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Abstract

Background: Identification of protein complexes can help us get a better understanding of cellular mechanism. With
the increasing availability of large-scale protein-protein interaction (PPI) data, numerous computational approaches
have been proposed to detect complexes from the PPl networks. However, most of the current approaches do not
consider overlaps among complexes or functional annotation information of individual proteins. Therefore, they
might not be able to reflect the biological reality faithfully or make full use of the available domain-specific knowledge.

Results: In this paper, we develop a Generative Model with Functional and Topological Properties (GMFTP) to
describe the generative processes of the PPl network and the functional profile. The model provides a working
mechanism for capturing the interaction structures and the functional patterns of proteins. By combining the
functional and topological properties, we formulate the problem of identifying protein complexes as that of detecting
a group of proteins which frequently interact with each other in the PPl network and have similar annotation patterns
in the functional profile. Using the idea of link communities, our method naturally deals with overlaps among
complexes. The benefits brought by the functional properties are demonstrated by real data analysis. The results
evaluated using four criteria with respect to two gold standards show that GMFTP has a competitive performance
over the state-of-the-art approaches. The effectiveness of detecting overlapping complexes is also demonstrated by
analyzing the topological and functional features of multi- and mono-group proteins.

Conclusions: Based on the results obtained in this study, GMFTP presents to be a powerful approach for the
identification of overlapping protein complexes using both the PPI network and the functional profile. The software
can be downloaded from http://mail.sysu.edu.cn/home/stsddg@mail.sysu.edu.cn/dai/others/GMFTP zip.
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Background
Detecting protein complexes, which is crucial for elucidat-
ing the structural and functional architecture of cells, has
attracted a lot of attention in recent years. Well-known
experimental methods such as tandem affinity purifica-
tion with mass spectrometry [1] and protein-fragment
complementation assay [2], even though they are effective,
have low efficiency, low coverage, and are biased [3].

Due to the development of high-throughput techniques,
a large number of physical protein-protein interactions
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(PPI) have been generated and accumulated, which paves
the way for establishing or reconstructing the PPI net-
works [4,5]. Two proteins interacting with each other
in such network probably provide an evidence that they
belong to a common protein complex. This intuition
inspires us to split the whole network into groups, which
have more links within each group and fewer links
between different groups, to reveal its intrinsic structure
and global organization in terms of protein complexes.
Recently, numerous computational approaches relying on
different strategies (e.g., graph clustering [6], community
detection [7,8]) have been proposed to detect complexes
from the PPI network [3,9-16]. However, those methods
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have their own shortcomings inevitably, since they only
use the network topology.

Proteins are often involved in more than one com-
plex to serve different functions [17,18]; for example,
there are five proteins (diamond nodes in Figure 1(a))
shared by the SAGA complex and the transcription factor
TFIID complex according to the PPI data published in [4]
and the CYC2008 benchmark [19]. However, traditional
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network clustering algorithms do not consider overlaps
among complexes since each protein in the PPI network
is assigned to only one complex. Therefore they are not
able to fully reveal the biological reality. Furthermore,
the PPI data produced by experimental bio-technology
have a high level of noise and are incomplete [20,21].
The complexes predicted by a clustering algorithm based
only on the PPI data may be limited in accuracy. For
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Figure 1 An example which illustrates the biological motivation. This is an interaction map of SAGA complex, transcription factor TFIID
complex (CYC2008 benchmark) and the complexes detected by our model that match with them on Gavin network. Proteins are labeled according
to the complex(es) to which they belong: rectangle represents SAGA complex; circle represents transcription factor TFIID complex; diamond
represents proteins shared by the two complexes; octagon represents proteins with other functions; and hexagon represents GO terms. Shaded
areas represent complexes detected by our model (a) using solely the PPI network and (b) using both the PPI network and the total GO annotation.
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example, a complex detection approach may neglect pro-
tein YPL129W which is a member of the transcription
factor TFIID complex due to the fewer interactions with
the core members, and it may incorrectly cluster pro-
tein YMLOO7W into the SAGA complex owing to the
seven interactions (Figure 1(a)). Intuitively, proteins serv-
ing similar functions are more likely to belong to the
same complex(es) than those serving different functions
(Figure 1(b)). We wonder whether the functional anno-
tations can work together with the PPI data to improve
the quality of detected complexes; for example, to filter
out functional heterogeneity protein YML0O07W and to
retrieve functional homogeneity protein YPL129W.

In order to reduce the negative effect brought by the
spurious interactions, several researchers have tried to
incorporate functional information into complex detec-
tion process. These approaches can be mainly classi-
fied into two categories, preprocess-based [22-25] and
postprocess-based [26,27]. The main idea of the former
category is to design a functional semantic similarity
measure to weight the strengths of protein-protein inter-
actions, and then use a graph clustering algorithm to
detect complexes from the weighted PPI network. They
require the clustering algorithms to be able to handle
weighted networks. However, there are only a few network
clustering algorithms that can handle weights and over-
laps simultaneously [17,28-32]. Furthermore, their perfor-
mances depend on how the semantic measure is defined
to assign the weights, which itself has many open prob-
lems [33]. The postprocess-based approaches use some
metrics to quantify the functional homogeneity of com-
plex candidates detected by graph clustering algorithms,
and then discard candidates with low reliability. They do
not make full use of the available functional annotations
since such information are excluded during the complex
candidate detection process. Recently, Zhang et al. map
the topological and functional features into a unified dis-
tance measure by constructing an ontology augmented
network, while they do not pay attention to the overlap
problem [34].

As an alternative, we couple the functional profile
with the network topology to detect overlapping protein
complexes. To this end, we resort to probabilistic mod-
els which have been applied to analyze PPI networks
[20,21,35-37]. Unlike previous models that account only
for the generative process of the PPI network, we develop
a new Generative Model with Functional and Topological
Properties (GMFTP), which is dominated by two latent
variables. One is introduced to represent the degree of
proteins belonging to complex(es). By the idea of link
communities [38,39], we generate a complex type-related
interaction between two proteins if they tend to belong to
the same complex(es). It gives rise to overlaps in a natural
way that a protein belongs to multiple complexes if it has

Page 3 of 15

more than one type of interactions. The other one is used
to represent the preferences of functions with which pro-
teins in a complex associate. We generate an association
between a protein and a function using these two model
parameters. According to the introduced model, a com-
plex is assumed to be a group of proteins which frequently
interact with each other and have similar functional pat-
terns. For a given PPI network and functional profile,
we then transform the complex detection problem into
a parameter estimation problem. We investigate the per-
formance of our model using six yeast PPI networks and
four categories of functional profiles. Experiment results
show that the functional properties are able to improve the
performance. Comparative experiments further demon-
strate that our model not only has a better performance
than the state-of-the-art approaches but also is capable of
identifying proteins in multiple complexes.

Methods

A generative model with functional and topological
properties

Before introducing our model, we introduce some nota-
tions first. We consider the functional and topological
properties of N proteins. Each protein i has an annota-
tion profile of fixed length C, F; =[Fy,...,Fic]” € {0,1)C,
where F;, = 1 if protein i is associated with function
¢, Fi; = 0 otherwise, and C is the total number of
functions considered. For convenience, we denote F =
[Fy,...,EN]T =[Fi] € {0,1}¥*C as the functional profiles
for all proteins. The PPI network is represented as an adja-
cency matrix A =[A;] € {0, 1YV*N where A = 1if pro-
teins i and j are connected, A;; = 0 otherwise. We assume
that there are K complexes. In the typical model-based
clustering setting, the value of K is initially unknown and
needs to be predetermined. Here we assume that the value
is given first and address how to set it at the end of this
section.

GMFTP generates both the annotation F;, and the
interaction A; as follows. In a similar manner to that of
[37,39], a non-negative parameter 6y is introduced to rep-
resent the affinity of protein i belonging to complex k.
A higher affinity score 6 means that protein i is more
likely to belong to complex &, and vice versa. Note that a
protein may obtain high affinity scores on multiple com-
plexes, thus our model supports overlaps. Since proteins
within the same complex(es) are always associated with
same functions [40], for a given complex k, we introduce
a non-negative parameter . to represent the propensity
that proteins in complex k are associated with function
¢. A higher score Y, means that proteins in complex
k are more likely to be associated with function ¢, and
vice versa. In effect, Y, represents the preferences of
functions with which proteins in complex k are associ-
ated. We denote ©® = [ 6] as the protein-complex affinity
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matrix and W = [ Y] as the complex-function preference
matrix.

By the definitions of 0 and vy, if protein i obtains
higher affinity score 6;; and complex k obtains higher pref-
erence score V., protein i is more likely to be associated
with function ¢, and vice versa. Then 0;y. can be
assumed as the likelihood that protein i is associated with
function ¢ in terms of complex k. Taking into account all
the K complexes, we can assume lele Ok Vie to be the
total likelihood that protein i is associated with function
¢. Then the association F; between protein i and function
¢ is independently generated by a Bernoulli distribution
with success rate o (Z{;l 9ik’#kc>, where o(x) = 1 —
exp(—x) is a function which maps the input argument
from [0, 400) to [0, 1), ensuring that the result is a valid
probability.

A protein complex in the PPI network is usually
assumed to be a cohesively connected subnetwork which
has many interactions within itself [41], hence two pro-
teins which belong to the same complex(es) are likely to
interact with each other. If two proteins i and j obtain
high affinity scores 6; and 0y, they would be connected
in complex k. We therefore assume that 00 is the like-
lihood that proteins i and j are connected in terms of
complex k, and that Zle OixOj is the total likelihood
that they interact in terms of all the K complexes. Then
the interaction A;; between them is independently gener-
ated by a Bernoulli distribution with success probability

o (Z{le Qiké’jk>. Here we use function o (x) to map the
likelihood to the probability.
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It is well known that a protein usually belongs to one
or several complexes; and a protein complex tends to be
responsible for (or be significantly enriched with) a given
set of biological functions. This means ® and W are sparse
essentially. To model the sparsity property, we place an
independent exponential distribution prior over each ele-
ment 0 and Y, with rate parameter A, which is similar to
the sparsity promoting prior in non-negative sparse cod-
ing [42,43]. The sparse restriction may lead all elements
in some columns of ® and rows of ¥ to 0 simultane-
ously, and hence the corresponding irrelevant complexes
will disappear automatically.

For a better understanding of our model, we illustrate
the connection between the variables we use and the biol-
ogy terms in Figure 2. Given hyperparameter A, N proteins
and C functional terms, the generative process of the func-
tional profile and the PPI network with K complexes can
be summarized as follows:

e For each protein i and complex k, draw
protein-complex affinity score 0% ~ Exp (1) with
probability:

P(Oic|A) = L exp (—Abi), Oix = 0. (1)

e For each complex k and function ¢, draw
complex-function preference score ¥, ~ Exp (A)
with probability:

P(Yrield) = Lexp (=AYie) » Yre = 0. (2)

e For each protein i and function ¢, sample their
association value F;. ~ Bernoulli (o (Zle 9ik1ﬁkc>>

— Observed variable

Latent variable

Protein-function association

Protein-protein interaction

Protein-complex affinity
— — Complex-function preference

Ay
[Complex K |-A

Function ¢

Figure 2 A graphical representation of the connection between the variables we use and the biology terms. Circle nodes represent
proteins; triangle nodes represent complexes; hexagon nodes represent functions. We first introduce a model that generates protein-protein
interaction A; and protein-function association Fjc based on model parameters 0y and .. For an observed PPI network and functional profile, we
estimate the values of 6 and .. Finally, we predict protein complexes using the estimator of 9.
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Fic

with probability:

K K 1=Fie

P(F;|®, w>=<a (Z eik«/fkc» (1—0 (Z eikvfkc» :
k=1 k=1

3)

e For each pair of proteins i and j (i < j), sample their
interaction value A;; ~ Bernoulli (0 (Zle Oiijk))
with probability:

K Aij K
P(Ai,|®)=<o (Z @m)) (1—a (Z eik0,k>>
k=1 k=1

Model formulation and parameter estimation

Model formulation

In previous section, we have introduced a generative pro-
cess of the functional profile and the PPI network. Each
run of this process generates a sample of the protein-
complex affinity parameter ®, complex-function prefer-
ence parameter W, functional profile F and PPI network A.
Given the hyperparameter A, we can decompose the joint
probability distribution over F, A, ®, W using the depen-
dent relationships stated in the previous definition and
encoded in Figure S1 (in Additional file 1) as follows:

1-Aj

(4)

P(F,A,©,¥|0) = P(F|®, ¥) P(A|®) P(B|A) P(¥|)),

(5)
where
N /C Si
PFl0,w) =] (]‘[ P(F|®, \m) , (6)
i=1 \c=1
ral©)= [ Pra&jle), (7)
1<i<j<N
N K
p©) =[[[[P®«n), (8)
i=1 k=1
K C
Py =]]]PWeln, )
k=1c=1

and P(0 1), P (Yxc|2), P(Ficl®, ¥), P(A;j|©) are defined
in Equations (1)-(4), respectively. Considering the case
that the functional profiles of some proteins are not avail-
able, we introduce S; to represent whether functional
profile of protein i is generated, where S; = 1 means the
functional profile is generated, and S; = 0 otherwise.
When the functional profile F and PPI network A are
observed, we aim to find model parameters ® and ¥ so
that they maximize the likelihood P(F, A, ©®, ¥|1). By sub-
stituting Equations (1)-(4) into Equation (5), taking the
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negative logarithm and dropping constants, we formulate
the objective function of GMFTP as follows:

ming,y — Zf\il chzl SiFiclog <1 — exp (— Zle Qiklﬁkc))
+ YN S S A= Fio) (S O
—% Z%:l Ajilog <1 — exp (— Zle eike,k))
+% Zzzl (1 - A,',») (Zf:l eikejk)

N K K c
D i Dok Mik D ket e AMke
s.t. ®>0,¥ >0,

(10)

where ® > 0 and ¥ > 0 mean each element 6;; > 0 and
ch > 0.

Parameter estimation

To solve the nonnegative constrained optimization prob-
lem, we use the multiplicative updating rules, which have
a good compromise between speed and ease of implemen-
tation, to alternately update the model parameters ® and
W [44]. We obtain the following two updating formulae for
® and W, respectively:

Si < FicYkc + & Aijbjk
=1 1*6XP(* ket 9i/<1//1<c) j=1 I*EXP(* i 9ik9jk)
Oik <—0Oik )
C N
Si Z wkc‘l' Zeﬂ(—l—)“
=1 =1
(11)
and
N
F.
Z S: i 941(
i=1 ll—eXP(— Yhot (')ik‘/fkc) !
Yie < Ve N (12)

> SOk + A
i=1

Due to the limitation in space, we describe the details of
the two updating formulae in Additional file 1.

Once ® and W are initialized, we update them accord-
ing to Equations (11) and (12) alternately until a stopping
criterion has been satisfied. Since the objective function
in Equation (10) is not convex, the final estimators of ©
and ¥ depend on their initial values. To mitigate the risk
of local minimization to some extend, we repeat the entire
updating procedure 100 times with random restarts and
choose the result that gives the lowest value of the objec-
tive function as the final estimator. In our implementation,
the iteration process is conducted until the relative change
in objective value is less than 10~°. To avoid the case that
this process converges too slowly and requires excessive
computing time, we also stop it if the number of iterations
reaches 400.
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Protein complex detection

After estimating ® and W, we still need to determine
whether protein i belongs to complex k according to Oix.
To this end, the rows of © are normalized first such that
Zle 04 = 1. In effect, O now represents the fraction
by which protein i belongs to complex k. For a protein i,
if éik = 0 (or < 10719) over all k before normalizing, we
set éik = 0 during the normalization process. We then
ignore the membership of protein i in complex k if Oy is
below a given threshold t; otherwise, we regard protein i
as belonging to complex k:

. {l,iféikzr,

= A 13
0, if Gik <T. ( )

ik —
Here ®* =[67] is the protein-complex membership
indication matrix in which 6 = 1 represents protein i is
in the detected complex k and 6, = 0O represents protein
i is not in complex k. We set T = 0.2 experimentally such
that a protein can not belong to more than 5 predicted
complexes in our algorithm. Due to local minimization, a
detected complex candidate may be composed of several
isolated subnetworks. In this case, each connected sub-
network is regarded as a complex. We discard detected
complexes which include less than three proteins.
One issue in detecting complexes using GMFTP is to
determine the number of complexes, K. That is because
we usually do not have any prior knowledge about the
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number of complexes in real-world situations. Fortu-
nately, we have used an exponential distribution prior over
each element 6;; and V., which makes the estimators 8]
and U to be sparse and filters out the redundant com-
plexes. Therefore, we can fit our model with a larger value
of K as it is able to determine the number of complexes
adaptively. In practice, a large number of proteins remain
functionally uncharacterized. In order to prevent the neg-
ative impact of these unannotated proteins, we set S; = 0
if the functional profile of protein i is not available, and
Si = 1 otherwise. The procedure of identifying protein
complexes using GMFTP is illustrated in Figure 3.

Results

Data sets and evaluation methods

Two experimental yeast PPI data sets [4,5], a combined
computational interaction map [45], the yeast interac-
tions derived from DIP ([46]) and the ones derived from
BioGRID [47] are used to test the performance. We refer
to them as Gavin, Krogan, Collins, DIP and BioGRID data
sets. The Krogan data set is used as two variants: the core
data set (referred to as Krogan core) and the extended
data set (referred to as Krogan extended). The Collins,
Gavin, Krogan core and Krogan extended data sets include
edge weights. We derive two variants of these four net-
works: weighted version which includes the weights and
unweighted version which ignores the weights. As DIP

® Input
A: Adjacent matrix of PPI network;
F: Function profile for all proteins;
K: Maximum number of possible complexes;

A: Rate parameter of exponential distribution;
® OQutput

y: Complex-function preference matrix;

0: Protein-complex membership matrix;

s : Value of the objective function (10).
®  Main algorithm
. Initialize matrices 6 and y randomly;

. Update 6 according to Equation (11);
. Update  according to Equation (12);

. Normalize 6 such that YK_, 8, = 1;

O 0 N N L B LN =

10. Return v, 0, 6*, and s.

T: Threshold parameter for obtaining protein complex candidates.

6*: Resultant protein-complex membership indication matrix;

. Calculate the value s of the objective function (10);

. Repeat Steps 2, 3 and 4 until the relative change of s is less than 107° or times of iteration reach 400;

. Obtain the resultant protein-complex membership indication matrix 0* according to Equation (13);
. Treat each connected subnetwork of a complex candidate as a single complex;
. Filter out detected complexes which contain less than three proteins;

Figure 3 The algorithm of detecting protein complexes using GMFTP.
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(version April 6, 2013) and BioGRID (version 3.1.77) pro-
vide weights for only a low proportion of the interactions,
we treat them as unweighted, following the method in
[17]. The Gene Ontology (April 6, 2013) is used as the
data source of functional properties [48]. Four categories
of functional profiles (BP, CC, MF and total) are derived
from the annotations of the three individual subontologies
(biological process, cellular component, and molecular
function) and the comprehensive annotation which con-
catenates that of all the three subontologies. The gold
standards of yeast protein complexes are derived from
CYC2008 [19] and SGD [49]. For details, see Additional
file 1.

We use four independent quality criteria, accuracy
(ACC) [3], fraction of matched complexes (FRAC), max-
imum matching ratio (MMR) [17] and precision-recall
score (PR) [40], to evaluate the detected complexes. The
four metrics have complementary strengths since they
evaluate the performance from different perspectives.
Due to the fact that the gold standard complexes are
incomplete, we also test the functional homogeneity of
predicted complexes in a similar way to [17] (Additional
file 1).

Effect of parameters

GMEFTP includes two parameters which need to be tuned:
K and A. As discussed above, we can use a value of K that
is higher than the real number by introducing a sparse
prior. We therefore set K = 1000 for all the six data sets.
Next, we focus on examining the influence of A which is
the hyperparameter of prior distribution. We run GMFTP
with various values of 1 (A € {273,272, ...,2°}) and eval-
uate the quality of predicted complexes by matching them
with the reference complexes.

For each PPI network and each category of functional
profile, the ACC and PR scores are used to test whether
A has an effect on the performance. Overall, GMFTP
obtains competitive ACC scores when A € [273,2%] and
optimal PR scores when A €[22,2%] for both the two
gold standards (Figures S2-S7 in Additional file 1). We
also test how the parameter affects the number of pre-
dicted complexes and covered proteins. The number of
predicted complexes and the number of proteins clustered
into corresponding complexes decrease with increasing A
(Figures S2-S7 in Additional file 1), which shows that A
is able to control the sparsity of our model. An exam-
ple which illustrates how A influences the number of
detected complexes via merging small complexes into
larger ones is shown in Figure S8 (in Additional file 1).
Overall, we find that GMFTP has a competitive perfor-
mance when A = 4 and other optimized values may
improve further the performance in some cases. To avoid
evaluation bias and overestimation of the performance,
we do not tune the parameter to a particular dataset
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and set A to 4 as the default value in the following
experiments.

Effect of functional property

To investigate the benefit brought by incorporating func-
tional information into complex detection process, we
compare the complexes predicted by GMFTP using only
the PPI network to those using both the PPI network and
the four categories of functional profiles. For the case of
using only the PPI network, we set S; = 0 for all proteins
and F as a zero matrix with size N x K. For brevity, we refer
to the five cases as PPI only, PPI+BP, PPI+CC, PPI+MF
and PPI+total, respectively.

For each case, the detected complexes are evaluated
using the ACC, FRAC, MMR and PR scores with respect
to the CYC2008 and SGD complexes (Figure 4, Figure
S9 in Additional file 1). The PPI network combined with
all the four categories of functional profiles works better
than the PPI network alone, which shows that incorpo-
rating functional property into GMFTP is always able to
improve the quality of detected complexes. In general,
the results of CC property outperform those of BP and
MEF properties. This is partly because the functional pro-
file of CC subontology may actually give some hints as
to what complex(es) a protein may belong to. The BP
functional profile usually performs a little better than the
MEF functional profile. This may in part be due to the
richer annotations in the BP subontology. We also observe
that the total functional profile generally performs better
than the other three individual functional profiles except
several results using the SGD gold standard. This demon-
strates that the GO annotations of the three orthogonal
subontologies have complimentary strength in capturing
functional homogeneity of complexes, and that merging
them is able to improve the performance.

To understand how the functional properties help to
improve the performance, let us go back to the exam-
ple illustrated in Figure 1. Protein YMLOO7W does not
participate in SAGA complex but interacts with a total
of seven proteins in this complex. GMFTP using only
the topological property incorrectly clusters it into this
complex (Figure 1(a)). Due to the fewer interactions with
the core members of transcription factor TFIID com-
plex, protein YPL129W is neglected when using only the
PPI network. From Figure 1(b), we can find that pro-
tein YMLOO7W does not associate with functions which
are frequently associated with the members of SAGA
complex (e.g., GO:0003712 and GO:0016573), thus it is fil-
tered out when the functional information is taken into
account. Since protein YPL129W shares common func-
tions (e.g., GO:0001075 and GO:0051123) with the mem-
bers of transcription factor TFIID complex, it is correctly
grouped into this complex. Since protein YER164W nei-
ther interacts nor has many similar functions with the



Zhang et al. BVIC Bioinformatics 2014, 15:186
http://www.biomedcentral.com/1471-2105/15/186

Page 8 of 15

[ rcc @ reec [ v [
T T T T T
PPlonly [ 0765 [ 08680 [NNNOSOT OISO S
PPI+BP [ o766 [ 0882 [ 06390 [NNNNOGISINN
PPI+CC |[T0786 [0S0 067 NoG2e N | Colli
PPI+MF [ 0764 [ 0875 | 0583 |NN0:5090 o
PPI+total 70788 [ 0.8900 " [N0:6500 [ NN0Go I
PPlonly | 0742 [ 0841 0AEo N OHST -
PPI+BP 0747 08330 N0i563 OIS 0s -
PPI+CC | 0758 [ 0884  [0:5350 " [NNNOHSSINN 71 Gavin
PPI+MF [ 0750 [ 0840 R0 2 oSS -
PPI+total [ 0768 [N0877 0 0504 OIS0 -
PPlonly 0722 0756 N0 74 OO -
PPI+BP [ 0725 07620 R0 O CoM Krogan
PPI+CC | 0771 [ 0842  [[0:5660 " [0S 1 core
PPI+MF [ 0721 07560 N04ee N OS2
PPI+total [T70.768 [0:80650 T [NOS7S N NOGZO -
PPlonly |- 0692 [I0:6520 1 [NN0:398 N NOMGEIN -
PPI+BP [ 0699 [ 0652  [[10.438" [NNOSATNNN -
PPI+CC | 0737 [ 0718 — [[70486  [NINNOS6oMN - Krogan
PPI+MF [ 0689 [ 0658 [ 0419 [NNNOISIZNNN 1 extended
PPHotal [ 0745 [ 0696 [ 0#67 OGO | Senee
PPlonly [ 0639  [T0:5800 " [NOI206 MIN0IS200I -
PPI+BP [ 0674 [ 0638  [0.386 [NNO4000N -
PPI+CC [ 0713 [ 07017  [T70:407 " [NNOZ2500 .
PPItMF [T 0643 100561200 [N0S3ENN0IS68NN { DIP
PPl+total [T 0,704 [ 00705 0 [0S0 ORI .
PPl only [I0723 0 N0 Ge7 S EE .
PPLBP [ o726 | 0720 [ 0421 [oaisam .
PPI+CC 0754 [ 0771 0456 [NN0#A2000 - BioGRID
PPLMF [T 0727 [0i69 10 00 OO .
PPI+total [T 0756 [N 07500 O O -
L L L L
0 0.5 1 2 2.5 3
Figure 4 Performance of GMFTP using different functional properties with respect to the CYC2008 gold standard. The total height of each
bar is the value of the composite scores of four metrics (ACC, FRAC, MMR and PR) for a given functional property on a given network. Larger scores
are better.

other members of SAGA complex, it cannot be recovered
by our model correctly.

Comparison with previous approaches using only
topological property

Since most previous approaches detect complexes based
solely on the PPI network, we concentrate on testing
the effectiveness of GMFTP using only the topologi-
cal property first. We compare it to a representative set
of approaches: AP [11], CFinder [50], ClusterONE [17],
Linkcomm [38], MCL [9], MCODE [10], MINE [51],
SPICi [12] and SR-MCL ([32]. For the four algorithms
(AP, ClusterONE, MCL and SPICi) which can handle
weights, we implement them on both the weighted and
the unweighted versions of the four networks (Collins,
Gavin, Krogan core and Krogan extended) which include
edge weights. For each algorithm, except ClusterONE,
Linkcomm and SR-MCL for which we use the default
parameters as suggested by the authors, the parameters
are deliberately selected in a similar way to [17]. The
details are listed in Additional file 1. For all compared

—

approaches, like GMFTP, we exclude complex candidates
with size less than three. For GMFTP, we set F as a zero
matrix and S; = 0 for all proteins in this experiment. We
do not tune the parameters of GMFTP and set K = 1000,
A = 4 for all datasets.

Table 1 shows the overall comparative results on the
unweighted networks using the CYC2008 gold standard.
We find the relative performances of these approaches
change according to the topological properties of the net-
works under consideration and the evaluation metrics we
use. CFinder and MCODE tend to identify fewer com-
plexes; Linkcomm and SR-MCL detect more complexes.
The other six methods usually perform as a compromise
between the two extreme cases. When we only consider
how well the gold standards are recovered by the pre-
dicted complexes (quantified using FRAC and MMR),
Linkcomm and SR-MCL achieves better performance
than the other methods partially because they detect more
complexes. When we pay attention not only to how well
the reference sets are recovered by the predicted com-
plexes but to how well the predicted complexes match
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Table 1 Benchmark results using solely the unweighted PPl network with respect to the CYC2008 gold standard

Algorithm Coverage # Complexes FRAC MMR ACC PR
GMFTP 1168 179 0.868 0.591 0.765 0.593
AP 1363 207 0.697 0.785 0497 0.444
CFinder 1161 114 0.653 0439 0.693 0440
ClusterONE 1293 203 0.847 0.571 0.775 0.564
Linkcomm 1126 407 0.903 0.646 0.744 0456
Collins MCL 1178 187 0.840 0.537 0.779 0.529
MCODE 853 115 0.743 0496 0.730 0.593
MINE 1101 138 0.771 0499 0.756 0.547
SPICi 958 124 0.708 0448 0.728 0.570
SR-MCL 1304 337 0.875 0.625 0.755 0481
GMFTP 1464 271 0.841 0.489 0.742 0457
AP 1815 274 0.667 0.659 0.346 0310
CFinder 1158 137 0.638 0378 0.701 0424
ClusterONE 1624 294 0.783 0449 0.725 0.391
Linkcomm 1381 604 0.870 0.548 0.703 0372
Gavin MCL 1301 240 0.696 0421 0.713 0422
MCODE 899 155 0.710 0438 0.685 0492
MINE 1242 212 0.804 0454 0.710 0436
SPICi 1008 184 0.746 0434 0.697 0478
SR-MCL 1750 735 0819 0.539 0.701 0327
GMFTP 1244 270 0.756 0474 0722 0.491
AP 2506 391 0.575 0433 0.242 0.182
CFinder 1143 115 0433 0.281 0.555 0.268
ClusterONE 2044 539 0.720 0431 0.708 0.326
Linkcomm 962 425 0.701 0.460 0.675 0428
Krogan core MCL 1933 388 0.671 0377 0.691 0.299
MCODE 640 95 0463 0.268 0.583 0406
MINE 937 157 0616 0.359 0.664 0450
SPICi 1249 224 0628 0.356 0.689 0409
SR-MCL 2585 1833 0.884 0575 0.686 0.197
GMFTP 1197 265 0.652 0.398 0.692 0.469
AP 3522 461 0461 0.232 0.117 0.096
CFinder 914 88 0.287 0.172 0.543 0.277
ClusterONE 114 239 0481 0.296 0.633 0407
Linkcomm 1925 998 0.652 0424 0.687 0317
Krogan extended MCL 2973 531 0.503 0.254 0.636 0.190
MCODE 619 84 0.343 0.188 0.506 0.345
MINE 902 162 0.564 0316 0.650 0451
SPICi 1584 295 0.525 0.258 0.645 0311
SR-MCL 3637 2644 0.702 0431 0617 0.154
GMFTP 1705 376 0.580 0.296 0.639 0329
AP 4662 517 0.441 0.219 0.091 0.086
CFinder 635 75 0.263 0.119 0453 0.297

ClusterONE 1402 346 0429 0.227 0.554 0.280
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Table 1 Benchmark results using solely the unweighted PPI network with respect to the CYC2008 gold standard (continued)

Linkcomm 3396 1829 0.630 0.386 0.629 0.203
DIP MCL 4007 609 0451 0.234 0.628 0.173
MCODE 540 95 0.210 0.108 0402 0.211
MINE 1135 260 0.536 0.268 0.585 0333
SPICi 2103 403 0.455 0.228 0.583 0.245
SR-MCL 4825 3222 0.674 0.376 0.583 0.141
GMFTP 2456 434 0.687 0.377 0.723 0378
AP 5632 206 0316 0.064 0.027 0.044
CFinder 1729 110 0.220 0.127 0.512 0.186
ClusterONE 2580 473 0610 0318 0.683 0.325
Linkcomm 4119 4446 0678 0.459 0.701 0.243
BioGRID MCL 3652 335 0.314 0.158 0520 0.126
MCODE 1087 136 0.297 0.154 0514 0.294
MINE 2414 409 0.576 0.308 0.663 0.304
SPICi 2756 501 0483 0.261 0.652 0.281
SR-MCL 5593 1097 0.496 0.273 0.594 0.143

to the reference sets (quantified using ACC and PR),
GMFTP outperforms the previous nine approaches with
a few exceptions. Furthermore, GMFTP also gets com-
petitive FRAC and MMR scores except the two extreme
cases (Linkcomm and SR-MCL). Similar results are also
observed using the SGD reference complexes (Additional
file 2). When we implement ClusterONE on the weighted
version of the four networks (Collins, Gavin, Krogan
core and Krogan extended), it gets higher FRAC, MMR
and ACC scores than GMFTP in some cases (Additional
file 2). Due to the competitive performance of GMFTP
on the unweighted versions, we may therefore conjec-
ture that the better performance of ClusterONE using
weights comes from the ability to take weights into
account, and the competitive performance of GMFTP on
the unweighted networks may be due to a fundamentally
different underlying algorithm.

We also compare the functional homogeneity of pre-
dicted complexes through calculating the enrichment of
Gene Ontology functions. Since Linkcomm and SR-MCL
get better FRAC and MMR scores than GMFTP, we focus
on comparing GMFTP with them. Table 2 lists the num-
ber (and percentage) of the identified complexes whose
P-values falls within P-values < E-15, [E-15, E-10], [E-10,
E-5], [E-5, 1]. Note that here the P-value of each identi-
fied complex is calculated using the total GO functions
of all the three subontologies (BP, CC and MF), and the
results of each subontology are listed in Additional file 3.
There are more complexes detected by GMFTP than by
the other two methods with P-value less than E-15, E-10,
or E-5 in terms of percentage. This indicates that even
though Linkcomm and SR-MCL detect more complexes

such that they can recall the reference complexes well,
they also detect more complexes which are less functional
significant. In summary, Linkcomm and SR-MCL have
more competitive recall ratio; but GMFTP has a good
compromise between recall and precision.

Comparison with previous approaches using both
functional and topological properties

To evaluate the advantage of GMFTP in incorporating
functional annotation into complex detection process,
we compare its results with those of other approaches
which also take functional property into consideration.
A popular framework on this topic can be divided into
two steps: to weight the strengths of interactions using
some semantic similarity measures, and then to detect
complexes from the weighted PPI networks using some
graph clustering algorithms [22-25]. The main difference
between them lies in the different similarity measures
and clustering algorithms they use. Since there is no pub-
lic software available for these approaches, we design a
heuristic comparison. We employ three widely used mea-
sures Jiang ([52], Kappa [53] and Lin [54]) to weight
the PPI network and apply four algorithms (AP, Clus-
terONE, MCL and SPICi) which can handle weights
to detect complexes. The package csbl.go [55] is used
to calculate the similarities between proteins, and the
weights of interactions which involve unannotated pro-
teins are set to 1. The parameter settings of the clustering
algorithms are presented in Additional file 1. We also
compare GMFTP to COAN [34] which considers GO
slim annotations by constructing an ontology augmented
network.
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Table 2 Functional enrichment of the complexes detected using only the unweighted PPl network

Network Algorithm <E(-15) E(-15) to E(-10) E(-10) to E(-5) E(-5)to 1
Collins GMFTP 33 (18.4%) 24 (13.4%) 60 (33.5%) 62 (34.6%)
Linkcomm 53 (13.0%) 59 (14.5%) 109 (26.8%) 186 (45.7%)
SR-MCL 38 (11.3%) 36 (10.7%) 92 (27.3%) 171 (50.7%)
Gavin GMFTP 29 (10.7%) 20 (7.4%) 54 (19.9%) 168 (62.0%)
Linkcomm 29 (4.8%) 34 (5.6%) 112 (18.5%) 429 (71.0%)
SR-MCL 49 (6.7%) 29 (3.9%) 135 (18.4%) 522 (71.0%)
Krogan core GMFTP 28 (10.4%) 22 (8.1%) 63 (23.3%) 157 (58.1%)
Linkcomm 24 (5.6%) 30 (7.1%) 114 (26.8%) 257 (60.5%)
SR-MCL 80 (4.4%) 70 (3.8%) 264 (14.4%) 1419 (77.4%)
Krogan extended GMFTP 29 (10.9%) 19 (7.2%) 57 (21.5%) 160 (60.4%)
Linkcomm 30 (3.0%) 41 (4.1%) 158 (15.8%) 769 (77.1%)
SR-MCL 135 (5.1%) 86 (3.3%) 259 (9.8%) 2164 (81.8%)
DIP GMFTP 36 (9.6%) 29 (7.7%) 68 (18.1%) 242 (64.5%)
Linkcomm 44 (2.4%) 63 (3.4%) 323 (17.7%) 1398 (76.5%)
SR-MCL 174 (5.4%) 117 (3.6%) 398 (12.3%) 2533 (78.6%)
BioGRID GMFTP 66 (15.2%) 38 (8.8%) 113 (26.0%) 217 (50.0%)
Linkcomm 217 (4.9%) 254 (5.7%) 1026 (23.1%) 2949 (66.3%)
SR-MCL 166 (15.1%) 77 (7.0%) 210 (19.2%) 643 (58.7%)

Table 3 presents the comparative performance with
ClusterONE using the total GO annotation with respect
to the CYC2008 reference. The results of the three indi-
vidual subontologies (BP, CC and MF), the other four
clustering algorithms (AP, COAN, MCL and SPICi) and
the SGD gold standard are reported in Additional file 2.
For each clustering algorithm (AP, ClusterONE, MCL
and SPICi), the performance differs a little with differ-
ent GO similarity measures; and for each semantic mea-
sure (Jiang, Kappa and Lin), the relative performance
changes depending on the clustering algorithm and the
PPI network under consideration. We also find that the
relative performance of each clustering algorithm and
each semantic measure depends on the functional prop-
erty of each subontology individually, which indicates
that there is no single clustering algorithm and semantic
measure that can dominate the rest in all cases. Over-
all, GMFTP and ClusterONE are competitive. In some
cases, ClusterONE with deliberately selected semantic
measure may obtain higher ACC scores than GMFTP.
However, GMFTP outperforms ClusterONE in terms of
the MMR and PR scores. For the Collins, Gavin and
BioGRID networks, SPICi achievers better performance
than GMFTP using the PR score under some circum-
stances, but GMFTP is superior to SPICi using the
other three evaluation scores. What is more, GMFTP
achieves the best MMR score which is a new eval-
uation measure recommended in [17] in most cases.

These results demonstrate that GMFTP is an effec-
tive approach that can make full use of the topo-
logical and functional properties for protein complex
identification.

Detecting multifunctional proteins

It is well known that a protein may carry out different
functions in different complexes. A desirable approach
to complex detection therefore should be able to accom-
modate proteins that belong to more than one complex.
Due to the absence of a reference set of bona fide multi-
functional proteins, it is impractical to compare different
approaches at this job directly. We resort to test how
well the set of multi-group proteins predicted by GMFTP
matches with those of the other methods which also han-
dle overlaps (CFinder, ClusterONE, Linkcomm, MINE
and SR-MCL) and the two gold standards (CYC2008 and
SGD). For GMFTP, we concentrate on the results of two
cases (PPI only and PPI+total). For ClusterONE, we use
the results of the two versions (weighted and unweighted)
of networks. A protein is regarded as a multi-group pro-
tein if it belongs to more than one predicted (or reference)
complex, and it is a mono-group protein if it belongs
only to one predicted (or reference) complex. Overall,
the multi-group proteins recovered by our model signifi-
cantly (hypergeometric test, P-value < 0.01) overlap with
those of the other approaches and the gold standards
(Additional file 4).
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Table 3 Benchmark results using both the PPl network and the total GO annotation with respect to the CYC2008 gold

standard
Network Algorithm GO sim Coverage # Complexes FRAC MMR ACC PR
Collins GMFTP - 1085 188 0.890 0.659 0.788 0651
Jiang 1210 169 0.868 0.575 0.784 0.579
ClusterONE Kappa 1130 161 0.840 0573 0.770 0.597
Lin 1255 172 0.854 0.561 0.784 0.613
Gavin GMFTP - 1122 208 0877 0.594 0.768 0577
Jiang 1298 224 0.833 0.549 0.768 0.496
ClusterONE Kappa 1218 217 0.783 0.511 0.760 0.485
Lin 1461 253 0.804 0514 0.757 0.449
Krogan core GMFTP - 1218 252 0.805 0.573 0.768 0.649
Jiang 1516 341 0.847 0.540 0.756 0.445
ClusterONE Kappa 1322 319 0.810 0.522 0.736 0470
Lin 1813 464 0.841 0517 0.766 0379
Krogan extended GMFTP - 1062 216 0.696 0.487 0.745 0.601
Jiang 2021 503 0.724 0435 0.745 0.342
ClusterONE Kappa 1722 482 0.680 0410 0.733 0.344
Lin 2458 752 0713 0425 0.730 0.281
DIP GMFTP - 1492 306 0.705 0.430 0.704 0.474
Jiang 2910 733 0.741 0.406 0.714 0.299
ClusterONE Kappa 2487 748 0.679 0.398 0.682 0.308
Lin 3285 921 0.701 0359 0.700 0.248
BioGRID GMFTP - 2283 413 0.750 0474 0.754 0.448
Jiang 3789 881 0.665 0.377 0.759 0.260
ClusterONE Kappa 3303 889 0.691 0.398 0.717 0.283
Lin 4208 1073 0.602 0.334 0.755 0.227

In a similar manner to [18], we further focus on test-
ing whether topological and functional features can dis-
tinguish multi- and mono-group proteins identified by
GMFTP. Here we concentrate on the results detected
using the PPI network and the total GO annotation for its
competitive performance, of which the general statistics
are listed in Additional file 4. From Figure 5, we observe
that the multi-group proteins have, on average, a higher
degree, a higher node betweenness and a higher num-
ber of annotated GO functions. This is also true for the
number of functional annotations of the three individ-
ual subontologies except the MF ontology (Figure S10 in
Additional file 1). We implement Wilcoxon rank-sum test
to assess whether the differences of distributions of the
topological and functional features between multi- and
mono-clustered proteins are statistically significant. The
results presented in Additional file 4 show that the dif-
ferences are significant (P-value < 0.01) in most cases.
The multi-group proteins recovered by GMFTP are there-
fore more central in the network and are involved more
biological functions.

Discussion

The developments of high-throughput experimental
techniques and computational methods for delineating
protein-protein interactions and predicting protein func-
tions have produced rich interaction and functional
knowledge of proteins. Recently, a great deal of research
works have tried to group proteins into complexes in a
given PPI network. However, the performances of the
approaches which use the topological property alone are
limited not only for the poor quality of the underlying
PPI network but also for the negligence of other available
information such as functional profile.

In our opinion, both topological and functional prop-
erties are meaningful and important for predicting pro-
tein complexes. We therefore develop a new algorithm
which makes full use of them. Unlike previous approaches,
we consider an alternative view and propose a prob-
abilistic model-based approach to combine these two
types of properties in a natural and principled manner.
Our method can avoid the choice of semantic measures
and naturally deal with overlaps. Owing to the superior
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Figure 5 Topological and functional features of mono (Mo)- and multi (Mu)-group proteins detected by GMFTP. This result is obtained
using the PPl network and the total GO annotation. For each feature, the distributions of mono- and multi-grouped proteins are represented by
boxplots (line = median). (a) Degree. (b) Betweenness. (¢) Number of annotated functions of all the three subontologies.

performance and sound theoretical principle of GMFTP,
we hope that our work can attract more attention to
model-based methods for complex detection. Although
generative model have been applied to study PPI net-
works, our model is different from the previous ones since
most of them focus only on the generative process of the
network structure. As we know, our model is one of the
first to take the generative process of the functional profile
into account .

One problem with considering functional property is
that the improvement of performance depends on the
quality and completeness of functional annotations of the
database. It is well known that functional information is
not always obtainable in practice [40]. From Equation (11),
the complex(es) into which an uncharacterized protein
will be clustered is determined only by the topological
structure, which means our model can adaptively handle
the case where the protein is not functionally charac-
terized. Since GO terms in the subontology of cellular
component may provide some clues as to what com-
plex(es) a protein may belong to, the function property
derived from this subontology may introduce biases and
overestimate the performance. However, the effectiveness
of our model has also been investigated in the other two
subontologies. In practical application, even if there may
be some evaluation biases, we suggest combining the total
GO annotations of all the three subontologies to form
a comprehensive functional profile to improve the per-
formance, which works similarly to the semi-supervised
clustering in machine learning [56].

In general, it is time-consuming and difficult for model-
based approaches to scale up. We now analyze the com-
putational complexity in Equations (11) and (12). Each

update of © takes O (KN (N + C)) times and update of
VU takes O(NKC) times. Therefore, the total time cost
of GMFTP is O (KNT (N + C)), where T is the number
of iterations. Given that the real-world PPI networks and
functional profiles are extremely sparse, the overall cost
can be reduced to O (KT (N + C + E + R)), where E is the
number of interactions and R is the number of functional
associations (see Additional file 1). In the experiments,
we implement the algorithm using Matlab in a worksta-
tion with Intel 4 CPU (3.40 GH x 4) and 16 GB RAM.
Each update costs at most 3.25 seconds and the entire
estimation takes less than 1300 seconds when we set the
maximum number of iterations to 400. This means that
even though our approach may be not as fast as some local
network clustering algorithms (e.g., SPICi), the time cost
is also affordable. In order to avoid local minimization,
we repeat the updating process 100 times with random
restarts. We acknowledge that this may be not a sufficient
number of repetitions to ensure a global optimum solu-
tion and GMFTP would work better with more restarts.
Instead of searching for the global minimization with mil-
lions of repetitions, we have paid attention to evaluate how
the random initial conditions influence the stability of the
results (see Additional file 1).

One perennial problem for model-based approaches is
to select models, that is how to determine the value of
parameter A here. In statistics, several model selection
strategies are available [43]. A simple and widely adopted
strategy is the cross-validation procedure. However, this
strategy may be not applicable in the task of network clus-
tering since removing a predefined fraction of proteins
(or interactions) from a PPI network would change the
topological structure, which means adding noise rather
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than splitting the data set [17]. Another solution to this
problem is to select model according to some model selec-
tion criteria such as Akaike information criterion and
Bayesian information criterion. The performance of this
type of strategies varies according to the choice of crite-
ria. For simplicity and good performance, we first analyze
how A affects the performance and then set it to 4 in
the comparative experiments. The model selection prob-
lem is left as an open research question in the future
study.

Previous researches have shown that the quality of
detected complexes could be improved if the weights of
interactions are available [17]. Currently, our model is
limited to unweighted networks and can be applied to
weighted networks only after “binarizing” them due to
the Bernoulli generative mechanism. In the future work,
we will investigate the generative process of weighted net-
works to make full use of the valuable information of
weights. In addition, the hierarchical relationships among
GO terms are not used in our model. Intuitively, two pro-
teins which share a low-level (or specific) GO function
are more likely to belong to the common complex(es)
than those which share a high-level (or general) GO func-
tion. It would be useful to incorporate the specificity of
GO terms into our model and further to improve the
performance.

Conclusions

In this study, we have developed a new approach for
protein complex detection based on a proposed gen-
erative model for protein-protein interaction network
and protein functional profile. Experiment results on six
yeast networks show the competitive performance of our
method in the identification of both protein complexes
and multifunctional proteins. The results also show the
effect of protein functional property on complex detec-
tion, which suggests that the functional annotation infor-
mation should be used if it is available.

Additional files

Additional file 1: Supplementary figures and text. This section
provides the supplementary figures referred in the main text and some
text which describes the parameter estimation method, the data sets we
use, the evaluation methods we use, convergence and computational
complexity analysis of the proposed model, effects of random restarts and
parameter K, and parameter settings of compared algorithms.

Additional file 2: Benchmark results of comparative experiments.
This section provides the supplementary tables which describe the
comparative results for the six datasets (Collins, Gavin, Krogan core, Krogan
extended, DIP and BioGRID).

Additional file 3: Functional enrichment of the detected protein
complexes. We provide the functional enrichment analysis results of the
complexes predicted by GMFTP, Linkcomm and SR-MCL using only the PPI
network with respect to the three individual subontology (BP, MF, CC) in
this section.
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Additional file 4: Supplementary tables for the analysis of
multifunctional proteins detection. This file include supplementary
tables which describe the general properties of multi-group proteins
detected by various approaches, the statistical results of the complexes
predicted by GMFTP using the PPl network and the total GO annotation,
and P-value of Wilcoxon test of populations of topological and functional
features of mono- and multi-grouped proteins detected by GMFTP.
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