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Abstract

Background: Flux Balance Analysis (FBA) is a genome-scale computational technique for modeling the steady-state
fluxes of an organism’s reaction network. When the organism’s reaction network needs to be completed to obtain
growth using FBA, without relying on the genome, the completion process is called reaction gap-filling. Currently,
computational techniques used to gap-fill a reaction network compute the minimum set of reactions using
Mixed-Integer Linear Programming (MILP). Depending on the number of candidate reactions used to complete the
model, MILP can be computationally demanding.

Results: We present a computational technique, called FastGapFilling, that efficiently completes a reaction network
by using only Linear Programming, not MILP. FastGapFilling creates a linear program with all candidate reactions, an
objective function based on their weighted fluxes, and a variable weight on the biomass reaction: no integer variable
is used. A binary search is performed by modifying the weight applied to the flux of the biomass reaction, and solving
each corresponding linear program, to try reducing the number of candidate reactions to add to the network to
generate a working model. We show that this method has proved effective on a series of incomplete E. coli and yeast
models with, in some cases, a three orders of magnitude execution speedup compared with MILP. We have
implemented FastGapFilling in MetaFlux as part of Pathway Tools (version 17.5), which is freely available to academic
users, and for a fee to commercial users. Download from: biocyc.org/download.shtml.

Conclusions: The computational technique presented is very efficient allowing interactive completion of reaction
networks of FBA models. Computational techniques based on MILP cannot offer such fast and interactive completion.

Keywords: Flux Balance Analysis (FBA), Gap-filling, Systems biology, Reaction network, Linear Programming (LP),
Mixed-Integer Linear Programming (MILP)

Background
Flux Balance Analysis (FBA) is a method for analyzing
genome-scale steady-state models of metabolic networks
[1,2]. Constructing an FBA model often requires complet-
ing, or gap-filling, the reaction network. This completion
is needed when the model does not grow under some spe-
cific growth condition (i.e., given sets of nutrients and
secretions). Gap-filling is a computational technique to
complete a reaction network based on FBA without refer-
ring to the genome. Indeed, a complete knowledge of the
functionality of the genome provides a complete reaction
network and no gap-filling would be needed. Essentially,
given a set of candidate reactions, gap-filling suggests to
add some of these reactions to the model so that the FBA
model grows, but without guaranteeing that the enzymes
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for the added reactions exist in the organism. This com-
putational approach to complete a network is viable if it is
unknown how to complete the reaction network based on
the genome.
To the best of our knowledge, all the current approaches

to gap-fill [2-8] use Mixed-Integer Linear Programming
(MILP) and compute a minimum set of reactions to add.
But, searching for a minimum set of reactions using MILP
is computationally expensive if the set of candidate reac-
tions is large. For example, the MetaCyc [9] database
contains more than 12,000 reactions. With such a set of
candidate reactions, and searching for a minimum set of
reactions, MILP typically takes from several minutes to
hours, because the number of integer variables increases
proportionally to the number of candidate reactions. Fre-
quently, more than an hour is needed for optimally solving
such MILPs. Section “Results” presents such concrete
cases.
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For another example, [8] reports that GapFind with
GapFill took about 14 hours when gap-filling a specific
FBAmodel of C. neoformans. GapFind/GapFill uses MILP
to find metabolites that cannot be produced and gap-
fill the network of reactions of the model to produce
them.
Although MILP can find a minimum number of reac-

tions, those reactions are still only plausible suggestions to
complete a reaction network. The reactions still need to be
analyzed to confirm their validity for the organism. This
analysis can be done by searching the scientific literature
for references to pathways based on the suggested reac-
tions to add. FastGapFilling also needs such an analysis,
but it also provides several sets of reactions from which a
broader analysis can be done.
Moreover, these MILP computational techniques focus

on finding the smallest set of candidate reactions to com-
plete a model, but that set is not necessarily the most
appropriate solution. For example, if only one reaction is
needed to produce an essential compound, it might be the
case that there is a solution with two reactions that better
correspond to the taxonomy of the organism. Knowing the
existence of this other non minimum solution might help
discover the right missing reactions, which is a solution
that might be given by FastGapFilling.
In this paper we present a computational technique

using linear programming (LP), avoiding MILP, for reac-
tion gap-filling. Solving a linear program with thou-
sands and even tens of thousands of variables is typically
about 1 second. Therefore, LP is a much faster com-
putational technique, compared to MILP, that can give
almost immediate feedback on what is needed to com-
plete a reaction network. The gap-filling solutions found
by FastGapFilling can be the same or different from those
with the MILP approach, as the applications presented
in Section “Results” demonstrate. In fact, several sets of
candidate reactions are suggested by FastGapFilling, all
offering positive growth condition, which may add more
insight to complete a reaction network.
The next section presents the FastGapFilling algorithm

based on LP.

Methods
To the best of our knowledge, all computational tech-
niques published to date for gap-filling a reaction network
are based on MILP, including the one used by MetaFlux
[6]. MetaFlux can solve FBA models, simulate knockout
experiments, and gap-fill the reaction network, the secre-
tions, the nutrients, and the list of biomass metabolites. In
MetaFlux, the gap-filling process is based on try-sets and
numerical value parameters, called weights, provided by
the user. A try-set is a set of candidates to fill the incom-
plete model. For example, the try-set of reactions is a set,
typically large, of candidate reactions for completing the

reaction network. A try-set of nutrients would be a set
of candidate compounds that could be transported into
the organism to enable growth. Each type of candidates
(reactions, nutrients, secretions, and biomass metabo-
lites) has its own weight. For each candidate added to
the model, its corresponding weight is added to a global
objective function and MILP maximizes that objective.
Therefore, a positiveweight indicates a desire to include as
many candidates as possible in the model, and a negative
weight indicates a desire to include a minimum number.
A typical scenario is assigning a large positive weight for
the biomass metabolites and assigning relatively smaller
negative weights to all other try-sets. Such a scenario
includes as many as possible candidate biomass metabo-
lites by adding a minimum number of reactions, secre-
tions, and nutrients. In MILP, the inclusion/exclusion of
each candidate is controlled by an integer variable tak-
ing only one of two values, 0 (do not include) or 1
(include). Thousands of such binary variables can exist
because — besides the nutrients, secretions, and biomass
metabolites — thousands of candidate reactions are
typical.
LP and MILP differ in one main respect: all variables

in LP can take only fractional values, whereas some vari-
ables in MILP must have integer values (for example the
binary variables). This difference alone makesMILP com-
putationally more demanding. Indeed, a typical MILP
solver must iteratively apply a series of LP problems to
find the right integer values to satisfy all constraints. This
process can be demanding when thousands or even hun-
dred of thousands of LP cases need solving. In contrast,
our technique typically requires solving only a few LP
problems.
The FastGapFilling algorithm is presented in Figure 1

and can be summarized in the following way:

1. When creating the LP formulation, all candidate
reactions M are included with the actual reactions N
of the model to complete.

2. All biomass metabolites are combined as one
biomass reaction as if the FBA model were solved.
However, the objective function to maximize is the
flux of the biomass reaction, multiplied by a weight,
minus the sum of the fluxes of candidate reactions
multiplied by the weights provided by the user (See
Section “Results” for a discussion about these
weights).

3. A binary search is performed based on the weight of
the biomass reaction: the weight of the biomass flux
is changed using a binary search between 0 and the
number of candidate reactions. Each time the
biomass reaction has a non-zero flux, the set of
candidate reactions that are active is kept as one
possible solution.
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Figure 1 Algorithm FastGapFilling to find sets of candidate reactions R ⊆ M to complete a networkN . A set R represents a set of candidate
reactions suggested to be added to the model to achieve growth.

The algorithm does not try to gap-fill nutrients or
secretions, because the model is assumed to have the
correct growth environment specified before attempt-
ing to complete the reaction networks. Accordingly, our
description of the algorithm does not discuss the growth
environment.
The FastGapFilling algorithm accurately represents the

model, because the entire biomass reaction is used as
if solving the FBA model. The algorithm’s primary use
is finding a small set of candidate reactions for adding
to the model to produce greater biomass. In particu-
lar, if the biomass is zero (i.e., no growth is currently
possible), the algorithm tries to obtain growth by activat-
ing candidate reactions. That particular case implements
reaction gap-filling. Typically,M is a database of reactions
such as MetaCyc, which includes approximately 12,000
reactions.
The generic reactions of MetaCyc are instantiated. That

is, reactions that operate on classes of compounds are
transformed to one or several reactions, where the classes
are replaced by specific compounds that exist in the
model. Any reversible reaction is transformed into two
reactions, one for each direction, a standard practice in

constructing FBA models. This transformation simplifies
the mathematical modeling as the flux values of all reac-
tions become non-negative.
The algorithm’s output is a list of reactions sets. An

implementation may output only the smallest set that
would suggest the reactions for model completion. But
other implementations may present all sets found and let
the user select the most biologically appropriate set. The
algorithm does not necessarily find the smallest possible
set of candidate reactions to complete the given model. It
does try to reduce the size of that set, but it does not com-
pute the absolute minimum set of candidate reactions to
complete the model. In other words, FastGapFilling uses
an heuristic searching for the smallest set of candidate
reactions to complete a model, but it may not find the
smallest set.
The search for a small set of candidate reactions to add

to the model is based on one weight δ in the objective
function. At each iteration of the search, that weight is
adjusted either to help the solver increase the biomass
flux fb or to reduce the number of candidate reactions
added. The number of iterations done is bounded by
�log2 |M|�.
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The costs cr given as input to the algorithm are typically
based on the kind (e.g., enzymatic vs. nonenzymatic) or
taxonomic range (e.g., bacteria) of the reactions. The cost
of a reaction is proportional to its probability of occurring
in a model. For example, a reaction that is not known to
occur in the taxonomic range of the model (e.g., a reac-
tion only known in plants, but the model is for a bacteria)
should have a higher cost than a reaction known to occur
in the taxonomic range of the model. Examples of costs
are presented in Section “Results”.
The mathematical formulation of the LP problem of

this algorithm follows the standard approach of solving an
FBA model, except for the objective function described
below and specified in Figure 1. We refer the reader to
the papers [2,4,6] that describe the generation of such
LP. The statement “Generate LP with reactions N and
M” in the algorithm assumes that sets of nutrients and
secretions are given. Actually, the implementation guides
the details of this generation, as it may include many
other parameters, such as lower and upper bounds on
the flux of some reactions, constraints to avoid ineffec-
tive high fluxes, and so on. Essentially, the generated
LP must be solvable, must satisfy the steady-state con-
straints, and must restrict the fluxes to non-negative val-
ues for all reactions of N and M, including the biomass
reaction.
The main novelty of the LP formulation is the objec-

tive function that changes at each iteration of the binary
search. The objective function to maximize is δfb −∑

r∈M crfr, where δ is a calculated weight by the binary
search, fb is the flux of the biomass reaction, and the
summation of the terms crfr is done over all candidate
reactions of M. This function tends to increase the flux
of the biomass, as a maximization is applied and the δfb
is the only positive term in it. This function also tends
to decrease the number of candidate reactions that have
a non-zero flux (that is, these are active candidate reac-
tions) because the term − ∑

r∈M crfr is negative (note that
flux fr and cost cr are non-negative values). Indeed, this is
the objective of the algorithm: increasing the flux of the
biomass while decreasing the number of candidate reac-
tions to add to do so. The essential point is to find the
right value for δ such that fb is non-zero (that is, growth is
obtained, and the number of active candidate reactions is
small). This is the objective of the binary search done by
modifying δ such that growth is maintained and the num-
ber of active candidate reactions is reduced. Note that the
initial value of δ is |M| (that is, the number of candidate
reactions in M). This value enables many candidate reac-
tions to be active simultaneously at the beginning of the
binary search.
Note that, in general, this algorithm actually suggests

adding candidate reactions to the model to increase the
biomass. It could also be used for engineering more

efficient metabolic pathways, although this aspect is not
covered in this paper.
The main shortcoming of the algorithm is that it does

not find a solution when no set of candidate reactions can
be found to produce the entire set of biomass metabo-
lites. In such cases, we recommend reducing the number
of metabolites in the biomass reaction.
The following section demonstrates the application of

FastGapFilling on an E. coli and yeast models.

Results
We have applied the FastGapFilling algorithm to four
incomplete E. coli models and to one incomplete yeast
model. We started with a working E. coli model for
which no added reaction are needed to obtain growth
and then removed from 1 to 14 reactions in order to
prohibit growth. A similar procedure was done to create
the incomplete yeast model. See the following subsec-
tions for more details on the creation of these incomplete
models.
The original E. coli model is based on the EcoCyc

database (version 17.5). The model has 1,763 enzymatic
reactions, including the instantiated generic enzymatic
reactions. The biomass reaction has 69 metabolites. The
growth media is composed of glucose, oxygen, ammo-
nium, phosphate, diphosphate, sulfate, and iron. The
secretions are carbon-dioxide, acetate, and water. An
upper bound of 16 mmol/g/h was constraining the intake
of glucose.
For each incomplete model, we also ran MetaFlux [6]

in development mode to gap-fill the reaction network.
The development mode of MetaFlux uses MILP with the
SCIP [10] linear solver. The MILP gap-fill solutions were
compared with the gap-fill solutions found by using the
FastGapFilling algorithm.
In the MILP development mode, weights are user spec-

ified to control the candidate reactions to include in the
model. They are called costs if their values are negative and
gains if their values are positive. Costs are applied to reac-
tions, and a gain, to the biomass metabolites. The gain is
not user specified when using FastGapFilling, because the
weight to the biomass reaction is controlled by the algo-
rithm, but only for MILP. The following costs and gain
were used for all cases presented in this paper.

1. A cost of 1 for one candidate spontaneous (i.e.,
nonenzymatic) reaction

2. A cost of 5 for one candidate reaction inside the
taxonomic range of the organism

3. A cost of 10 for one candidate reaction of unknown
taxonomic range

4. A cost of 15 for one candidate reaction outside the
taxonomic range of the organism

5. A gain of 500 for one candidate biomass metabolite
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The relative values of these weights (costs and gain), as
opposed to their absolute values, are important. For exam-
ple, the cost of a spontaneous reaction is smaller than the
cost of an enzymatic reaction, because a reaction that does
not require an enzyme can occur in any organism. Simi-
larly, the cost of a reaction that is outside the taxonomic
range of the organism is set higher than the cost of a reac-
tion in the taxonomic range of the organism because we
prefer reactions in the taxonomic range of the organism
selected. The candidate reactions are all coming from the
MetaCyc database, and their taxonomic ranges are based
on the curated pathways of that database.
Notice that the gain of one biomass metabolite is high

compared to the cost of any reactions. For example, the
ratio between the gain and the cost of a reaction in the tax-
onomic range of the organism is 100. This means that up
to 100 such reactions could be added to the model if one
more biomass metabolite can be produced. The intention
is to produce a maximum number of biomass metabo-
lites even if a large, but still bounded, number of candidate
reactions is needed to produce them. As shown in the fol-
lowing subsections, this general result was obtained for
all cases presented because a few reactions produced all
metabolites.
Table 1 presents a summary of the results for the speed

and number of reactions that the FastGapFilling algorithm
and MILP suggested to be added. The following subsec-
tions present additional details about each application
done.

Discussion
First incomplete E. colimodel
To create the first incomplete E. coli model, we removed
the following reaction from the original E. colimodel:
L-leucine + 2-oxoglutarate

↔ 4-methyl-2-oxopentanoate + L-glutamate

(branched-chainaminotransferleu-rxn)

Table 1 Execution time of the FastGapFilling (FGF)
algorithm compared withMILP on four incompletemodels
of E. coli and one incompletemodel of yeast alongside the
number of suggested reactions

Time in seconds Nb of reactions
Suggested to be added

Model MILP FGF MILP FGF

E. coli 1 125 6 1 1

E. coli 2 7,794 16 3 3

E. coli 3 9,729 13 2 3

E. coli 4 >86,400 14 NA 3

Yeast 21,027 14 4 4

All times were rounded to the nearest number of seconds and they included
only solver time, excluding the time for preparing the data for the solver. Note:
the number of suggested reactions does not constitute an absolute measure of
the quality of the solutions, but rather is one indicator of the similarity between
the MILP technique and the FastGapFilling algorithm.

Note: in this subsection and the following subsections,
the MetaCyc reaction unique identifier is shown between
parentheses. In the reaction just shown, that identi-
fier is branched-chainaminotransferleu-rxn,
which can be used as an unambiguous keyword to search
for more information about that reaction at BioCyc.org.
That reaction, going right to left, is the last step in the

biosynthesis pathway of the amino acid L-leucine and,
going left to right, the first step in the L-leucine degra-
dation pathway. No other reaction in the model produces
L-leucine. Because L-leucine is part of the biomass reac-
tion of the model, we expect that adding this reaction
will be suggested when gap-filling is done. Indeed, the
MetaFlux gap-filling MILP solution suggested adding the
same reaction, in the right to left direction. MetaFlux
could give the relevant direction as part of the solution
because all reversible candidate reactions are split into two
reactions, one for each direction. MetaFlux did not sug-
gest adding the reaction in the opposite direction because
the reaction was not essential for growth given the nutri-
ents. SCIP required 125 seconds to obtain this optimal
MILP solution.
When the FastGapFilling algorithmwas run on the same

incomplete model, adding the same reaction, in the same
direction, was suggested. Four iterations (that is, four LP
runs) were needed before that solution was found; the
first three iterations found solutions with three reactions.
The total solver running time of these four iterations was
6 seconds.
This first simple example shows that FastGapFilling can

find the exact same solution as the MILP technique in
much less time.

Second incomplete E. colimodel
The second incomplete E. colimodel is derived by remov-
ing, additionally to the reaction removed in the first
incomplete E. colimodel, three reactions that produce the
compound tetrahydrofolate, which is part of the biomass.
These additional reactions are:

1. 7,8-dihydrofolate + NADPH + H+
→ tetrahydrofolate + NADP+
(dihydrofolatereduct-rxn)

2. L-homocysteine +
5-methyl-tetrahydrofolate
→ L-methionine + tetrahydrofolate
(homocysmetb12-rxn)

3. L-serine + tetrahydrofolate
↔ glycine +
5,10-methylenetetrahydrofolate + H2O
(glyohmetrans-rxn)

Notice that the reaction of the previous incomplete
model and these three reactions are in different metabolic
pathways.

http://BioCyc.org
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The MILP development mode of MetaFlux suggested
adding three of the reactions that were removed: the first
two reactions above, and the reaction removed in the first
incomplete model. That is, the third removed reaction
above was not suggested. The SCIP solver required 7,794
seconds or about 2:10 hours to find this optimal solution.
We ran the FastGapFilling algorithm on the same

incomplete model. The smallest set of suggestd reactions
included the same three reactions. Other solutions pro-
posed included four reactions. FastGapFilling performed
12 LP solving iterations, with a solver total execution time
of 16 seconds.
This second example shows that FastGapFilling can find

the same solution as the MILP technique in substantially
less time — in this case, well over 2 orders of magnitude
faster.

Third incomplete E. colimodel
For this third example, we selected four reactions to
remove from the original E. coli model tricarboxylic acid
cycle (TCA cycle) pathway:

1. succinate + ATP + CoA
↔ succinyl-CoA + ADP + phosphate
(succcoasyn-rxn)

2. citrate ↔ cis-aconitate + H2O
(aconitatedehydr-rxn)

3. D-threo-isocitrate + NADP+
→ 2-oxoglutarate + CO2 + NADPH
(isocitdeh-rxn)

4. pyruvate + coenzyme A + NAD+
→ acetyl-CoA + CO2 + NADH
(pyruvdeh-rxn)

The MILP solution suggested adding two reactions,
both in the taxonomic range of E. coli:

1. 5-dehydro-4-deoxy-D-glucarate + H+
→ CO2 + 2,5-dioxopentanoate + H2O
(4.2.1.41-rxn)

2. 2,5-dioxopentanoate + NADP+ + H2O
→ 2-oxoglutarate + NADPH + 2 H+
(25-dioxovalerate-dehydrogenase-rxn)

Although, these two reactions were not among the four
reactions removed, the second reaction does produce the
compound 2-oxoglutarate, one of the compounds pro-
duced by one of the reactions removed. Notice that the
development mode of MetaFlux produces only one of the
possible optimal solutions. Other different minimal cost
solutions may provide the same value, but MetaFlux out-
puts only one of them. In this example, an optimal solution
might include two of the four reactions removed, but we
cannot confirm it. SCIP required 9,729 seconds or about
2:42 hours to find this solution.

However, FastGapFilling found a solution of three reac-
tions after 12 iterations lasting 13 seconds, the first two
reactions being the same as the MILP solution plus the
following reaction:

1. glycine + succinyl-CoA + H+
→ CO2 + 5-amino-levulinate +
coenzyme A
(5-aminolevulinic-acid-synthase-rxn)

The third reaction appears to be redundant because its
flux, as given by FastGapFilling, is 0.00056, whereas the
fluxes of the other two reactions are the same at 0.110394.
The flux of the third reaction is much lower than those of
the first two reactions.
Indeed, the low-flux reactions suggested by FastGapFill-

ing might simply be a way to increase the biomass and
might not be reactions essential for growth. In general,
this possibility can be verified by only adding the sug-
gested reactions with relatively high fluxes and solving the
resulting network. If the biomass can be generated, the
low-flux reactions would be nonessential.

Fourth incomplete E. colimodel
The fourth incomplete model is the original E. coli
model with 14 reactions removed. These reactions were
selected because they produced at least one of the follow-
ing metabolites: L-lysine, L-leucine, L-isoleucine, and L-
histidine. All these metabolites participate in the biomass
reaction. Essentially, this is an example where many
biosynthesis pathways have been disturbed. The following
reactions were removed.
1. histidinal + NAD+ + H2O

→ L-histidine + NADH + 2 H+
(histaldehyd-rxn)

2. L-alanyl-L-histidine + H2O
→ L-alanine + L-histidine
(rxn0-6978)

3. L-isoleucine + 2-oxoglutarate
↔ L-glutamate +
(S)-3-methyl-2-oxopentanoate
(branched-chainaminotransferileu-rxn)

4. L-alanyl-L-leucine + H2O
→ L-alanine + L-leucine
(rxn0-6979)

5. a dipetide with L-aspartate
at the N-terminal + H2O
↔ L-aspartate + an alpha amino acid
(3.4.13.21-rxn)

6. a peptide + H2O
↔ an alpha amino acid + a peptide
(3.4.11.9-rxn)

7. a protein + H2O
↔ a peptide + an alpha amino acid
(rxn0-5051)
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8. L-methionine + a 2-oxo carboxylate
↔ 2-oxo-4-methylthiobutanoate
+ an alpha amino acid
(R15-rxn)

9. a tripeptide + H2O
↔ a dipeptide + an alpha amino acid
(3.4.13.9-rxn)

10. a dipeptide with proline at the
C-terminal + H2O
↔ L-proline + an alpha amino acid
(rxn0-3241)

11. beta-aspartyl dipeptide + H2O
↔ L-aspartate + an alpha amino acid
(rxn0-3241)

12. fructoselysine-6-phosphate + H2O
↔ beta-D-glucose 6-phosphate +
L-lysine
(rxn0-963)

13. meso-diaminopimelate + H+
→ CO2 + L-lysine
(diaminopimdecarb-rxn)

14. a dipeptide + H2O → 2 alpha amino
acid
(3.4.13.18-rxn)

The SCIP solver could not find an optimal solu-
tion to the MILP problem after running for 24
hours. However, FastGapFilling produced the follow-
ing solution, after 12 iterations that took 14 seconds
by the SCIP solver, by suggesting three reactions:
branched-chainaminotransferileu-rxn, dia-
minopimdecarb-rxn, and histaldehyd-rxn.
These three reactions are among the 14 reactions that
were removed.
This example shows that FastGapFilling can be very use-

ful in practice: no optimal or near optimal solution could
be found after 24 hours using theMILP approach, whereas
FastGapFilling quickly found a gap-filling solution.

Incomplete yeast model
As a last example of applying the FastGapFilling algo-
rithm, we used a yeast model. As with the E. coli
model, the original yeast model can grow. The original
yeast model is based on the YeastCyc database (ver-
sion 17.5). The model includes 1,454 enzymatic reactions,
including the instantiated generic enzymatic reactions.
The biomass reaction is composed of 41 metabolites.
The growth media is composed of glucose, oxygen,
ammonium, phosphate, sulfate, and iron. The secre-
tions are carbon-dioxide, carbon-monoxide, formate,
hydrogen-peroxide, glycolaldehyde, and water. An upper
bound of 12 mmol/g/h was constraining the intake of
glucose.

To generate an incomplete model, four reactions
responsible for the biosynthesis of five lipids (ergosterol,
zymosterol, episterol, fecosterol, and lanosterol) were
removed. These five lipids are part of the biomass. The
reactions removed are:

1. dimethylallyl diphosphate +
isopentenyl diphosphate
→ geranyl diphosphate + diphosphate
(GPPSYN-RXN)

2. 5,7,22,24(28)-ergostatetraenol +
NADPH + H+
→ ergosterol + NADP+
(1.3.1.71-rxn)

3. 14-demethyllanosterol + NADPH + H+
→ 4,4-dimethylzymosterol + NADP+
(RXN66-306)

4. (S)-3-hydroxy-3-methylglutaryl-CoA +
2 NADPH + 2 H+
→ (R)-mevalonate + coenzyme A + 2
NADP+
(1.1.1.34-rxn)

The first reaction (GPPSYN-RXN) appears in three dif-
ferent pathways (trans-farnesyl diphosphate biosynthesis,
geranyl diphosphate biosynthesis, and hexaprenyl diphos-
phate biosynthesis), whereas each of the other reactions
occurs separately in three other pathways.
The optimal MILP solution for gap-filling this incom-

plete yeast model, required 21,027 seconds or about 5:50
hours, and suggested adding the four reactions above.
This set is the least number of reactions expected because
MetaCyc (version 17.5) includes no other reactions to
produce these lipids.
FastGapFilling found the same solution, after 12 iter-

ations lasting 14 seconds using the SCIP solver — a
much faster execution time when compared to MILP.
The binary search of FastGapFilling also found other
solution sets with up to 34 candidate reactions, but the
smallest set included the exact four reactions that were
removed.

Conclusions
FastGapFilling is an efficient technique to gap-fill reaction
networks allowing interactive completion of reaction net-
works of FBA models, whereasMILP fails to offer such an
efficiency.
The FastGapFilling algorithm increases the biomass flux

by minimizing a weighted minimum sum of fluxes from
new reactions, whereas the gap-filling approach using
MILP is based on adding a minimum number of new
reactions to obtain a non-zero biomass flux.
Using concrete examples, we show that the FastGap-

Filling algorithm is efficient for performing reaction gap-
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filling requiring much less computation time than MILP-
based approaches. This result is not surprising because
MILPmay have to solve hundreds or even thousands of LP
problems, whereas the FastGapFilling approach requires
solving only a few LP problems.
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