be
approximated using a =1 irrespective of the input-tree
sizes. For pragmatic reason (to maximise speed of execu-
tion), we currently do not allow the user to select 3, has
been fixed to a low value (p =1). This should result in
the normalising factor of («), of Steel and Rodrigo [17]
to simplify to a value of one (i.e. « = 1). It has been pointed
out that at the least in the context of Maximum Likelihood
analyses this should not affect the ranking of the supertrees
[18]. Indeed analyses performed to test the accuracy of
the method and to compare it with other supertree
methods, seem to confirm Bryant and Steel results [19].
But we acknowledge that the ranking will be based on
approximate, rather than correct, likelihood values.

L.U.St includes methods that allows for a variety of extra
functions, including statistical tests for choosing between
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alternative hypotheses (tests of two trees — Winning
site test, Kishino Hasegawa (KH) test [21], Shimidoara
Hasegawa (SH) test [22] and the Approximately unbiased
(AU) test [23]). Whilst the winning site test can be run
natively in L.U.St, the calculation of KH, SH, AU and
other tests requires the use of CONSEL [24]. To our
knowledge there is no other software package that
allows the extension of standard tests of two trees to
the supertree framework. However, tests of two trees
can have great utility in supertree research, as they can
be used, for example, to investigate the extent to which
current evidence (i.e. currently published trees) support
alternative phylogenetic hypotheses (i.e. a set of proposed
supertrees). Further to that, tests of two trees can be used
in the phylogenomic context to evaluate the extent to
which a set of gene-trees can reject a set of alternative
phylogenetic hypotheses (i.e. a set of supertrees). Below
an example of the use of test of two super(trees) in the
phylogenomic context is provided.

L.U.St offers the user other useful functions to randomly
resolve polytomies, deroot trees, reroot trees, resolve poly-
tomies in a set of trees according to a user-provided input
tree, create bootstrap replicates of input tree datasets,
prune phyologenies, convert nexus formatted trees to the
newick format and vice versa, and extract the taxon set of
sets of trees.

Example
Using supertree to investigate deep placental phylogeny.
Several hypotheses have been proposed for the position
of the root of the placental mammals (Figure 1). Those
that received the greatest support in recent studies are: (i)
the “Xenarthra root” [25], which places the xenarthrans
(i.e. armadillos, the anteaters, the tree sloths etc.) as the
sister group to all the remaining placentals, (ii) the
“Afrotheria root” [26,27], which places the Afrotheria (i.e.
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sea cows, manatees, aardvarks etc.) as the sister group to
all the remaining placentals, (iii) the “Atlantogenata root”
[28-30] suggesting that the sister group to the all the
remaining placentals is is a clade comprising Afrotherian
and the Xenarthrans. Further hypotheses that have
historically been suggested include, for example (iv) the
“hedgehog-1 root” placing the hedgehog (a Laurasiatherian)
as the sister group of all the other placentals [31], (v)
“hedgehog-2 root”, placing the hedgehog as the sister group
of all the placentals followed by the rodents [32], and (vi)
the “murids root” placing the mouse and the rat as the
sister group of all the other placentals, and often finding
the other rodents as a paraphyletic assemblage (e.g. [33],
Figure 1A-F). Signals for the topologies in Figure 1A-B,
and to a lesser extent Figure 1C, have been identified in
many mammalian genes [27]. The fact that many different
genes support different sets of relationships has resulted in
a strong (still unresolved) debate about the correct place-
ment of the root of the placental tree (contrast [25,27,30]).
On the contrary, signal for the trees in Figure 1D-F is scant
and these topologies most likely represent tree reconstruc-
tion artefacts (e.g. model misspecification [34], signal satur-
ation [35], and long branch attraction [35,36]).

We decided to present an exemplar phylogenomic study
of the mammalian relationships to illustrate our supertree
software because, based on current knowledge, we can
make predictions about what results to expect from our
analyses and investigate whether the actualised outcomes
from our software deviate from our expectations. More
precisely, based on the results of [27] we expect that: (1)
either the Afrotheria (Figure 1A) or the Atlantogenata
(Figure 1B) hypotheses will emerge in our optimal ML
supertree (most genes in mammalian genomes support
one of these two topologies). (2) Similarly, a bootstrap
majority rule consensus tree will most likely display
one of the two above-mentioned hypotheses (Figure 1A
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Figure 1 The six compared mammal phylogenies. (A) Afrotheria root; (B) Atlantogenata root; (C) Xenarthra root; (D) Rodentia root; (E)
Hedgehog root hypothesis of [32]; (F) Hedgehog root hypothesis of [31].
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Figure 2 Results of supertree analyses. (A) Maximum likelihood
supertree of the placental mammals. (B) Bootstrap Majority Rule
Consensus Supertree.

or B). However, (3) as many genes are known to support
both the topologies in Figure 1A-B (and to a lesser extent
the tree in Figure 1C), bootstrap support for the basal
placental split in the optimal ML supertree (and in the
bootstrap consensus tree) are expected to be low. (4)
Tests of two trees are not expected to be able to differenti-
ate significantly between the topologies in Figure 1A-B.
Indeed, given the results of [27] we can confidently predict

Table 1 Results of the test of two trees
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that the trees in Figure 1A and B should be the first and
second best fitting hypotheses, even though we cannot
predict what their relative order will be (i.e. whether the
tree in Figure 1A or in Figure 1B will be the best fitting
one). Similarly, (5) whilst we cannot predict whether the
Xenarthra hypothesis of Figure 1C will be significantly
rejected by the Approximately Unbiased (or by another)
test (e.g. Kishino-Hasegawa test), we can predict that this
hypothesis should emerge as the third best one (see [27]).
Finally, although we cannot make predictions about how
the trees in Figure 1D-F will be ranked, given what is
known of the distribution of the signal in mammal gene
trees [27], we would expect all these hypotheses to be
significantly rejected by the data and to emerge as the
three hypotheses that worst fit our data.

To reconstruct our ML supertree of the placental mam-
mals the gene-trees dataset of [9] was employed. This
gene-trees data set was pruned to exclude irrelevant taxa
using Clann [37]. Only 6 placentals (human, mouse, cat,
hedgehog, elephant and armadillo) and one marsupial (the
opossum) were retained. This meant that the dataset was
reduced from 42 taxa overlapping on 2216 gene trees to 7
taxa overlapping on 389 gene trees (with the gene trees
being partially overlapping and containing between 4 and
7 taxa).

Result and discussion

L.U.St was used to estimate a placental ML supertree.
The ML analysis was run for ten iterations with the
heuristic search option set to 4 (i.e. using the fastest, least
exhaustive, of the search strategies currently available in
L.U.St). The pruned MRP supertree from [9] was used
as starting tree. The resulting optimal ML supertree
supports Afrotheria (Figure 2A). Twenty bootstrapped
sets of trees were generated and ML supertree analyses
were carried out for each to evaluate support for the
inferred relationship of the placental mammals. A majority
rule consensus was used to summarise the set of optimal
supertrees from the bootstrap analyses and derive support
values for the nodes in the optimal ML tree reported in
Figure 2A. In addition to that we also report the Majority
Rule consensus tree (Figure 2B), which differently from
the optimal ML supertree, supports Atlantogenata. As

Hypotheses Approximate likelihoods Ranks AU test SH test KH test
Afrotheria root —487.092 1 0.628 0.886 0579
Atlantogenata root —487.960 2 0.496 0.874 0421
Xenarthra root —493.172 3 0.128 0614 0.146
Muridae root —523.573 4 0.001 0.017 0.003
Erinaceous root 1 —568.739 5 9E-08 0 0
Erinaceous root 2 —586.111 6 1E-07 0 0

Hypotheses tested are those from Figure 1.
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expected (see above) the data provides almost equal
support to Afrotheria and Atlantogenata (with the ML
supertree supporting Afrotheria even though in the
bootstrap replicates Atlantogenata was more frequently
recovered). As expected trees representing other alternative
hypothesis Xenarthra root (Figure 1C), murids root
(Figure 1D), and the two hypotheses with a hedgehog
root (Figure 1E and F) obtained lower (~6% bootstrap
support for the Xenarthra and murid roots hypotheses)
or no support (the hypotheses where the hedgehog was
the sister group of all the other taxa). L.U.St was then
used to estimate, for each one of the 389 input gene-trees,
its tree-wise likelihood under each of the six alternative
supertree topologies in Figure 1A-F. The input-tree-wise
likelihood scores were then inputted into CONSEL to
perform tests of two trees. The results from this analysis
(Table 1) show that, as expected, the Approximately
Unbiased test was not able to reject any of the three
mainstream hypotheses (Afrotheria, Atlantogenata, and
Xenarthra-root). Afrotheria emerged as the hypothesis
that best fits the data (as expected given that it was rep-
resented in our optimal ML supertree), and as expected
Xenarthra-root emerged as the third best-fitting hypothesis.
Finally, also in this case in agreement with our expectations,
all remaining hypotheses (Figure 1D-F) were significantly
rejected by the data. Note that the more conservative
Shimidoara-Hasegawa test was not able to reject the
rodent basal hypothesis of Figure 1D. However, this test
is well known to be over-conservative [23], hence also
this result is essentially in line with our expectations.
All results generated were in agreement with our
expectations (see above) and apart from confirming
that the phylogenetic relationships of the mammals
are still far from being resolved, they illustrate that L.
U.St behave as expected and return results that reflect
well current understanding of mammal evolution. Overall
this illustrates that L.U.St will represent a useful tool
in phylogenomics and supertree reconstruction more

broadly.

Conclusions

L.U.St represent the first implementation of a maximum
likelihood supertree method. This method calculates
approximate ML values and has the advantage of finding a
tree that has been suggested might be representative of
the median of the set of input trees when the symmetric
difference metric is used to calculate the tree-to-tree
distance. An added advantage of having an approximate
ML supertree implementation is that it allows performing
statistical test on trees to choose between alternative
hypotheses. The results obtained with our toy example
reflect current knowledge of mammalian evolution and
confirm that the L.U.St package behaves as expected
when used to attempt resolving a phylogenetic problem
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that is well known to be difficult. Being a freely available
package for the Python programming environment, L.U.St
is both flexible and platform-independent while also being
user friendly and easy to implement.

Availability and requirements

Project name: L.U.St.

Project home page: https://afro-juju@bitbucket.org/afro-
juju/Lu.st.git.

Operating system(s): Linux.

Programming language: Python.

Other requirements: Consel.

License: GNU GPL.
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