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Abstract

Background: The significant growth in the volume of electronic biomedical data in recent decades has pointed to
the need for approximate string matching algorithms that can expedite tasks such as named entity recognition,
duplicate detection, terminology integration, and spelling correction. The task of source integration in the Unified
Medical Language System (UMLS) requires considerable expert effort despite the presence of various computational
tools. This problem warrants the search for a new method for approximate string matching and its UMLS-based
evaluation.

Results: This paper introduces the Longest Approximately Common Prefix (LACP) method as an algorithm for
approximate string matching that runs in linear time. We compare the LACP method for performance, precision
and speed to nine other well-known string matching algorithms. As test data, we use two multiple-source samples
from the Unified Medical Language System (UMLS) and two SNOMED Clinical Terms-based samples. In addition, we
present a spell checker based on the LACP method.

Conclusions: The Longest Approximately Common Prefix method completes its string similarity evaluations in less
time than all nine string similarity methods used for comparison. The Longest Approximately Common Prefix
outperforms these nine approximate string matching methods in its Maximum F1 measure when evaluated on
three out of the four datasets, and in its average precision on two of the four datasets.
Background
The term-matching problem has been widely addressed in
multiple contexts, which resulted in a number of string
similarity metrics designed, applied and evaluated in vari-
ous research studies [1]. In the biomedical domain, vari-
ous ASM methods are used by scientists to solve current
research tasks such as retrieving sequences from existing
databases that are homologous to newly discovered ones,
and establishing multiple sequence alignment to discover
similarity patterns to predict the function, structure, and
evolutionary history of biological sequences [2].
The recent expansion of healthcare information sys-

tems that draw from multiple medical databases has
resulted in redundant information, among other prob-
lems. This phenomenon, also known as the duplicate
detection problem, has caused problems with record
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linkage across medical databases. Previous research
has addressed problems such as patient record aggre-
gation from multiple databases based on a minimum
profile (i.e., name, gender and date of birth) [3] and term
matching for source integration, spelling correction and
biomedical data mining applications. In this paper, these
tasks are considered in the context of terminologies such
as Systemized Nomenclature of Medicine Clinical Terms
(SNOMED CT) and the Unified Medical Language System
(UMLS) [4]. Approximate String Matching (ASM) methods
are used for augmenting, updating, and auditing UMLS
vocabularies. ASM methods are also important for facili-
tating biomedical information extraction, relationship
search, and concept discovery [5].
The UMLS is an extensive terminological knowledge base

comprised of three major components: the Metathesaurus,
the Semantic Network, and the SPECIALIST Lexicon and
Lexical Tools. The current 2013AB release of the Metathe-
saurus contains more than 2.9 million concepts and 11.4
million unique terms retrieved from over 160 source vo-
cabularies [6]. UMLS source integration is a complicated
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multistep process and, despite the availability of numerous
algorithmic tools, managing these vocabularies requires
considerable human involvement. As additional sources
are integrated into the UMLS, they will require reintegra-
tion with existing vocabularies [4].
These disadvantages motivate the search for a new

method for approximate string matching and UMLS-
based evaluation. In this paper, we introduce the Longest
Approximately Common Prefix (LACP) method for
ASM and present the results of its use to improve the
operation of a number of applications in biomedical in-
formatics and related domains.
It bears noting that, in contrast to the well-known

SPECIALIST lexicon tools Norm, Word Index or LVG
[7], LACP does not perform text manipulations. Instead,
it assesses the similarity or dissimilarity of two strings.
Other three highly praised instruments, MetaMap [8],

NCBO Annotator [9] and ConceptMapper [10] are pub-
licly available concept recognition systems designed for
text annotation from various ontologies [11]. The gen-
eral rationale of these tools is to split the input text into
smaller constructions, such as phrases or tokens, which
are subsequently looked up in a dictionary. For instance,
MetaMap splits the input text into phrases and produces
their variants. Then it generates a candidate set, which is
mapped to an ontology. The LACP method, introduced
in this paper, may be used as an inner component of
such a system for calculating the similarity of a candi-
date phrase or token when matching to various ontology
terms. The authors consider implementation of a text
annotation system incorporating the LACP method as a
direction for future research.
The rest of the section is dedicated to the analysis of

the relevant research approaches and the related work
studying the application of well-known similarity mea-
sures in the biomedical domain.
Tan et al. [12] applied the classic Levenshtein score in-

corporated with a particular threshold to medical ontology
alignment. Tolentino et al. [13] utilized the Levenshtein
technique in combination with other string similarity al-
gorithms to construct a UMLS-based spell checker. Sahay
et al. [14] employed more advanced combinations of the
Jaro and Jaro-Winkler similarity metrics combined with
Term Frequency/Inverse Document Frequency (TFIDF)
to compute similarity values between ontological concepts
and phrases. Cohen et al. [15] described, implemented
and evaluated the above-mentioned hybrid distances in
the SecondString Java toolkit.
Plaza et al. [16] applied heuristic rules with a clustering al-

gorithm to the problem of biomedical text summarization.
Their work mapped terms found in a given document to
UMLS concepts. Using the relationships between the
identified UMLS concepts, the authors then represented
the document in a graph. They graphed the concepts and
assigned sentences to clusters based on semantic similar-
ity. Finally, the most important sentences were selected to
be included in a document summary.
Zhen et al. [17] introduced a TFIDF string distance

method within their clustering algorithm and applied it
to biomedical ontologies. The evaluation of their method
demonstrated superior values of the F-measure on two
datasets derived from the MeSH and GO ontologies.
In a previous paper, we developed a novel Markov

Random Field-based Edit Distance (MRFED) and applied
it to the ASM problem in GO ontologies [18]. Similarly,
Wellner et al. [19] used Conditional Random Fields in a
distance metric method on a UMLS Metathesaurus data-
set. Bodenreider et al. [20] applied the Cosine, Jaccard
and Dice string similarity coefficients to aligning the
UMLS Semantic Network with the Metathesaurus.
Yamaguchi et al. [21] tested four similarity metrics for

clustering terms, which appeared in the UMLS
Metathesaurus. The authors compared the performances
of Monge-Elkan, SoftTFIDF, Jaro-Winkler and the bigram
Dice coefficient methods evaluating these techniques on
chemical and non-chemical terms grouped into two data-
sets. They demonstrated that normalized string distances
performed better than the standard measures for the
evaluation of precision, recall, and F-measure, and that
similarity metrics required different parameters such as
threshold values for chemical and non-chemical terms,
among other findings.
Sauleau et al. [22] propose a novel method for linking

medical records by examining the connections between
stand-alone and clustered databases. The authors devel-
oped a three-step approach: 1) preprocessing the data and
applying blockers, 2) matching pairs of records using the
Porter-Jaro-Winkler score calculation, and 3) clustering
the data. The authors suggest that their method is useful
for inserting new entities into large databases.
Zunner et al. [23] studied the semi-automated mapping

of non-English terms to Logical Observation Identifiers
Names and Codes (LOINC) [24] using the Regenstrief
LOINC Mapping Assistant (RELMA) [25]. Their approach
resulted in a mapping rate of 500 terms per day, which
they considered satisfactory.
In research by Parcero et al. [26], mapping a local ter-

minology to the LOINC dataset led to the development
of an automated tool that uses an approximate string
matching function. McDonald et al. benchmarked Jaccard,
Levenshtein, Monge-Elkan, and Soft TFIDF metrics for
LOINC integration, and the Jaccard method was selected
as the best choice for such a task [24].
The present research employs the Shortest Path Edit

Distance (SPED) algorithm we developed previously [27]
to compute a string distance based on substring matching
and graph-based transformations. To adjust the dissimi-
larity values in the final results, we applied a re-scorer set
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according to the length of equal string prefixes. This final
step produced a major improvement in results and in-
spired this paper on the Longest Approximately Common
Prefix (LACP) method, a novel string similarity metric
based on the approximate prefix match of two strings.
This paper demonstrates how this fast string distance
method provides performance that is superior to other
methods on datasets from SNOMED CTand from multiple
UMLS sources (Table 1) in terms of average precision and
Maximum F1.

Methods
The Longest Approximately Common Prefix (LACP)
method is based on an approximate histogram match of
string prefixes. It identifies matches by determining the
similarity value of a pair of strings. The method com-
pares the histogram differences between the prefixes of
two strings to parameter α. It begins its search in the
first characters of the strings. The prefix length is
returned when the histogram difference is equal to α or
the last character of the shorter string is reached. The
prefix length is then divided by the average length of the
pair of strings. The division takes into consideration
string lengths, since strings that have significantly vary-
ing lengths are more dissimilar than strings that do not.
The division also assures that the value of the LACP
function stays in the [0, 1] interval. The formula for the
LACP function (1) is as follows:

LACP S;Tð Þ ¼ 1−
prefLength S;Tð Þ

Sj j þ Tj jð Þ=2 ð1Þ

where prefLength is the length of the longest approximately
common prefix. According to formula (1), for two identical
strings, LACP is 0, whereas LACP is 1 for two strings not
sharing any common prefix under a certain selection of
the parameter α. The formula for prefLength is given in (2)
below:

prefLength ¼
n
i
����prefHistDiff �S1 ::i;T 1 ::i

�
¼ α

�
∩
�
prefHistDiff

�
S1 ::i−1;T 1 ::i−1

�
< α

�o
ð2Þ

where prefHistDiff is a histogram difference function of
string prefixes, α is a parameter, and S1..i and T1..i are
prefixes of strings S and T of length i. For example, for
Table 1 Four medical informatics datasets used in experimen

# Dataset

D1 The UMLS most frequent concepts from multiple sources

D2 The SNOMED CT most frequent concepts

D3 The UMLS concepts with longest terms (“longest concepts”)

D4 The SNOMED CT longest concepts
the strings S = Anorexia and T = Angina, with an α = 2,
the prefLength would be 3, because two initial characters
match and α allows only one mismatch. Alternatively,
with α = 3 the prefLength would be 4 because two mis-
matches are allowed.
The histogram difference function for string prefixes is

defined in formula (3):

prefHistDiff S1 ::i;T 1 ::ið Þ ¼ i− hist S1 ::ið Þ∩hist T1 ::ið Þj j
ð3Þ

where hist is a histogram, and i satisfies the inequality (4):

1≤ i≤min Sj j; Tj jð Þ ð4Þ
A histogram is an array, that counts the number of oc-

currences of each distinct symbol in a string. In formulae
(2) and (3), i denotes a prefix length. By subtracting
from i the number of characters that are common to the
histograms of both prefixes, the number of non-common
characters remains in the difference. This number of non-
common prefixes is matched against the parameter α, as
is shown in formula (2). During the evaluation phase, we
used α = 3, which allowed two mismatches in histogram
difference.
The expression hist(S1..i) ∩ hist(T1..i) denotes the histo-

gram intersection of two string prefixes. Figure 1 depicts
the histogram intersection of two UMLS terms, ammo-
nium and ammonium ion. The histogram of ammonium
is in Figure 1a, the histogram of ammonium ion is in
Figure 1b. The intersection (Figure 1c) is computed as
the minimum for each pair of argument values of the
same character, with missing values in one argument
omitted from the result.
For example, ammonium contains one “o” while there

are two letters “o” in ammonium ion. As min(1, 2) = 1,
the resulting histogram in Figure 1c contains the entry
“1” for the letter “o”. As there is no blank in ammonium,
there is also no entry for the blank character in the
resulting histogram. In order to compute the size (the
“absolute value” ||) of the histogram intersection in
Figure 1c, the sum of all the numbers in the result matrix
is calculated. For Figure 1c, the size of the histogram inter-
section is (1 + 1 + 3 + 1 + 1 + 1) = 8.
An example of three strings sharing the same prefix is

shown in Table 2. Strings (1) and (2) comprise the first
pair, and strings (1) and (3) form the second pair. Clearly,
ts

# of concepts # of terms Size in kilobytes

100 4,979 369

155 5,000 281

3,337 5,000 1,693

1,805 5,000 903



Figure 1 Example of histogram intersection. The expression hist(S1..i) ∩ hist(T1..i) denotes the histogram intersection of two string prefixes.
Depicts the histogram intersection of two UMLS terms, ammonium and ammonium ion. The histogram of ammonium is in a, the histogram of
ammonium ion is in b. The intersection (c) is computed as the minimum for each pair of argument values of the same character, with missing
values in one argument omitted from the result. For example, ammonium contains one “o” while there are two letters “o” in ammonium ion. As
min (1, 2) = 1, the resulting histogram in c contains the entry “1” for the letter “o.” As there is no blank in ammonium, there is also no entry for
the blank character in the resulting histogram. In order to compute the size (the “absolute value” ||) of the histogram intersection in c, the sum of
all the numbers in the result matrix is calculated. For c, the size of the histogram intersection is (1 + 1 + 3 + 1 + 1 + 1) = 8.

Table 3 Algorithm of the LACP method

No Line Complexity

1 Intersection = 0 O(1)

2 FOR i = 1 to min(|S|,|T|) O(n)

BEGIN

3 HistS.add(Si) O(1)

4 HistT.add(Ti) O(1)
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the first pair of strings is more similar than the second
pair. To account for this and similar cases, the length of
the approximately common prefix is divided by the aver-
age string length in formula (1). In Table 2, strings (1) and
(2) belong to the UMLS concept with Concept Unique
Identifier (CUI) C0002611, while string (3) is associated
with (CUI) C1816069.
The LACP algorithm is in Table 3. The algorithm begins

by setting the histogram intersection at 0. The search for
the longest approximately common prefix begins with the
first character of each string. In steps 3 and 4, the charac-
ters at the current position i of strings S and T are added
to the corresponding histograms. In steps 5 through 9, all
characters in the histogram of string S are compared
against the histogram of string T at the current iteration i.
At this point, the search has advanced to the i-th character
of each string. Steps 6 and 7 describe the following: when
Table 2 UMLS terms sharing the same longest
approximately common prefix

# String Length

1 Ammonium 8

2 Ammonium ion 12

3 AMMONIUM-CHLORIDE 1 MG/CYANOCOBALAMIN
5 MCG/FERRIC AMMON IUM CITRATE 40 MG/FOLIC ACID
1 MG/LYSINE HYDROCHLORIDE 100 MG/MAGNESIUM
SULFATE 1 MG/MANGANESE SULFATE ANHYDROUS
1 MG/NIACIN 5 MG/PANTHENOL 1 MG/POTASSIUM SULFATE
1 MG/PYRIDOXINE HYDROCHLORIDE 0.5 MG/RIBOFLAVIN
1.2 MG/THIAMINE HYDROCHLORIDE 12 MG/ZINC SULFATE
1 MG ORAL LIQUID [HEMERGON]

369
a character c is found in both histograms, operation Get(c)
retrieves the count of this character from both HistS and
HistT. Then the smaller of the two values is added to the
intersection. The search continues until the parameter α
is reached, as shown in line 9, or the last character of the
shorter string is processed, as specified in line 2. In the lat-
ter case, the length of the shorter string is computed in
line 11.
5 FOR (Char c : HistT.Keyset()) Constant

BEGIN

6 IF HistS.ContainsKey(c) O(1)

7 THEN Intersection = O(1)

Intersection + min(HistS.Get(c), HistT.Get(c))

8 END

9 IF (i − Intersection) = α
O(1)

THEN RETURN 1− i−1
S:lengthðÞþT :lengthðÞð Þ=2

10 END

11 RETURN 1− min S ;j jTj jð Þ
S:lengthðÞþT :lengthðÞð Þ=2 O(1)

Total complexity O(n)
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Despite its linear time computational complexity, the
simplicity of the LACP algorithm ensures a short execu-
tion time. The big-O computational complexity is com-
monly used for estimating the speed of an algorithm in
computer science. The calculation of the LACP method
time complexity is shown in Table 3. The inner loop in
step 5 is bound by the number of printable characters
and therefore constant [28]. Thus, the complexity of the
LACP algorithm is linear, i.e., O(n), which is fast com-
paring to other algorithms evaluated in this paper.

LACP-based interactive spell checker
We have employed the LACP method to develop an inter-
active online spell checker [29] for SNOMED CT terms.
The spell checker is a program written in PHP, which con-
nects to a MySQL database containing SNOMED CT
terms from the 2009AB edition of the UMLS. The goal
of the application is to evaluate LACP performance by
revealing the set of SNOMED CT terms that are similar
to the user-provided input term.
The spell checker accepts an input query and inter-

actively outputs the SNOMED CT terms satisfying the
condition LACP(S, T) < t. Here, S is the input term, T is
a SNOMED CT term, and t is a threshold. To reduce
the run time, the algorithm limits the set of search terms
by applying length criteria as described below.
There are several parameters that define the perform-

ance of the spell checker depending on the mode of op-
eration. The length of a SNOMED CT term |T| that is
considered a potential match is bound by formulas (8),
(10), and (11) in conformity with each of the three
modes of operation. Parameters A and B are used in (11)
to determine the values of the lower and upper limits
for |T|, respectively. Parameter α sets the upper bound
for the number of allowed character mismatches in the
prefixes of strings S and T. Threshold t defines the “cut-
off point” for the LACP score; a pair of strings S and T
is considered to be a match when the LACP score is less
than the threshold t.
Three modes of operation are implemented: (a) a search

with dynamically estimated parameters; (b) a search with
static parameters; and (c) a search with user-defined pa-
rameters. In case (a), the search is limited to the data-
base terms meeting the criterion (5), while α is defined
in (6) and threshold t is 0.1.

max 0; Sj j− Sj j
10

−3
� �

< Tj j < Sj j þ Sj j
10

þ 3 ð5Þ

For example, for string S = Ischemia, |S| = 8. Thus, ac-
cording to (5), the dynamic search would be limited to
terms longer than 4 characters and shorter than 12
characters. In case (a), parameter α is set individually for
each pair of strings S and T as shown in (6):

α ¼ min Sj j; Tj jð Þ
5

ð6Þ

In case (b), α is set to 1, threshold t is 0.1, and the
length of a term should be in the following range (7):

max 0; Sj j−3ð Þ < Tj j < Sj j þ 3 ð7Þ
In case (c), a user selects parameter values from prede-

fined sets. The search is restricted to terms with lengths
within the interval (8).

max 0; Sj j−Að Þ < Tj j < Sj j þ B ð8Þ
Parameters A, B, and α are constrained to integers in

the interval 1..15, and threshold t must be selected from
the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.
The dynamic search option adjusts the number of

allowed misspellings α along with minimum and maximum
term length parameters according to the input query. The
dynamic search offers flexibility without user intervention.
The threshold t is set to 0.1 for this search mode.
The static search option operates with constant param-

eter values. It allows only one misspelling. The lengths of
the returned strings must be in the neighbourhood of ±3
characters of the input query length. This option de-
creases the search time for longer input terms compared
to the dynamic search option.
The search mode based on user-defined parameters

expands parameter options within pre-defined ranges.
This mode is intended for users who are not satisfied
with the results of the dynamic and static modes or who
seek more refined results.
In summary, the dynamic option is suggested when re-

sults significantly vary in length from the search query.
The static search option should be used when the result-
ing strings is expected to lie in the neighbourhood of the
input term. The search with user-defined parameters is
intended for fine-tuning results or for a more advanced
search.

Results
The LACP was compared to nine other well-known ap-
proximate string distance metrics: Jaccard [30], Jaro [31],
Jaro-Winkler [32], Levenshtein [33], Monge-Elkan [34],
Needleman-Wunsch [35], Smith-Waterman [36], TFIDF
[37], and Soft TFIDF [15]. LACP was compared with
these string matching methods on four datasets derived
from Version 2009AB of the UMLS (Table 1). Dataset D1

was obtained by counting occurrences of each Concept
Unique Identifier (CUI) within the UMLS [38], retrieving
all terms corresponding to the 100 most frequent CUIs
and eliminating records with duplicate terms. D2 was



Table 5 Maximum F1
Dataset D1 D2 D3 D4

Jaccard 0.33 0.38 0.37 0.59

Jaro 0.33 0.49 0.28 0.77

Jaro-Winkler 0.56 0.57 0.28 0.77

Levenshtein 0.21 0.28 0.33 0.65

Monge-Elkan 0.24 0.37 0.26 0.67

Needleman-Wunsch 0.21 0.28 0.33 0.65

Smith-Waterman 0.21 0.22 0.18 0.38

TFIDF 0.49 0.58 0.40 0.70

Soft TFIDF 0.49 0.58 0.40 0.71

LACP 0.69 0.61 0.27 0.92

Note: The best values for each column are formatted in bold italics.
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created in the same way, but limited to concepts from
SNOMED CT [39]. D3 was built by retrieving the 5,000
longest terms from the multiple UMLS sources. D4 was
constructed by taking the 5,000 longest terms from
SNOMED CT.
SecondString [17], an open-source Java toolkit, was

used as an experimental test bed. During the experi-
ments, each term was matched against those within a
set of candidate pairs. This type of set reduces the prob-
lem size and speeds up experiment execution. The can-
didate set includes pairs of terms from the dataset that
share one or more common words. The goal was to de-
termine whether every pair of terms has the same CUI.
Using common performance evaluation methods from
information retrieval [27], we calculated average preci-
sion (P), recall (R) and Maximum F1 values (formulae
(9), (10), and (11)), and graphed precision-recall (P-R)
curves for our method and for the competing tech-
niques. Precision and recall are tradeoffs against one an-
other: on the one hand, it is possible to obtain the
maximum value of recall with a low value of precision
by retrieving all documents for all queries. On the other
hand, the precision usually decreases as the number of
retrieved documents grows. A single measure that trades
off precision versus recall is the F measure, which is the
weighted harmonic mean of precision and recall [40].

P ¼ Dr

Dt
ð9Þ

R ¼ Dr

Nr
ð10Þ

F1 ¼ 2P � R
P þ R

ð11Þ

In (9) and (10), Dr denotes the number of relevant
items retrieved, Dt is the total number of retrieved items,
and Nr is the number of relevant items in the collection.
Table 4 Average precision P

Dataset D1 D2 D3 D4

Jaccard 0.31 0.33 0.22 0.54

Jaro 0.26 0.40 0.14 0.69

Jaro-Winkler 0.44 0.45 0.14 0.69

Levenshtein 0.16 0.21 0.18 0.54

Monge-Elkan 0.22 0.32 0.12 0.65

Needleman-Wunsch 0.16 0.21 0.18 0.54

Smith-Waterman 0.18 0.16 0.09 0.34

TFIDF 0.51 0.55 0.25 0.69

Soft TFIDF 0.51 0.55 0.25 0.69

LACP 0.62 0.51 0.12 0.84

Note: The best values for each column are formatted in bold italics.
LACP achieves the highest average precision for data-
sets D1 and D4 (Table 4) and the best values of Maximum
F1 for D1, D2, and D4 (Table 5). TFIDF and Soft TFIDF
achieve the best scores of average precision for D1 and D2

and the largest Maximum F1 for D3. It is worth noting that
TFIDF and Soft TFIDF demonstrate exactly the same
values of average precision and Maximum F1 for each
dataset, although Soft TDIDF executes the operation at
a significantly slower pace.
Table 6 shows that LACP is the fastest method on

every dataset. Figure 2 depicts four precision-recall
charts plotting interpolated precision values at 11 re-
call levels [27]. The horizontal axis shows 11 recall
points; the vertical axis displays interpolated precision
values. A method with a larger area under its curve
demonstrates a better result. The differences in per-
formance between LACP, TFIDF and Soft TFIDF are easily
apparent. For D1 and D4, LACP consistently outperforms
the other two methods. It is important to note, however,
that on D2, LACP experiences a rapid precision drop
after recall = 0.5, and that on D3, LACP is inferior to
most methods.
Table 6 Execution time in seconds

Dataset D1 D2 D3 D4

Jaccard 70 20 568 324

Jaro 105 25 3,637 1,102

Jaro-Winkler 115 26 3,617 1,265

Levenshtein 1,273 301 57,811 16,596

Monge-Elkan 6,240 1,340 258,502 77,555

Needleman-Wunsch 1,294 258 57,982 15,918

Smith-Waterman 1,444 293 58,753 17,519

TFIDF 132 37 928 558

Soft TFIDF 208 144 186,937 11,983

LACP 40 11 202 233

Note: The best values for each column are formatted in bold italics.



Figure 2 Precision-recall curves of the evaluated methods. Figure 2 depicts four precision-recall charts plotting interpolated precision values
at 11 recall levels. The horizontal axis shows 11 recall points; the vertical axis displays interpolated precision values. A method with a larger area
under its curve demonstrates a better result. The differences in performance between LACP, TFIDF and Soft TFIDF are easily apparent. For D1 and
D4, LACP consistently outperforms the other two methods. It is important to note, however, that on D2, LACP experiences a rapid precision drop
after recall = 0.5, and that on D3, LACP is inferior to most methods.
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Discussion
The primary advantage of the LACP method is its short
execution times, a feature that is highly desirable when
dealing with the large data sets involved in Medical In-
formatics. The performance of the LACP method can
Table 7 Example of similar terms with different concept IDs f

CUI Term

C0602912 Yohimban-16-carboxylic acid, 11,17-dimethoxy-18-((3,4,5-trimethoxy
with 4-chloro-N(1)-methyl-N(1)-((tetrahydro-2-methyl-2-furanyl)meth

C0053099 Yohimban-16-carboxylic acid, 11,17-dimethoxy-18-((3,4,5-trimethoxy
with 4-chloro-N(1)-methyl-N(1)-((tetrahydro-2-methyl-2-furanyl)meth

C0050737 Yohimban-16-carboxylic acid, 11,17-dimethoxy-18-((3,4,5-trimethoxy
with 6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide

C0600796 Yohimban-16-carboxylic acid, 11,17-dimethoxy-18-((3,4,5-trimethoxy
with 6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide
monosodium salt

C0602088 Yohimban-16-carboxylic acid, 11,17-dimethoxy-18-((3,4,5-trimethoxy
with 6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide
be interpreted by studying the structure of the datasets
D1, −D4. Datasets D1, D2, and D4 have higher numbers
of terms per concept compared to dataset D3 (see Table 1).
Thus, D1, D2, and D4 have a higher number of records
that have the same CUIs and have approximately common
rom dataset D3

benzoyl)oxy)-, methyl ester, (3beta,16beta,17alpha,18beta,20alpha)-, mixt.
yl)-1,3-benzenedisulfonamide and 3-hydroxy-alpha-methyl-L-tyrosine

benzoyl)oxy)-, methyl ester, (3beta,16beta,17alpha,18beta,20alpha)-, mixt.
yl)-1,3-benzenedisulfonamide and myo-inositol hexa-3-pyridinecarboxylate

benzoyl)oxy)-, methyl ester, (3beta,16beta,17alpha,18beta,20alpha)-, mixt.
1,1-dioxide and 1(2H)-phthalazinone hydrazine

benzoyl)oxy)-, methyl ester, (3beta,16beta,17alpha,18beta,20alpha)-, mixt.
1,1-dioxide and 5-ethyl-5-(1-methylpropyl)-2,4,6(1H,3H,5H)-pyrimidinetrione

benzoyl)oxy)-, methyl ester, (3beta,16beta,17alpha,18beta,20alpha)-, mixt.
1,1-dioxide, 1(2H)-phthalazinone hydrazone and potassium chloride (KCl)
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prefixes. This allows the LACP algorithm to outperform
other more complicated well-known methods on D1, D2,
and D4.
However, the LACP method performed poorly on D3.

This is due to the large number of concepts with simi-
lar terms. As shown in Table 7, five terms share a 146-
character-long common prefix, for example. By design,
such terms are evaluated by LACP as very similar, which
in fact is incorrect. Large numbers of such similarly spelled
UMLS terms with different identifiers leave no chance for
the LACP algorithm to succeed in these contexts.
We note that the current online spell checker is a

prototype. It has not been optimized for speed nor is it
intended to compete with the well-known Google In-
stant Search [10], which displays search predictions as
the user types a query. Instead, our goal is to create a
spell checker specifically for use with biomedical termin-
ologies. The remarkable difference between the excellent
performance of LACP on datasets D1, D2, and D4 and its
disappointing performance on D3 indicates that approxi-
mate string matching methods exhibit a certain degree
of domain dependence. In fact, as detailed in an exten-
sive research report by Rudniy [41], domain dependence
has been shown to be a common phenomenon.

Conclusions
LACP is a novel method we have developed for comput-
ing approximate string similarities based on assessing
the length of approximately common string prefixes.
The algorithm implements a normalization technique by
dividing the length of the approximately common prefix
by the average length of the pair of strings. LACP per-
formed better than a number of well-known string simi-
larity algorithms on three out of four datasets and
demonstrated the shortest execution times on all four.
For the average precision measure, LACP achieved the
highest values of 0.62 on dataset D1 and 0.84 on dataset
D4. On D3, LACP was second best, with an average pre-
cision of 0.51. Our method had the best values of Max-
imum F1 on three datasets: 0.69 on D1, 0.61 on D2, and
0.92 on D4. However, LACP experienced a drop in per-
formance on dataset D3. In terms of execution time,
LACP was on average two times faster than the Jaccard
method, which achieved the second best times.
The LACP method demonstrated superior perform-

ance on certain types of biomedical datasets though its
productivity has to be determined for other corpora. An-
other common limitation of the approximate string
matching methods lies in the inability to determine that
differently spelled synonyms correspond to the same
concept. For such cases, either semantic methods or ex-
pert insight are required.
In future work, we will attempt to identify the cause

and solve the problem of performance variability due to
differences in dataset characteristics. Another branch of
future research consists of investigating the best value
for parameter α. The ultimate—though difficult—goal is
to develop an approximate string matching method that
recognizes and adapts to the distinctive characteristics of
each dataset.
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