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Abstract

Background: Knockdown or overexpression of genes is widely used to identify genes that play important roles in many
aspects of cellular functions and phenotypes. Because next-generation sequencing generates high-throughput data that
allow us to detect genes, it is important to identify genes that drive functional and phenotypic changes of cells. However,
conventional methods rely heavily on the assumption of normality and they often give incorrect results when the
assumption is not true. To relax the Gaussian assumption in causal inference, we introduce the non-paranormal method
to test conditional independence in the PC-algorithm. Then, we present the non-paranormal intervention-calculus when
the directed acyclic graph (DAG) is absent (NPN-IDA), which incorporates the cumulative nature of effects through a
cascaded pathway via causal inference for ranking causal genes against a phenotype with the non-paranormal method
for estimating DAGs.

Results: We demonstrate that causal inference with the non-paranormal method significantly improves the performance
in estimating DAGs on synthetic data in comparison with the original PC-algorithm. Moreover, we show that NPN-IDA
outperforms the conventional methods in exploring regulators of the flowering time in Arabidopsis thaliana and
regulators that control the browning of white adipocytes in mice. Our results show that performance improvement in
estimating DAGs contributes to an accurate estimation of causal effects.

Conclusions: Although the simplest alternative procedure was used, our proposed method enables us to design efficient
intervention experiments and can be applied to a wide range of research purposes, including drug discovery, because of
its generality.

Keywords: Non-paranormal, Gaussian assumption, Causal effect, Intervention-calculus, Directed acyclic graph,
Machine learning, Causal inference, Experiment design
Background
Intervention experiments, e.g., knockdown or overexpres-
sion, are commonly conducted to identify genes that deter-
mine cell fates such as differentiation [1], induction of
pluripotency [2], and direct reprogramming [3]. Those ex-
periments are now indispensable in biological and medical
research. Although intervention experiments identify a
causal gene responsible for a phenotype of interest, they are
time-consuming and cost-intense. Therefore, it is very im-
portant to prioritize and focus on causal genes with high
confidence. However, it is difficult to infer causal effects
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only from observational data. This task coincides with in-
ferring causal effects that are established in Statistics. Note
that in this problem setting, a causal effect is different from
a regression-type effect of association [4]. In fact, previous
studies suggested that representative regression methods
such as lasso and elastic net are not appropriate for our
goal [4-6].
Recently, there has been much progress to address this

problem by employing the intervention-calculus when the
directed acyclic graph (DAG) is absent (IDA) [4-6] for the
design of efficient intervention experiments. IDA combines
two methods: (1) inference the unknown underlying DAG
model from observational data by the PC-algorithm [7] and
(2) estimating causal effects on the basis of DAG using
intervention-calculus; furthermore, it provides estimated
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lower bounds of total causal effects from observational
data. The PC-algorithm is computationally feasible and ap-
propriate for high-dimensional settings. In addition, it has
the desirable property to achieve high computational effi-
ciency as a function of sparseness of the true underlying
DAG model.
In spite of these advantages, the PC-algorithm requires

the Gaussianity assumption to use partial correlations to
test conditional independence, and this assumption is
not necessarily true in real data sets. Because the nor-
mality assumption is restrictive and conclusions inferred
under this assumption could be misleading, it is desir-
able to relax the Gaussian assumption.
On the other hand, non-paranormal methods that use

a semiparametric Gaussian copula have been proposed
for estimating sparse undirected graphs and exhibit sig-
nificant improvement in the performance because the
normality assumption is relaxed [8,9]. The main idea of
the non-paranormal method is to exploit the nonpara-
metric correlation coefficient instead of Pearson’s correl-
ation coefficient for estimation. Although this is the
simplest alternative procedure, the non-paranormal
graphical model could be a viable alternative for the
Gaussian graphical model.
Consequently, we present non-paranormal IDA (NPN-

IDA), which uses nonparametric partial correlations to
test conditional independencies in the PC-algorithm for
intervention-calculus. In our method, the Gaussian as-
sumption in the PC-algorithm is naturally relaxed by
using nonparametric partial correlation. Although the
non-paranormal method has been successfully applied
to estimating undirected graphs in previous studies, we
show that it works well for estimating DAGs in the PC-
algorithm. Next, we applied our method to Arabidopsis
thaliana microarray data and mouse microarray data to
demonstrate that NPN-IDA outperforms IDA in explor-
ing regulators of the flowering time in A. thaliana and
regulators that control the browning of white adipocytes
in mice.
In summary, the three main contributions of this work

are: (1) introduction of a non-paranormal method for
inference of the unknown underlying DAG model from
observational data in the expansive framework of the
PC-algorithm, (2) combination of the non-paranormal
method and the PC-algorithm significantly improves the
performance in estimating DAGs on synthetic data, and
(3) NPN-IDA is effective in exploring regulators that
control specific phenotypes of interest.

Methods
We first introduce the IDA procedure. IDA consists of (1)
inference of the unknown underlying DAG model from ob-
servational data by PC-algorithm and (2) estimation of
causal effects based on the DAG using intervention-
calculus. Then, we introduce the non-paranormal method
for PC-algorithm. Finally, we present the combination of
the non-paranormal method for PC-algorithm and estimat-
ing causal effects as NPN-IDA algorithm.

Inference DAGs with the PC-algorithm
Let G = (V, E) be a graph consisting of vertices V and a
set of edges E⊆ V ×V. In our context, the vertices repre-
sent random variables X1,…, Xp, and Y. The edges repre-
sent relationships between pairs of these variables. It is
possible that some DAGs fulfill the Markov condition and
encode the same list of conditional independencies. Two
DAGs are observationally equivalent only if they have the
same skeleton and same sets of v-structures, i.e., two con-
verging arrows whose tails are connected by an arrow. In
this way, DAGs can be partitioned into equivalent classes,
where all members are observationally equivalent and rep-
resent the same conditional independence. In a given con-
ditional independence set of DAGs, one can only
determine a DAG up to its equivalence class. The equiva-
lence class is called completed partially directed acyclic
graph (CPDAG). It has the same skeleton as every DAG
in the equivalence class and directed edges only where all
DAGs in the equivalence class have the same directed
edge. Arrows that point into one direction for some DAGs
in the equivalence class and in the other direction for other
DAGs in the equivalence class are represented by undir-
ected edges (Figure 1). By assuming that random variables
are multivariate normally distributed, conditional indepen-
dencies can be inferred from a partial correlation between
Xi and Xj given a set of other variables S that equals zero:

ρijjS ¼ Parcor Xi⊥XjjXS
� � ¼ 0 iff Xi⊥Xj XSj

ð1Þ
We then used the sample version of the PC-algorithm

to estimate the corresponding CPDAG. This involves
multiple testing for Fisher’s Z-transformed partial
correlations,

Ẑ ijjS ¼ 1
2
log

1þ ρ̂ijjS
1−ρ̂ij Sj

 !
:

Because Ẑ ij Sj has a N(0, (n − |S| − 3)− 1) distribution if
ρij|S = 0, we conclude that ρij|S ≠ 0 if���Ẑ ij Sj

��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n− Sj j−3

p
> Φ−1 1−

α

2

� �
;

where Φ is the standard normal distribution function
and α is a tuning parameter, which can be interpreted as
the significance level of a single partial correlation test.
Choosing an appropriate value for α is difficult but, for
example, can be done with the Bayesian information
criterion.



Figure 1 Example of CPDAG. CPDAG G with the DAGs G1, G4 that are in its equivalence class.

Teramoto et al. BMC Bioinformatics 2014, 15:228 Page 3 of 14
http://www.biomedcentral.com/1471-2105/15/228
First, the PC-algorithm generates a skeleton on the basis
of conditional independencies. The outline of the PC-
algorithm is shown in Figure 2. The complete PC-algorithm
is described in detail in a precious work [7]. Note that the
PC-algorithm employs partial correlation to test conditional
independency.
Estimating causal effects using intervention-calculus
Again, we considered p + 1 random variables X1,… Xp,Y
(also referred to as X1,… Xp, Xp + 1). Any distribution that
is generated from a DAG with independent error is
Figure 2 PC-algorithm for generating the skeleton.
called Markovian with respect to the DAG. Therefore,
any Markovian distribution can be factorized as

f x1;…; xpþ1
� � ¼Ypþ1

j¼1

f xj pajÞ:
���

To represent the effect of an intervention of a set of vari-
ables, a do operator is introduced. We denoted the distribu-
tion of Y that would occur if the treatment condition
Xi ¼ x

0
i was enforced uniformly over the population via

some intervention as f yjdoðXi ¼ x
0
iÞ

� �
. For a Markovian



Figure 3 IDA algorithm.
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model, the distribution generated by an intervention do

Xi ¼ x
0
i

� �
on the set of variables X1,…,Xp+ 1 is given by

the following truncated factorization formula:

f x1;…; xpþ1jdo Xi ¼ x
0
i

� �� �
¼

Ypþ1

j¼1;j≠i

f xjjpaj
� �jxi¼x0i

; if xi ¼ x
0
i

0; otherwise;

8><
>:

ð2Þ

Where f(xj|paj) are the pre-intervention conditional
distributions. Note that this formula employs the DAG
structure to write the interventional distribution on the
left-hand side in terms of pre-intervention conditional
distributions on the right-hand side. The distribution of

Y = Xp + 1 after an intervention do Xi ¼ x
0
i

� �
can be
Figure 4 Illustrative procedure of IDA.
obtained by marginalizing out x1,…, xp in equation (2).
This can be written as follows:

f yjdoðXi ¼ x
0
i

�
Þ
�
¼

f yð Þ; if Y∈pai;Z
f ðy x

0
i; paiÞf paið Þdpai if Y∉ pai;

��
8<
:

where f(·) and f Än x
0
i; paiÞ

���
represent pre-intervention

distributions. We can summarize the distribution gener-
ated by the intervention by its mean

E Y jdoðXi ¼ x
0
i

�
Þ
�
¼

E Yð Þ; if Y∈paiZ
E Y x

0
i; pai

�
f paið Þdpai; if Y∉ pai

����8<
:

and define the causal effect of do Xi ¼ x
0
i

� �
on Y by



Figure 5 NPN-IDA algorithm.
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∂
∂x

E Y do Xi ¼ xð ÞÞ x¼x0i

�������
ð3Þ

Under the assumption that X1,… Xp,Y are jointly
Gaussian, it is easy to compute the causal effects. Gaussianity
implies that E Y x

0
i; paiÞ

���
is linear in x

0
i and pai That is

E Y x
0
i; paiÞ ¼ γ0 þ γ ix

0
i þ γTpaipai

����

for some values, γ0, γi, and γpai∈ℝ
paij j , where |pai| is the

cardinality of the set pai. Then, we derive
Figure 6 Comparison of standard normal distribution and standard C
Z
E Y x

0
i ;pai

��� �
f
�
pai
�
dpai ¼ γ ix

0
i þ
Z

γTpa i
pa i f pa ið Þ d pa i ;

which is linear in x
0
i . The causal effect of Xi on Y when Y

∉ pai can be computed with (3) yielding γi, which is simply
the regression coefficient of Xi in the regression of Y on Xi

and pai. When Y ∈ pai, the causal effect becomes zero, be-
cause Y is a direct cause of Xi. Therefore, the causal effect
of Xi on Y is given by the following equation:

βijpai ¼
0; if Y∈pai

coefficient of Xi in Y∼Xi þ pai; if Y∉pai
;

	

auchy distribution.



Table 1 Parameter setting for performance evaluation of
the NPN-PC algorithm

Parameters Set values

α 10−6,10−5, 10−4, 10−3, 10−2

p 100, 200

n 50, 100

cp 0.005, 0.01

Mixing rate 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

α: significant level, p: number of variables, n: number of samples,
cp: probability of connecting one node to another node.
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where Y ∼Xi + pai is a shorthand notation for the linear re-
gression of Y on Xi and pai. Consequently, in the Gaussian
case, the causal effect does not depend on the value of x

0
i

and can be interpreted as

βijpai ¼ E Y jdoðXi ¼ x
0
i þ 1Þ

h i
−E Y jdoðXi ¼ x

0
iÞ

h i

for any value of x
0
i.

Next, we will describe the IDA algorithm in detail. For
simplicity, we only show the case in which the PC-
algorithm gives the correct CPDAG. Details of the sample
version of the IDA algorithm can be found in previously
conducted studies [5-7]. On the basis of CPDAG, which is
inferred from the PC-algorithm, we can compute the causal
effect for every DAG in the equivalence class, which con-
sists of multisets. Multisets differ from normal sets in that
the multiplicity of the elements is taken into account. The
IDA algorithm is given in Figure 3.
For computing the causal effects θij of Xi on Y in DAG

Gj, the IDA algorithm simply computes the regression coef-
ficient of Xi in a regression of Y on Xi and pai, which is de-
noted by βi pai Gjð Þj . This procedure is performed for every

DAG in the equivalence class yielding a vector of length j
of possible causal effects, where j is the number of DAGs in
the equivalence class. Computing the effect of every X1,…,
Xp on Y yields a matrix Θ with θij entries. We describe the
illustrative procedure of IDA in Figure 4. When we obtain
a single value for the estimated causal effect, we can take
the minimal absolute value of the multiset as a lower bound
from Θ for the true absolute intervention effect. This pro-
cedure intends to reduce the number of false positives.
From a practical point of view, because the number of false
positive should be kept as low as possible, it is desirable to
provide conservative results.

Non-paranormal method for NPN-IDA
In the PC-algorithm, the conditional independency is in-
ferred from a sample partial correlation ρ̂ij Sj between Xi

and Xj given a set of other variables S. As described in the
section of the PC-algorithm, a sample partial correlation
coefficient can be obtained by calculating a sample
Pearson’s correlation coefficient. This fact enables us to
relax the Gaussianity assumption of the PC-algorithm by
using the non-paranormal method. On the basis of [9], we
derive the non-paranormal version of the PC-algorithm
(NPN-PC algorithm). Let f = (f1,…, fp) be a set of mono-
tonic univariate functions and let ∑ 0 ∈ℝp× p be a positive
definite correlation matrix with diag(∑0) = 1. We suppose
that the p-dimensional random variable X = (X1,…,Xp)

T

has a non-paranormal distribution X ∼NPNp(f,∑
0) if f(X) ≡

(f1(X1),…, fp(Xp))
T ∼N(0,∑ 0). For continuous distributions,

the non-paranormal family is equivalent to the Gaussian
copula family [8]. It has been shown that the non-paranor-
mal family is much richer than the normal family. The con-
ditional independence is encoded by Ω0 = (∑0)− 1.
Therefore, we can write the following formula given a set
of other variables S:

Ω0
ij ¼ ρij s ¼ 0 iff Xi⊥Xj XSjj ð4Þ

For Gaussian copula distributions, the following im-
portant lemma connects Spearman’s correlation coeffi-
cient rsij to the underlying Pearson’s correlation

coefficient [8,9].
Lemma 1. [10] By assuming X ∼NPN(f, ∑ 0), we haveP0
ij ¼ 2 sin π

6 r
s
ij

� �
.

According to the lemma, we can define the following

estimator Ŝρ ¼ Ŝρ
ij

h i
for the unknown correlation matrix

∑ 0: Ŝρ
ij ¼ 2 sin π

6 r̂
s
ij

� �
for i ≠ j, and diag Ŝρ

� � ¼ 1. Finally,

if we define p ¼ Ŝρ
� �−1

, we obtain the following formula
that connects Spearman’s correlation coefficient and the
non-paranormal partial correlation coefficient ρij ssj .

ρsijjS ¼ −
pijffiffiffiffiffiffiffiffiffiffipiipjj

p

Instead of ρij|S in (1), we employ ρij Ssj to test condi-

tional independence for estimating CPDAG in the PC-
algorithm. For simplicity, we denoted the method that
combines the NPN-PC algorithm and IDA as NPN-IDA.
We describe the pseudo code of the NPN-IDA algorithm
in Figure 5.

Results
Experimental settings
Two experiments were conducted for different purposes.
The first purpose was to evaluate the performance of the
NPN-PC algorithm on synthetic data when the Gaussianity
assumption is not true. According to a previous study [7],
the four metrics of performance, i.e., true positive rate
(TPR), false positive rate (FPR), true discovery rate (TDR),
and structural hamming distance (SHD), are used. TPR,
FPR, and TDR are defined as follows:



Table 2 Performance comparison between PC-algorithm and NPN-PC algorithm

p n Mixing
rate

TPR FPR TDR SHD

PC NPN-PC PC NPN-PC PC NPN-PC PC NPN-PC

100 50 0.1 0.360 0.373 0.0021 0.0003 0.468 0.876 28.72 19.40

0.2 0.341 0.395 0.0035 0.0002 0.326 0.899 35.74 18.42

0.3 0.316 0.372 0.0044 0.0002 0.263 0.898 40.08 18.10

0.4 0.325 0.387 0.0046 0.0003 0.266 0.886 42.58 19.88

0.5 0.308 0.393 0.0047 0.0002 0.257 0.908 43.30 18.92

0.6 0.326 0.399 0.0049 0.0002 0.252 0.890 42.88 18.68

0.7 0.310 0.409 0.0051 0.0002 0.238 0.893 45.14 18.80

0.8 0.297 0.405 0.0052 0.0002 0.221 0.898 44.64 18.04

0.9 0.319 0.432 0.0052 0.0002 0.237 0.903 44.64 17.74

1 0.313 0.416 0.0051 0.0002 0.241 0.904 44.74 18.24

100 0.1 0.487 0.625 0.0031 0.0001 0.440 0.956 31.38 13.94

0.2 0.451 0.623 0.0048 0.0002 0.331 0.954 42.30 15.04

0.3 0.457 0.653 0.0058 0.0001 0.282 0.963 46.04 13.60

0.4 0.442 0.643 0.0063 0.0002 0.265 0.942 48.84 14.14

0.5 0.425 0.667 0.0064 0.0001 0.249 0.965 49.50 12.90

0.6 0.449 0.642 0.0064 0.0002 0.264 0.950 49.32 13.92

0.7 0.454 0.681 0.0064 0.0002 0.274 0.951 50.16 13.50

0.8 0.421 0.665 0.0064 0.0002 0.257 0.957 49.78 13.68

0.9 0.437 0.692 0.0064 0.0001 0.254 0.965 48.80 12.30

1 0.401 0.672 0.0064 0.0002 0.239 0.950 50.00 12.66

200 50 0.1 0.291 0.315 0.0011 0.0002 0.564 0.894 105.72 86.50

0.2 0.268 0.326 0.0018 0.0002 0.430 0.892 120.72 85.08

0.3 0.256 0.323 0.0021 0.0002 0.386 0.906 127.88 85.28

0.4 0.257 0.317 0.0023 0.0002 0.366 0.903 130.22 84.86

0.5 0.255 0.324 0.0023 0.0002 0.360 0.897 132.10 86.32

0.6 0.258 0.345 0.0024 0.0002 0.347 0.885 129.06 81.48

0.7 0.249 0.335 0.0024 0.0002 0.345 0.908 131.80 82.98

0.8 0.243 0.335 0.0024 0.0002 0.343 0.888 134.52 85.38

0.9 0.250 0.338 0.0024 0.0002 0.344 0.896 133.46 83.98

1 0.249 0.340 0.0024 0.0002 0.350 0.903 133.42 83.94

100 0.1 0.424 0.542 0.0018 0.0001 0.534 0.956 110.60 68.40

0.2 0.387 0.565 0.0027 0.0001 0.415 0.968 131.66 66.50

0.3 0.374 0.558 0.0031 0.0001 0.377 0.964 140.38 68.48

0.4 0.365 0.567 0.0032 0.0001 0.368 0.968 145.72 68.72

0.5 0.372 0.580 0.0033 0.0001 0.357 0.963 142.34 64.52

0.6 0.360 0.576 0.0034 0.0001 0.349 0.967 146.92 66.90

0.7 0.363 0.577 0.0033 0.0001 0.354 0.965 146.84 67.20

0.8 0.363 0.581 0.0034 0.0001 0.346 0.968 146.18 65.90

0.9 0.372 0.585 0.0034 0.0001 0.361 0.964 145.62 67.04

1 0.369 0.594 0.0034 0.0001 0.356 0.972 145.32 65.72

The bold indicates the best performance.
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Figure 7 Average SHD for p = 100 and 200 under different conditions of significance levels. (a) (c) cp = 0.005, (b) (d) cp = 0.01.
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TPR ¼ Number of correctly estimated edges
Number of true edges

;

FPR ¼ Number of incorrectly estimated edges
Number of true gaps

; and

TDR ¼ Number of correctly estimated edges
Number of estimated edges

;

where gaps indicate the pairs of vertex that are not
linked.
SHD is the number of edge insertions, deletions, and

flips to transfer the estimated DAG into the true DAG
[7]. A large SHD indicates a poor fit, whereas a small
SHD indicates a good fit.
To simulate the case that the Gaussian assumption is

not true, we generated multivariate data with depend-
ency structure by a given DAG with nodes correspond-
ing to random variables and added standard Cauchy
distribution in partial samples using the rmvDAG func-
tion in the pcalg package. Figure 6 depicts the normal
distribution and the Cauchy distribution. As shown in
Figure 6, the standard Cauchy distribution is tail-heavier
than the standard normal distribution, and is quite dif-
ferent from the standard normal distribution.
The second purpose was to evaluate the performance

of NPN-IDA when applied to predicting regulators of
the flowering time as phenotype of interest using an A.
thaliana microarray data set and regulators that control
the browning of white adipocytes in mice using mouse
microarray data. These two data sets are entirely differ-
ent in terms of species and target variables. Therefore, if
we obtain the consistent results thorough performance
comparison of the methods, the consequence will be
solid. We implemented the R language and employed
the pcalg package for the PC-algorithm and IDA [11].

Performance evaluation of the NPN-PC algorithm
We evaluated the performance under all combinations of
settings listed in Table 1. The mixing rate indicates the per-
centage of samples whose error distribution was drawn
from the standard Cauchy distribution. The higher the mix-
ing rate, the less accurate is the Gaussianity assumption. To
evaluate this hypothesis thoroughly, we repeated this ex-
periment 50 times and averaged the values of TPR, FPR,



Figure 8 Enrichment curves on exploring regulators of the flowering time in Arabidopsis thaliana. (a) Correlation screening is set to 500,
(b) correlation screening is set to 1000, (c) correlation screening is set to 1500, and (d) correlation screening is set to 2000.
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TDR, and SHD. To explain the essence of these experi-
ments, we show the representative results of the settings
(α = 10− 4, cp = 0.005) in Table 2. All experimental results
are shown in Additional file 1. To estimate the causal ef-
fects, estimated DAGs inferred by NPN-PC were employed.
Because we considered the situation that the Gaussianity
assumption is violated, we determined the significance level
α on the basis of the average SHD when the mixing rate
was 1. Average SHDs under the different probabilities of
Table 3 AUC values under the different conditions of
correlation screening on exploring regulators of the
flowering time in Arabidopsis thaliana

Correlation screening IDA NPN-IDA

500 0.737 0.755

1000 0.696 0.776

1500 0.605 0.680

2000 0.608 0.662

The bold indicates the best performance.
connecting one node to another node are shown in Figure 7.
Because the average SHD was very small, we employed esti-
mated DAGs when the significance level α was set to 10−4

to further estimate the causal effects.

Performance evaluation of the NPN-IDA algorithm
Exploring regulators of the flowering time in A. thaliana
We employed the microarray data set of A. thaliana and
the flowering time used in a previous study [7]. The data
set consisted of 21326 probes and 47 samples. We
regarded the nine known regulators of the flowering
time (DWF4, FLC, FRI, RPA2B, SOC1, PDH-E1 BETA,
Table 4 Known regulators of the differentiation of WAT
to BAT

Correlation screening Gene symbol

2000 Ppargc1a, Tbx15, Tfam, Bmp7

3000 Ppargc1a, Tbx15, Tfam, Bmp7

4000 Foxc2, Ppargc1a, Tbx15, Tfam, Bmp7



Figure 9 Enrichment curves on exploring the regulators that control the browning of white adipocytes. (a) Correlation screening is 2000,
(b) correlation screening is 3000, and (c) correlation screening is 4000.

Table 5 AUC values under the different conditions of
correlation screening on exploring the regulators that
control the browning of white adipocytes in mice

Correlation screening Known regulators IDA NPN-IDA

2000 4 0.706 0.726

3000 4 0.580 0.701

4000 5 0.648 0.665

The bold indicates the best performance.
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ATGH9B5, LRR, and OTLD1) as true-positive genes. Be-
cause IDA requires a significant amount of computation
time, we selected genes for further estimation that had
higher absolute correlation coefficients against flowering
time until a predefined number was reached (correlation
screening). In this study, the numbers of remaining
genes obtained by correlation screening were set to 500,
1000, 1500, and 2000. According to the description in
the previous section, we set the significance level α to
10−4 for estimating DAGs. Figure 8 shows the enrichment
curves under the different conditions of correlation
screening. Vertical axes represent the average numbers of
true positives and horizontal axes indicate the ranks of
causal effects. To quantitatively compare the perfor-
mances of IDA and NPN-IDA, we also summarized the
area under the enrichment curves (AUCs) under the dif-
ferent conditions of correlation screening in Table 3.

Exploring the regulators that control the browning of
white adipocytes in mice
We employed the mouse microarray data set of white adi-
pose tissue (WAT) obtained from a previous study [12].
The data set consisted of 43681 probes and 349 WAT sam-
ples. According to a previous review [13], we regarded
Ucp1 as marker of brown adipose tissue (BAT). We se-
lected genes that had higher absolute correlation coeffi-
cients against Ucp1 until a predefined number was reached.
The numbers of remaining genes were set to 2000, 3000,
and 4000. Table 4 shows the known regulators of the differ-
entiation of WAT to BAT for the different conditions of
correlation screening. Note that there are no true positive
genes when the number of remaining genes obtained by
correlation screening is below 1000.
Because there are two probes for Tbx15, i.e., merck-
NM_009323_at and merck-NM_01154_a_at, we regarded
the probe that had the larger causal effect as Tbx15. Figure 9
shows the enrichment curves under different conditions of
correlation screening. Vertical axes represent the average
numbers of true positives and horizontal axes indicate the
ranks of causal effects. The AUCs under the different con-
ditions of correlation screening are summarized in Table 5.

Discussion
From Table 2, it appears that the NPN-PC algorithm
consistently outperforms the PC-algorithm with regard
to all performance metrics, TPR, FPR, TDR, and SHD.
Furthermore, as the mixing rate increases, the perform-
ance values of the PC-algorithm decrease. This result
clearly shows that the PC-algorithm does not work
when the Gaussianity assumption is not true. In con-
trast, the NPN-PC algorithm works well when mixing
rate is high. In other words, the NPN-PC algorithm does
not require the Gaussianity assumption of data distribu-
tion. In terms of FPR, it appears that the FPR of the
NPN-PC algorithm is strictly suppressed under all set
values. In the NPN-PC algorithm, all performance met-
rics improved when the number of samples was 100



Figure 10 Histogram of p-values of the Shapiro-Wilk test. (a) Arabidopsis thaliana microarray data and (b) mouse WAT microarray data
(logarithmic scale).
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compared to when the number of samples was 50. From
these observations, it can be concluded that the NPN-
PC algorithm is robust and does not depend on data
distribution, unlike the PC-algorithm. This characteris-
tic is very attractive from the practical point of view.
Figure 11 Distributions of flowering time and expression levels of the
histogram of the flowering time and each gene’s expression.
From Table 3 and Figure 8, NPN-IDA consistently outper-
formed IDA on exploring regulators of the flowering time in
A. thaliana. In particular, when the correlation screenings
were set to 1000 and 1500, the difference in the AUCs be-
tween NPN-IDA and IDA increased. When the correlation
nine known regulators of the flowering time. Each panel is a



Table 6 p-values of the Shapiro-Wilk test of target
variables and known regulators

Variable p-value

Flowering time 1.09e-7

DWF4 3.62e-1

FLC 1.81e-3

FRI 2.81e-1

RPA2B 1.24e-4

SOC1 6.86e-1

PDH-E1 BETA 7.95e-2

ATGH9B5 1.69e-4

LRR 1.21e-4

OTLD1 6.84e-1

Ucp1 1.50e-21

Foxc2 6.01e-22

Ppargc1a 8.59e-21

Tbx15 (merck-NM_00923_at) 1.75e-21

Tbx15 (merck-NM_01154_a_at) 6.31e-20

Tfam 5.12e-08

Bmp7 3.09e-13
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screenings were set to 500, both NPN-IDA and IDA worked
well. This result indicates that the known regulators were
sufficiently recovered against the flowering time within
genes that have high absolute correlation coefficients. There-
fore, although we do not know whether the unknown regu-
lators have high absolute correlation coefficients against the
flowering time, it would be a good strategy from a practical
perspective to explore novel regulators from genes that have
high absolute correlation coefficients against the flowering
time.
From Table 5 and Figure 9, NPN-IDA consistently outper-

formed IDA on exploring regulators that control the brown-
ing of white adipocytes in mice. In particular, when the
correlation screenings were set to 3000 and 4000, the differ-
ence in the AUCs between NPN-IDA and IDA increased.
These results suggest that NPN-IDA successfully enriches
known regulators at the top ranks when the number of
available genes increases. Consequently, our two experi-
ments clearly demonstrated that NPN-IDA performs better
than IDA.
To discuss whether the Gaussian assumption is true or

not in the data sets used in this study, we applied the
Shapiro-Wilk test to microarray data and a target variable
of interest, which tests the null hypothesis that a sample
came from a normally distributed population [14]. We show
a histogram of the p-values of the Shapiro-Wilk test for tar-
get phenotypes of interest (flowering time in A. thaliana
and gene expression of Ucp1 in mice) and gene expression
levels in Figure 10. We also show individual histograms
of phenotypes of interest and expression levels of the
known regulators in Figure 11; the respective p-values of
the Shapiro-Wilk test are summarized in Table 6. From
Figure 10, it appears that the p-values of most genes
were <0.05 for both A. thaliana and mouse WAT micro-
array data. In other words, the normality assumption was vi-
olated in most genes. These results justify the use of NPN-
IDA rather than IDA, because the latter method requires a
normal distribution. With regard to the A. thaliana data, it
appears that the p-values for flowering time, FLC, FRI,
RPA2B, ATGH9B5, and LRR were <0.05 (Table 6); as shown
in Figure 11, their distributions were skewed. With regard to
the mouse WAT data, the p-values of all genes were very
small (Table 6). As shown in Figure 12, their distributions
were also skewed. These results strongly suggest that NPN-
IDA, which does not require the Gaussian distribution,
works better than IDA.
Although the method presented here performs signifi-

cantly better than IDA, one might consider the difference in
the performance as too small. However, within the known
regulators of flowering time in A. thaliana, four genes
(PDH-E1 BETA, ATGH9B5, LRR, and OTLD1) were experi-
mentally validated using the IDA-based method [6]. There-
fore, one should take into account that some of the known
regulators were obtained on the basis of the Gaussian
assumption. Thus, it is possible that the improvement
achieved with NPN-IDA is greater than the experimental re-
sults shown in this study.
In summary, the two main results of our experimental

study are: (1) the NPN-PC algorithm works better than the
PC-algorithm in estimating DAGs on synthetic data, and (2)
NPN-IDA performs better than does IDA in predicting reg-
ulators of the flowering time in A. thaliana and regulators
of the differentiation of WAT to BAT in mice on the basis
of microarray data. From these two results, we conclude that
the performance to estimate DAGs contributes to the accur-
ate prediction of causal effects.
From a practical point of view, because regulators that

control the browning of white adipocytes have not been
identified only from microarray data of WAT so far, it might
be worthwhile to demonstrate this possibility for the first
time using our novel method.
For further performance enhancement, we consider that

NPN-IDA could be embedded into CStaR (causal stability
ranking) [6] in the future. CStaR uses IDA with stability se-
lection [6,15] and the performance was greatly improved
compared to plain IDA. By simply replacing IDA with
NPN-IDA in the estimation process for causal effects, it
would be easy to combine NPN-IDA with CStaR.

Conclusions
We presented NPN-IDA, which uses nonparametric
partial correlations, to test conditional independencies
in the PC-algorithm for intervention-calculus. To reveal



Figure 12 Distributions of expression levels of the BAT marker gene Ucp1 and the five known genes. Tbx has two different probes. Each
panel is a histogram of each gene’s expression.
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the contribution of estimating DAGs, we evaluated the
NPN-PC algorithm to estimate DAGs with the non-
paranormal method. The two main results of our ex-
perimental study are: (1) the NPN-PC algorithm works
better than the PC-algorithm in estimating DAGs on
synthetic data, and (2) NPN-IDA performs better than
IDA does in predicting regulators of the flowering time
in A. thaliana and regulators of the differentiation of
WAT to BAT in mice. Considering these two results, we
concluded that the performance to estimate DAGs
contributes to the accurate prediction of causal effects.
Thus, the simplest alternative procedure we used for

our proposed method enables us to design efficient
intervention experiments and can be applied to a wide
range of research purposes, including drug discovery
and medicine, because of its generality.
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