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Abstract

Background: Erroneous patient birthdates are common in health databases. Detection of these errors usually
involves manual verification, which can be resource intensive and impractical. By identifying a frequent
manifestation of birthdate errors, this paper presents a principled and statistically driven procedure to identify
erroneous patient birthdates.

Results: Generalized additive models (GAM) enabled explicit incorporation of known demographic trends and birth
patterns. With false positive rates controlled, the method identified birthdate contamination with high accuracy.
In the health data set used, of the 58 actual incorrect birthdates manually identified by the domain expert, the
GAM-based method identified 51, with 8 false positives (resulting in a positive predictive value of 86.0% (51/59) and
a false negative rate of 12.0% (7/58)). These results outperformed linear time-series models.

Conclusions: The GAM-based method is an effective approach to identify systemic birthdate errors, a common
data quality issue in both clinical and administrative databases, with high accuracy.
Background
Birthdate information is ubiquitous in clinical, adminis-
trative, and research databases. It is one of the most
common pieces of information for identifying individ-
uals. Unfortunately, also common in these databases are
missing or incorrect birthdates. For example, we have
previously identified 1.5% of birthdates as incorrect in a
state-wide public health service data set with more than
20,000 patient records [1]. Similarly, in a study of 1112
hospital admissions 2% of patients were registered with
incorrect names or birthdates [2]. These errors are typic-
ally more common in paediatric databases [3].
In most databases, birthdates are stored as date-time

values. Compared to a numeric data field, there are a num-
ber of reasons date-time columns may be more prone to
contamination during data collection and transfer. Firstly, a
date-time can be communicated in more than one geo-
graphical standard format: The date “January 2nd,
2010” can be entered into a database as “2010-01-02”
(ISO8601 standard), “01/02/2010” (North American
format), “02/01/2010” (British/Australian format), or
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even “02-Jan-10” (default format in Oracle 9i). If a regis-
tration clerk uses a format inconsistent with the data-
base, incorrect birthdates will be generated. These
format inconsistencies frequently result in truncated
dates or NULL values in the database. Secondly, sub-
optimal user-interface design can induce incorrect
birthdates. For example, some user interfaces remember
a date previously entered and use it to auto-complete
the input textbox. If a registration clerk does not check
carefully, an incorrect value may be repeatedly entered.
As data are often entered from paper record, direct val-
idation is often difficult. Finally, patients themselves
may give an incorrect birthdate, considering the emer-
gency nature of many patient encounters. For example,
a patient may confuse age with the year of birth (e.g. age
53 being turned into 1953 as the year of birth) or round
the birthdate to the first date of the birth year (e.g., “June
25, 1910” being turned into “January 1, 1910”). Parents or
caregivers of young or elderly patients admitted may also
be prone to birthdates errors.
As birthdate information is central in patient identifica-

tion, incorrect birthdates may have severe consequences,
for example transfusion of blood or marrow to the wrong
patient [4]. Incorrect birthdates may also cause records to
be overwritten or duplicated, which may eventually incur
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significant financial loss to the hospital [3]. Finally in-
correct birthdate information can affect derived vari-
ables. If an incorrect birthdate occurs repeatedly, then
age-based risk stratification based on the data would
be invalid [5].
Similar to other data quality issues, the best solution

for reducing incorrect birthdates is to have good quality
assurance at the data collection stage [6]. However, as
health care data is often collected in busy clinical envi-
ronments, data quality can be less that optimal. It is
therefore critical to identify and correct the incorrect
birthdates in existing data. Given the volume and com-
plexity of patients seen in both the public and private
health systems, it is no longer possible to manually
check complete patient databases. With the rapid growth
of electronic health records, tools are needed to auto-
matically identify likely erroneous birthdates.
Despite the prevalence of incorrect birthdates and the

potential cost and adverse health outcomes that can re-
sult, few tools are available to identify birthdate errors.
Often incorrect birthdates are identified in an ad-hoc
fashion, using rules specific to a given database and its
use. For example, one common type of birthdate errors
is that the NULL representing a missing birthdate is re-
placed by a date representing zero. The detection of
such an error often relies on prior knowledge of the zero
encoding [7].
If incorrect birthdates were generated in a completely

random fashion, it would be impossible to identify them.
However in most databases, the majority of the incorrect
birthdates are introduced by a few sources of common
contamination. In the previous zero-encoding example,
the missing birthdates are often replaced by a zero date
when data is transferred from one owner to another.
The replaced value depends on the software involved
and therefore is not random. For example, Microsoft
products often use “December 30, 1899” as the zero
date-time, and Unix (ISO 8601) uses “January 1st, 1970
UTC” as the zero date-time.
More generally, when birthdates in a database are con-

taminated systematically, we expect the database to ac-
quire artefacts in the birthdate distribution, in particular
over-representation of certain birthdates. Based on this
observation, we propose an effective approach to identify
systemic contamination of birthdates.
The importance of planned data cleaning has long

been recognized in the research community. When the
database size is not an issue, interactive data cleaning is
always a good starting point [8]. From the perspective of
data warehousing, Rahm and Do proposed a taxonomy
of data cleaning problems [9]. They first identified two
levels of data cleaning problems: Schema level and In-
stance level. Then for each level, they defined different
scopes and problems. Birthdate contamination fits into
the “Misspelling” problem within the “Attribute” scope
at the Instance level. In a wider context, Van den Broeck
and colleagues defined data cleaning as a 3-stage
process: Screening/Detecting, Diagnosis, and Editing [5].
This paper deals with the Detecting stage of data clean-
ing. In philosophy, our proposed method fits into the
general strategy of checking for inconsistencies reflected
in frequency distributions and strange patterns. How-
ever, because the prevalence of birthdate contamination,
its special characteristics, and the threats it poses to data
quality, separate attention is needed for detecting birth-
date contamination, in particular in a live large database
environment.
Methods
Distribution of birthdates in a database
For the purpose of this paper, we consider only databases
that identify one or more groups of individuals—such as
patients or clinicians. Many clinical or administrative data-
bases fall into this category including electronic health re-
cords (EHR), emergency department information systems,
databases of controlled drug prescriptions, and medical
claims databases. With a clear identification of individuals
in such a database, each date d defines a set of N(d) indi-
viduals born on that day.
In an ideal situation where the actual numbers of births

and deaths for every day are available, for example in a re-
gion with a well-maintained birth and death registry and
limited population migration, the actual number of births
in the population for every date can be estimated. But with
any given database, it is useful to distinguish 1) the general
population P1 that includes everyone living in a region at
a certain time period, 2) the “at risk” population P2 that
includes everyone who in theory could be included in the
database (e.g., males to a prostate cancer database), and 3)
the group of people P3 who are actually in the database.
Individuals in a database P3 can be regarded as a sample
of the “at risk” population P2. Consequently the number N
(d) can be regarded as realization of a birthdate distribu-
tion defined on P2.
In an ideal situation where the actual numbers of

births and deaths for every day are available, for example
in a region with a well-maintained birth and death regis-
try and limited population migration, the actual number
of births in the population for every date can be es-
timated. But with any given database, it is useful to dis-
tinguish Consider an event that an individual was born
at time t and later included in P3. We assume that such
an event follows a Poisson point process with a time-
varying intensity function μ(t). In a Poisson point process
with intensity function μ(t), for any time interval A, the
number of events NA in A, follows a Poisson distribution

p NA ¼ kð Þ ¼ λ Að Þk e−λ Að Þ

k! , where λ Að Þ ¼
Z
t∈A

μ tð Þdt. Hence for a
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date d, the number of individuals with the birthdate d
follows a Poisson distribution defined by

p N dð Þ ¼ kð Þ ¼ λ dð Þke−λ dð Þ

k!
: ð1Þ

Here k is the number of individuals born on day d and
λ(d) = ∫t ∈ dμ(t)dt is the aggregated intensity for date d
and equals the expected value of N(d).
In certain situations with larger data variance, a nega-

tive binomial distribution can be used instead. That re-
quires one more over-dispersion parameter to fit. In this
application, it is difficult to assess over-dispersion; hence
we prefer the simpler Poisson model assumption.
Let μd be the mean of μ(t) on day d and l be the length

of a day. Then λ(d) = μd ⋅ l. If μ(t) changes slowly, se-
quence < λ(d) > can be regarded approximately as the re-
sult of sampling μ(t) daily and then multiplying the
sample with the constant l. The sequence < λ(d) > is deter-
mined by the birthdate distribution of the general popula-
tion P1 and the representation of P1 in the database.
The birthdate distribution of the general population P1

is determined on a large scale by the age profile of the
population and on a small scale by seasonal and weekly
fluctuations in child births. The age profile of the popu-
lation (as in [10]) is the aggregated result of changes in
birth and death rates. For example, the post-WWII baby
boom has contributed to the aging population structure
in US, Canada, and Australia [11,12]. As such changes
are often driven by long lasting demographic forces such
as economic development, war, and progress of medical
science [13,14], they manifest as slow and smooth variation
in the sequence < λ(d)>. In contrast, seasonal and weekly
variations in child births (as in [15]) act on a shorter tem-
poral scale. More recently, most child births occur in a hos-
pital environment and scheduled Caesarean section or
labour induction are more frequent. These factors lead to
more births on weekdays than weekends, which produces
cyclic dips in the sequence < λ(d) > [16,17].
How the general population is represented in a patient

database is mostly determined by the nature of the dis-
ease. For example, a database of prostate cancer patients
should contain only males; a database of skin cancer pa-
tients probably contains more Caucasians than patients
of other races. In terms of the birthdate distribution, one
common consideration is that a disease may pose higher
risk to certain age groups. For example, individuals born
before year 1930 may be disproportionately represented
in a database of chronic non-cancer pain. Like the popula-
tion age profile, the nature of the disease acts on a larger
temporal scale and it should not affect the smoothness of
the sequence < λ(d)>. For example, a person born on
March 2nd, 1980 and a person born on March 3rd, 1980
should have very similar chances of being included in a
database, assuming all other conditions are equal.
Finally for most hospitals, a patient database grows
out of paper records. As a hospital serves more patients,
its database may cover a larger portion of the at-risk
population P2. However, it is reasonable to assume that
any such change in the size of the database will affect
different age groups proportionally, and is independent
of the shape of < λ(d) >.
To summarize, the birthdate distribution of a database

can be modelled using a function λ(d) that is generally
smooth but contains weekly dips due to weekend reduc-
tion in births.

Tell-tale indicators of birthdate contamination:
discrepancy between the expected and observed counts
When birthdates in a database are systematically contami-
nated, for example when a missing value is consistently re-
placed with the zero date-time, incorrect birthdates may be
repeatedly generated. In such cases, the frequency of an in-
correct birthdate d will be higher than other dates in the
database. That is, the observed number of patients with
birthdate d, denoted N(d), will be larger than the expected
number λ(d). Therefore identifying incorrect birthdates can
be achieved through identifying the date d whose person
count N(d) is well above the expected count λ(d). Of course
this observation is not new. For example, the difference be-
tween N(d) and λ(d) is called within deviation by Dasu and
Johnson [18]. To the authors’ knowledge, however, no pre-
vious attempt has been made to statistically model this dis-
crepancy between N(d) and λ(d) for error detection.
The deviation of N(d) from the expected count λ(d)

can be measured in terms of the tail probability of the
Poisson distribution. This provides a way to rank outliers
across all birthdates. The top N(d)s with the smallest tail
probabilities can be returned to the data cleaning staff
for further confirmation and investigation. Alternatively,
a small positive number c can be used as a threshold: N
(d) is then labelled as an outlier if

X∞
k¼N dð Þ

p kjλ dð Þð Þ ¼
X∞

k¼N dð Þ

λ dð Þke−λ dð Þ

k!
< c:

In many applications, only a small number of the most
likely erroneous birthdates will be manually checked. If
required, the expected number of birthdate errors in
database can be estimated from the results of manually
checking small samples of the database [19].

A generalized additive model for birthdate distribution
The expected birthdate distribution λ(d) can be esti-
mated from the data <N(d) > by assuming smoothness
of the function λ(d), with proper handling of the reduc-
tion in births on weekends. In the previous section, we
have seen that explicit modelling of the mechanisms
shaping the age profile would be very complex.
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Nevertheless, both long-term and seasonal variations in
births/deaths can be recovered by smoothing of counts
N(d) in a relatively short temporal window. The reduc-
tion in weekend births can be modelled by a multiplica-
tive factor that only affects Saturdays, Sundays, and
public holidays. As the reduction is a gradual develop-
ment driven by increasing hospital births, elective Cae-
sarean section, and labour induction, the multiplicative
factor can also be modelled by a smooth function. Fi-
nally, it is worth noting that government policies to en-
courage fertility can also lead to more births on a
particular day [20], but such events are very rare and
should be explicitly modelled on a case-by-case basis.
Different techniques can be used to smooth the raw

data <N(d) > to recover the function λ(d). But to expli-
citly model the day-of-week effect, we use an additive
model in which λ(d) is modelled as the product of an
overall smooth function and a multiplicative factor for
weekends. (A justification for the weekend multiplicative
factor is that the weekend births are moved from the
weekend to the preceding week). We assume that

log λ dð Þð Þ ¼ s1 dð Þ þ I d is in weekendð Þ⋅s2 dð Þ: ð2Þ

Here the log link function is used because λ(d) can only
be positive; I(⋅) is the indicator function and s1(d) and s2(d)
are smooth functions of d. The function s1(d) models both
long-term and seasonal variations in the birthdate distribu-
tion; s2(d) models the gradual change in the reduced week-
end births. Public holidays are similar to weekends; it only
requires extra bookkeeping in the modelling process.
Following the standard practice in generalized additive

models, the smoothing terms in Equation (2) are represented

by regression splines [21]. That is, ŝ xð Þ ¼
Xq
i¼1

bi xð Þβi,
where bi(x) are a set of basis functions. Common type of
basis functions include B-splines and more familiar cubic
splines. These basis functions are sections of polynomials
that join at a number of knot locations. To avoid manually
selecting knots for the regression splines, thin-plate
splines can be used [22]. With n data points, a thin-plate
spline representation is as follows.

ŝ xð Þ ¼
Xn
i¼1

δiηmd x−xij jj jð Þ þ
XM
j¼1

αjϕj xð Þ

Here d is the dimension of the function domain (in
our case d = 1), m is the order the smoothness penalty,

ϕj are M ¼ mþ d þ 1
d

� �
basis functions that spans the

null space of a penalty energy function, and ηmd is a radial-
basis function. δ = (δ1, δ2,…, δn)

T and α = (α1, α2,…, αM)
T

are parameters with the constraint
Xn
i¼1

δiϕj xið Þ ¼ 0 for each
j. Further details of thin-plate splines can be found in [23].
Just like other kernel methods, the computation of thin-
plate splines has a complexity of O(n3). For ease of compu-
tation, a lower rank approximation of δ is used. Such
reduced-rank thin-plate splines [23] are used in our appli-
cation. The rank of thin-plate splines controls the smooth-
ness of the function, and is selected by generalized cross-
validation criterion (GCV) [24]. To capture seasonal varia-
tions in birthdate distribution, the maximum rank for the
candidate splines should be set to a sufficiently large num-
ber. We recommend a maximum rank of 2m, where m is
the number of years covered by the birthdates.
Dasu and Johnson [18] generated a histogram similar

to Figure 1 to help detect inadvertent censoring caused
by a default date. Graphical features of the histogram
such as spikes and V-shaped valleys were identified as
indicators for missed or censored data. However, the
presence and location of such graphical features are de-
termined by visual inspection. In contrast, here with a
GAM, the deviation of particular counts in the histo-
gram can be quantified for probability based decisions.

Results
A public health application
We use a health administration database to demonstrate
the fitting of GAM and the identification of outliers. A
drug regulatory authority maintains a database of drug
dispensing records, which covers around 40,000 individ-
uals with birthdates ranging from the 1890s to 2010s. The
data is integrated from separate data collections from
more than 3000 off-site pharmacies. As each pharmacy
may choose different software to manage their data, qual-
ity assurance at the data collection stage is limited. For ex-
ample, one system replaces the null date-time value with a
default date, which changes whenever the system is up-
dated. This has resulted in a typical downstream database
with multiple sources of contamination. Our task was to
identify those birthdates that may have been incorrectly
introduced by the faulty data management software. As
the data were transcribed from doctor’s prescriptions filled
at off-site (community) pharmacies, they were geographic-
ally and functionally independent of the data custodians.
These handwritten paper scripts were archived after data
entry. Geographically locating, accessing and then physic-
ally combing through these handwritten documents is
theoretically possible (with generous resources), but was
impractical for the purposes of this study.
Figure 1 shows the number N(d) of individuals for

each birthdate d. For evaluation purposes, most incor-
rect birthdates have already been manually identified by
a domain expert. There were 58 errors in total. The au-
thors have no knowledge of the criteria used by the do-
main expert to identify the errors and how complete and
accurate they are. Nevertheless, Figure 1 shows at least



Figure 1 The number of individuals in a database grouped by birthdate, shown as a time series. Some large numbers are known to be
caused by incorrectly replacing missing birthdates with some fill-in values. These are annotated with blue circles.
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three potential sources of database errors. First on the far
left, errors 1899-12-30 and 1900-01-01 were likely to have
been introduced by incorrect handling of the zero date-
time in software systems. The error 1911-01-01 may also
have resulted from the confusion of year 1911 and year
2011. Second in the middle, errors 1950-01-01, 1960-01-
01, 1963-02-14, 1970-01-01, 1979-01-01, 1980-01-01 may
result from incorrect self-reported birthdates. Finally on
the right of the figure, a group of incorrect birth dates
were introduced by the pharmacy management system
that mixed birthdates with drug dispensing dates.

Outliers detected through generalized additive model
We fit an additive model in the form of Equation (2) to the
birthdate counts in Figure 1. The gam function from the
mgcv R-package [23] was used to estimate the intensity
function λ(d). The smoothness was determined through
GCV with an upper bound of 200 for the degree of free-
dom. Figure 2 shows the estimated intensity function and
the outliers above the point-wise 99.99th percentile.
The detection resulted in 8 false positives and 7 false

negatives. The false positives can be classified into two
categories: 5 in the middle between years 1957 to 1980;
3 on the far right between years 2006 and 2007. From
visual inspection, the 5 false positives in the middle are in-
deed outliers. We conjecture that these birthdates were
Figure 2 Outliers returned by the non-homogeneous Poisson model.
green dashed line shows the point-wise 99.99th percentile of the Poisson d
identified by the domain expert are in blue circles. In total 59 outliers are id
caused by multiple identities of some patients. When data
from multiple pharmacies were linked, patient identities
were consolidated through names and addresses. Mis-
match can happen during the consolidation process and
the patient’s birthdate would be overrepresented. The 3
false positives on the right are also curious. They seem
to suggest that there are dozens of very young (~6 years
old) patients on controlled drugs. This warrants further
investigation.
The 7 false negatives include 2 in the middle (1979-01-

01 and 1980-01-01), 4 on the right (all in year 2001), and
1 on the right (2011-01-01). The false negative 2011-01-01
has too few patients to justify a statistical decision. The 4
false negatives in year 2001 coincide with a large number
of incorrect birthdates that have been correctly identified.
We believe that after the correctly identified errors have
been cleaned, these 4 false negatives will likely be found
by rerunning the identification procedure.
Because the sequence <N(d) > forms a time series, non-

parametric smoothing [25] as a common way to find out-
liers in time series can also be used. However, Figure 2
shows three advantages of our model-based approach over
nonparametric smoothing:

1) Explicit background knowledge such as the weekend
effect is simply modelled. The reduced weekend
The blue line shows the estimated Poisson intensity function. The
istribution. The estimated outliers are in red crosses and the outliers
entified, resulting in 8 false positives and 7 false negatives.



Figure 3 Estimated poisson intensity λ(d) for weekdays
between 1925 and 1970. It reveals a seasonal pattern of child
birth. It also shows a period of decreased birth rate during the ‘Great
Depression’ (in the 1930s) and a period of increased birth rate
during the post-war baby boom (between 1946 and 1961).

Figure 4 The smoothing term s2(d) in Equation (2). The dashed
lines show 95% confidence interval of the estimate. It suggests that
before year 1920, there were more weekend births than weekday
births. The number of weekend births has decreased since year 1960,
very likely due to wider adoption of elective Caesarean section.
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birth is reflected in the increased variation of the
green line in the right part of Figure 2. If the
smoothing was done with standard nonparametric
methods, such background knowledge is not easy to
be incorporated—it would be difficult to select a
smoothing parameter (bandwidth) that works well
with the changing variation in the signal.
Nonparametric models are not good at handling the
non-normality of count data.

2) Percentile estimation (the green line in Figure 2)
can be easily extracted from the parametric
Poisson model. Most nonparametric smoothing
methods assume Gaussian distribution of residuals,
which is not appropriate for percentile estimation
of count data.

3) Compared with direct smoothing, the model-based
approach is robust at the two ends of the birthdate
range, where the data are sparse and N(d)s for most
days equal zero. In nonparametric smoothing, consecu-
tive zeros at the two ends will result in both zero signal
estimate and zero variance estimate, which renders
every nonzero N(d) an outlier. For example, in non-
parametric smoothing based on the mean absolute de-
viation (MAD), the median of all neighbouring points
of d is used to estimate the underlying signal and the
median of all absolute deviation measures the vari-
ance [25]. For a sequence (0, 0, 0, 900, 0, 1, 0), the
median is 0 and the median of all absolute deviation
is also 0. Hence both 900 and 1 will be estimated to
be outliers. In contrast, with a Poisson distribution,
the probability P(k ≥ 1|λ(d)) can still be large with
even a low intensity λ. This will greatly minimize
the likelihood of false positives at the two ends of
the age spectrum.

The estimated Poisson intensity function λ(d) (the
blue line in Figure 2) reflects both the general age pro-
file of the patient population and short-term variations
in demographics. Figure 3 shows the segment of the
curve for weekdays between year 1925 and 1970. The
curve suggests a seasonal pattern of child birth. The
dip around 1933–1934 suggests the effect of the ‘Great
Depression’ on child birth in Australia. The elevated
counts at the centre echo the baby boom in Australia
following the second world war, which Salt defined to
be the period between 1946 and 1961 [12]. The latter
two features of the estimated function λ(d) are consist-
ent with the official statistics [26].
The effect of reduced weekend birth (term s2(d) in

Equation (2)) is shown in Figure 4. It is consistent with
the trend that weekend births have been significantly re-
duced due to elective Caesarean section. It also suggests
that elective Caesarean section has been gaining popu-
larity in the past 50 years.
Comparison with outlier detection based on a standard
time-series model
As the sequence <N(d) > is also a time series, an auto-
regressive integrated moving average (ARIMA) model
is a natural alternative to a generalized additive model.
An ARIMA(p, n, q) model contains p autoregressive
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terms, n nonseasonal differences, and q moving average
terms. It has the following mathematical expression:

1−
Xp

i¼1
ϕiL

i
� �

1−Lð ÞnN dð Þ ¼ 1þ
Xq

i¼1
θiLi

� �
�d , where

L is the lag operator, ϕi and θi are autoregressive and mov-
ing average parameters, respectively. When a time series is
season with m points per season, a seasonal ARIMA (SAR-
IMA) model can be used. In a SARIMA(p, n, q)(P, N, Q)m
model, additional P autoregressive terms, N differences,
and Q moving average terms are used to model the season-
ality of the time series. More details of ARIMA models can
be found in most time series text books (e.g., [27]).
Although ARIMA models may be more familiar to many

people, they are not ideal for modelling the birthdate
distribution. First, an ARIMA model assumes normality
of data, which is not always appropriate as N(d) is a
count. In particular, outlier detection based on normal
percentiles may not be as accurate compared with Pois-
son percentiles. Next, it is not easy to incorporate other
covariates in an ARIMA model and assess their effects on
the counts. Most importantly, from a linear time series
model like ARIMA, it is impossible to infer point-wise tail
probabilities (see the green line in Figure 2). If an over-all
tail probability estimate is used, incorrect birthdates at the
two ends of the age range will be missed (see the third ad-
vantage of the GAM described previously).
We fit a seasonal ARIMA (SARIMA) model on the se-

quence <N(d) > adjusting for the weekly cycle. It results
in a high-order model ARIMA(0, 1, 5)x(0, 0, 2)7. By
looking above the 99.99th percentile in the residuals, we
identified 69 outlier birthdates (See Figure 5). We com-
pared these birthdates with the birthdates identified by
the domain experts. A total of 36 birthdate errors were
correctly matched, with 11 false negatives and 22 false
positives, mostly in the period between year 1940 and
1980, in which many patients were born. Because no
point-wise percentile can be inferred, this method tends
to miss the birthdate errors near the left end of the
birthdate range, where the data is sparse. For example,
Figure 5 Outliers returned by the seasonal ARIMA model. Assuming n
percentile are identified as outliers. The estimated outliers are in red crosse
11 false negatives.
the date 1900-01-01 was identified by the GAM model
(see Figure 2), but was missed by the ARIMA model. A
comparison of sensitivity and specificity of the two
methods are shown in Table 1.
The GAM-based method showed better performance

in terms of sensitivity and specificity. The area under the
curve (AUC) for SARIMA-based outlier detection was
0.991; AUC for GAM-based outlier detection was 0.998
(p-value 0.28).
Age profile of young oxycodone user
Finally, we show how identification of incorrect birth-
dates can prevent serious misinterpretation of data.
Oxycodone is an opioid analgesic used for pain man-

agement. A patient using oxycodone for an extended
period is likely to develop dependence to the medica-
tion. Therefore in many places, including the state of
Queensland in Australia, an oxycodone treatment epi-
sode longer than two months requires a report to the
regulatory authority. Here we use the drug dispensing
database to understand the age distribution of long-
term users of oxycodone.
The age distribution for younger patients is shown in

Figure 6a. The figure shows unusual clusters of patients
of age 5 or 10. These clusters are worrying as the main
reason for Oxycodone prescription is chronic non-
cancer pain, which is rare among children.
We applied the GAM-based identification method to

find birthdate errors. The 99.99th percentile was used as
the cut-off. The records with identified birthdate errors
were then removed from the analysis. The corrected age
distribution based on the cleaned subset is highlighted
in red. Although the new distribution still shows several
young patients whose presence in the database is worth
further investigation, it is more consistent with the
common understanding that young people rarely have
chronic pain condition that warrants large quantities of
opioids.
ormality of the residuals, birthdates with residuals above the 99.99th
s. In total 69 outliers are identified, resulting in 22 false positives and



Table 1 Sensitivity and specificity of the two outlier
detection methods based on GAM and SARIMA

Outlier detection Sensitivity Specificity

GAM-based 0.8793 0.9998

SARIMA-based 0.5345 0.9994
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Discussion
In current data-quality practice, data artefacts are typic-
ally identified by simple cross-tabulation or visual in-
spection [6]. However, visual inspection is only feasible if
the database contains only a limited number of distinct
values. Visual inspection also relies on arbitrary cut-offs
and it is difficult to bound the false negative rate. The
GAM model effectively addressed these two problems.
As the importance of data quality becomes more

widely recognized, the proposed method provides a new
tool for data quality improvement. The method can be
implemented to run automatically in most commercial
databases and the results can be easily incorporated into
regular reports on data. For many downstream data-
bases, data quality reports allows one to identify quality
problems at the earliest time possible and contain con-
tamination of the upstream data.
Our method could be further improved with external

data, in particular from well-curated sources. Population
wide birth and death statistics are often available from
government organisations. For example, the Australian
Bureau of Statistics provides the numbers of births by
year and month. Potentially such data can augment a
model solely based on the counts in a database. A way
to use the population wide statistics is to devise a Bayes-
ian prior distribution based on the external data.
In extreme situations, an incorrect birthdate may induce

a very large peak in the birthdate sequence, similar to the
examples in the top right of Figure 1. These outliers may
Figure 6 Age distribution of patients whose annual
consumption of oxycodone exceeds 4500 mg. It shows unusual
clusters at age 5 and 10. The red bars highlight the estimated age
distribution after records with suspicious birthdates removed.
bias the estimation of the intensity curve itself, reducing
the model’s power to detect other less extreme outliers.
This is often known as the masking effect in the outlier de-
tection literature [28]. In cases of extreme outliers, one
option is to refit the GAM model with the identified out-
liers removed. Alternatively, a robust GAM fitting proced-
ure [29] can be used. As robust GAM fitting requires
intense computation, further work is needed so that it can
be applied in a large database with a wide age range.
In view of the limitations discussed above, we see two

lines of future research that will generate immediate
benefits to a broad range of applications. First, when an
external data source is available, it would benefit from
concrete techniques for using the external data in birth-
date distribution modeling. External data may provide
two types of anxillary information: the general shapes of
the age distribution and the degree of variance from one
day to another. A technique to incorporate such infor-
mation would generate better models. Second, when a
robust smoothing procedure is required, it would benefit
from efficient algorithmic implementation. As multicore
and cluster systems are becoming more common, paral-
lel algorithms that tailor towards such computing facil-
ities may be desirable.

Conclusions
Birthdates are the most commonly collected domain of
health information. Their accuracy is critical to effective
health service delivery. Our results demonstrate that a
GAM model achieves efficacy and flexibility in detecting
incorrect birthdates caused by systematic contamination.
The GAM model described in this paper provides a solu-
tion that works across a diverse range of health databases.

Endnote
aTo tell whether a patient use oxycodone for an ex-

tended period of time, a simple way is to calculate the
total quantity of the medication consumed in a year.
World Health Organization (WHO) has guidelines of
the defined daily dose (DDD [24]) for an individual: The
DDD for oxycodone is 75 mg per day. Hence if the an-
nual consumption of a patient exceeds the DDD equiva-
lent quantity of two months (4500 mg), then we assume
that the patient is a long-term oxycodone user.
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