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Abstract

Background: Current research suggests that a small set of “driver” mutations are responsible for tumorigenesis while
a larger body of “passenger” mutations occur in the tumor but do not progress the disease. Due to recent
pharmacological successes in treating cancers caused by driver mutations, a variety of methodologies that attempt to
identify such mutations have been developed. Based on the hypothesis that driver mutations tend to cluster in key
regions of the protein, the development of cluster identification algorithms has become critical.

Results: We have developed a novel methodology, SpacePAC (Spatial Protein Amino acid Clustering), that identifies
mutational clustering by considering the protein tertiary structure directly in 3D space. By combining the mutational
data in the Catalogue of Somatic Mutations in Cancer (COSMIC) and the spatial information in the Protein Data Bank
(PDB), SpacePAC is able to identify novel mutation clusters in many proteins such as FGFR3 and CHRM2. In addition,
SpacePAC is better able to localize the most significant mutational hotspots as demonstrated in the cases of BRAF and
ALK. The R package is available on Bioconductor at: http://www.bioconductor.org/packages/release/bioc/html/
SpacePAC.html.

Conclusion: SpacePAC adds a valuable tool to the identification of mutational clusters while considering protein
tertiary structure.

Background
Cancer, at its most basic, is caused by the accrual of
somatic mutations within oncogenes and tumor suppres-
sors in the genome [1]. While mutations within tumor
suppressors usually lower or completely disrupt the activ-
ity of genes that promote cell apoptosis or regulate the cell
cycle, oncogenic mutations typically increase or destabi-
lize the resulting protein output. As it is easier to disrupt
protein function than restore it, there has been signif-
icant pharmacological research geared towards inhibit-
ing oncogenic mutations as described in [2,3] and [4].
Coupled with the idea of “oncogene addiction”, that a
small set of “driver” genes promote uncontrolled cellular
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growth in a wide variety of cancers and that inactiva-
tion of these genes can significantly impair tumorigenesis
[5,6], the identification of driver oncogenic mutations has
become of key importance due to its potential transla-
tional benefit.
Due to the biological importance of this problem, a

variety of methodologies have been proposed to iden-
tify regions where activating mutations may occur. One
approach is based on the idea that compared to the back-
ground mutation rate, driver mutations will have a higher
frequency of non-synonymous mutations [7,8]. Several
improvements to this approach have been made such as
normalizing for gene length [9] as well as accounting
for different mutation rates due to features such as tran-
sitions versus transversions, location of CpG sites and
tumor type [10]. Relatedly, instead of comparing themuta-
tional frequency directly to the background rate, one can
also compare the ratio of nonsynonymous (Ka) to syn-
onymous (Ks) mutations per site [11]. Recently, [5,8,12]
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and [13] showed that somatic mutations appear to clus-
ter within protein kinases while [14] and [15] demon-
strated that mutational clustering can be a sign of positive
selection for protein function and thus sites for protein
engineering.
Alternatively, several machine learning methods have

been developed to determine the nature of a specific
mutation. For instance, Polyphen-2 [16] attempts to dis-
cern whether a mutation is deleterious while CHASM
[17] attempts to distinguish between driver and pas-
senger mutations. These methods use a wide range of
sequence and non-sequence features to build a set of
rules that are then used to score each mutation with the
score value determining the mutation classification. The
rules are developed on a training data set via a vari-
ety of methods such as Random Forests [18], Bayesian
Networks [19] and Support Vector Machines [20]. The
features used often include information on the size and
polarity of the substituted and original residues, available
structural information as well as evolutionary conserva-
tion [21]. Some classifiers are optimized to use only a
small set of features in prediction. For example, the SIFT
classifier [22], only uses evolutionary conservation to pre-
dict whether the protein functional change is tolerated or
damaging.
While all these methods have shown some success

in identifying damaging or deleterious mutations, they
nevertheless have limitations. Methods that rely upon
differentiating the frequency of synonymous and non-
synonymous mutations as compared to the background
rate may fail to take into account that selection may occur
upon only a small region of the gene and that signal
loss may occur when the gene is considered in total. The
methodologies proposed by [9] and [11] fail to distinguish
between activating and non-activating non-synonymous
mutations while the method developed by [10] may be
biased if the background mutational rate is not accurately
estimated. Furthermore, not only do machine learning
classifiers require several sources of information that need
to be periodically updated to account for new research,
it is often the case that much of the requisite informa-
tion needs to be collected for the first time at significant
expense.
Building upon the hypothesis that driver mutations tend

to cluster in functionally relevant protein regions, [23,24]
and [25] recently developed several statistical method-
ologies to identify mutational clusters. Specifically, [23]
developed Non-Random Mutational Clustering (NMC)
which identifies clustering by testing against the null
hypothesis that missense substitution locations are dis-
tributed uniformly. If two mutations are closer together
than expected by chance, the null hypothesis that every
amino acid has an equal probability of mutation is thus
rejected. However, as the distance between every pair of

mutations needs to be tested, a large multiple compar-
ison penalty is incurred. iPAC [24] and GraphPAC [25]
expanded upon NMC by taking into account protein ter-
tiary structure via a MultiDimensional Scaling approach
(MDS) [26] and a graph theoretical approach, respec-
tively. While both of these methods improved over the
linear NMC method, they nevertheless remap the pro-
tein to one dimensional space resulting in information
loss.
In this article, we provide an improvement to iPAC,

GraphPAC and NMC by considering the protein directly
in three dimensional space and thereby avoid the infor-
mation loss inherent in dimension reduction algorithms.
Using this new approach, we are able to identify pro-
teins with significant clusters, such as FGFR3 and
CHRM2, which are otherwise missed by iPAC,GraphPAC
and NMC (see Section “SpacePAC identifies additional
proteins containing clusters”). In addition, SpacePAC
provides better “localization” for mutational hotspots
(see Section “SpacePAC improves cluster localization”).
Finally, we show that many of the mutational hotspots
identified by SpacePAC are categorized as activating
mutations by CHASM and damaging mutations by
PolyPhen-2. Overall, by avoiding the protein remapping
step required by iPAC and GraphPAC as well as the mul-
tiple comparison penalty these methods incur for looking
at every pairwise combination of mutations, we are better
able to identify mutational hotspots that are indicative of
driver mutations. For the rest of this paper, we refer to the
set of NMC, GraphPAC, and iPAC as the “pairwise meth-
ods” as they consider every pairwise combination at the
cost of an extra multiple comparison adjustment.

Methods
SpacePAC uses a three step process to identify muta-
tional clusters. Step one is to obtain the mutational and
structural data (see Sections “Obtaining mutational data”
and “Obtaining 3D structural data”). Step two is to rec-
oncile the databases so that the mutational information
can be mapped onto the protein structure (see Section
“Reconciling structural and mutational data”). The third
step is to simulate the distribution of mutation locations
over the protein tertiary structure and identify if any
regions of the protein have observed mutational counts
in the tail of the distribution (see Section “Identifying
mutational hotspots”). Finally, although not part of the
SpacePAC algorithm, we perform a multiple comparison
adjustment to account for the multiple structures consid-
ered (see Section “Multiple comparison adjustment for
structures”).

Obtaining mutational data
The 65th Oracle version of the COSMIC database, the lat-
est version as of when this paper was written, was used
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to obtain the mutation data. First, only missense substi-
tution mutations recorded as “confirmed somatic variant”
or “Reported in another cancer sample as somatic” were
used. Further as both SpacePAC and the pairwise meth-
ods are tested against the null hypothesis that mutations
are randomly distributed along the protein, only muta-
tions from whole gene or whole genome screens were
retained in order to avoid selection bias. Next, only genes
labeled with a UniProt Accession Number [27] were kept
as the UniProt identification was used to match the pro-
tein sequence to the protein structure. Finally, as several
studies may report mutational data from a single cell line,
mutation duplications were removed in order to avoid
over counting specific mutations (see “Additional file 1:
COSMIC query” for the SQL code). Mutations are then
aggregated from various sources (cell lines, tumor sam-
ples, etc.) to help provide a complete mutational distri-
bution for the protein during the analysis described in
Section “Algorithm for identifying sphere positions”.

Obtaining 3D structural data
Protein structures were obtained from the PDB. The spa-
tial coordinates of the α-carbon atom in each amino
acid were used to represent that amino acid’s location in
3D space. Further, as multiple structures are often avail-
able for the same protein, all structures that matched the
protein’s UniProt Accession Number were analyzed and
an appropriate multiple comparison adjustment applied
afterwards (see Section “Multiple comparison adjustment
for structures”). If multiple polypeptide chains within the
same structure matched the UniProt Accession Number,
the first matching chain shown in the file was used (com-
monly chain “A”). Similarly, if the structure determination
provided more than one protein conformation, the first
conformation listed in the pdb file was kept. We note that
while we only used the first conformation displayed in
the file, as done by [24] and [25], the SpacePAC software
allows the user to select the desired conformation should
an analysis of more than one alternative conformation be
required. For a full listing of the 1,903 structure/side-chain
combinations considered, see “Additional file 2: Structure
files”.

Reconciling structural andmutational data
As the residue numbering scheme often differs between
the COSMIC and PDB databases, we reconciled the infor-
mation in both sources. Similar to iPAC and GraphPAC,
SpacePAC provides the user two possible reconciliation
options. The first option is based upon a numerical
reconstruction from the structural data available directly
in the PDB file while the second performs a pairwise
alignment as detailed in [28]. As the PDB file structure
may change depending upon when the file was added to

the database along with other technical difficulties, we
used pairwise alignment to reconcile the mutational and
positional information for each structure unless specif-
ically noted. For further information on the pairwise
alignmnent, please see the iPAC package available on
Bioconductor. Successful alignment was obtained for 131
proteins corresponding to 1,110 individual structure/side-
chain combinations. Note that structures that did not have
tertiary data on at least two mutations were considered
blank (as no clustering is possible) and dropped from the
analysis. See “Additional file 2: Structure files” for full
details of each combination.

Identifying mutational hotspots
The general principle for SpacePAC is that we identify the
one, two and three non-overlapping spheres that cover
as many of the mutations as possible at various radii
lengths. We then normalize the number of mutations cov-
ered by the spheres and find the maximum normalized
value. This value is then compared to a simulated dis-
tribution to obtain a p-value. Specifically, we proceed as
follows:

• Let s be the number of spheres we consider.
s ∈ {1, 2, 3}.

• Let r be the radius considered. Here we consider,
r ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

• Simulate T(≥ 1000) distributions of mutation
locations over the protein structure. Specifically, for
each simulation, every mutation is randomly assigned
to a residue i where 1 ≤ i ≤ N and N is the total
number of residues in the protein.

Next, let X0,s,r represent the number of mutations that
occur within the s spheres over all samples. For instance,
suppose we had three tumor samples, A, B and C, and
were considering two spheres. Further, suppose that sam-
ple A had mutations at residues 5 and 20, sample B had
mutations at residues 6 and 21, and sample C had only
one mutation at residue 5. Thus, if sphere one overlapped
residues 5 and 6 while sphere two overlapped residues 20,
21, thenX0,2,r = 5. Specifically, there are 3mutations from
samples A, B, C within the first sphere and 2 mutations
within the second sphere.
Given, s we then identify the sphere centers in such a

way that capture asmany of the total mutations as possible
(See Section “Algorithm for identifying sphere positions”).
For instance, if s = 3, we then need to identify three
sphere centers, p1, p2 and p3. Let Xi,s,r represent the same
statistic but for simulation i. For given {s, r}, calculate
μs,r = mean

1≤i≤T
{Xi,s,r} and σs,r = std. dev.

1≤i≤T
{Xi,s,r}. For each

simulation, calculate Zi = maxi{(Xi,s,r − μs,r)/σs,r}. The
p-value is then estimated as: (

∑
1Z0>Zi)/T . Note that
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Figure 1 Statistic construction. In this example, we consider r ∈ {3, 9} and up to 3 potential mutational hotspots in the protein. First, μ and σ are
calculated over each column. Next, we normalize each entry in the column by calculating Zi,s,r = Xi,s,r−μs,r

σs,r
. We then take the maximum over each

row to get Z0, . . . , Z1000. The percentage of times Z0 ≥ Zi , where i ∈ {1, . . . , 1000}, is the p-value of our observed statistic Z0. Note that if Z0 is greater
than Zi for all 1000 simulations, we report a p-value of <1.00 E-03.

while we identify up to three spheres (or “hotspots”)
that contain mutational clustering, only one p-value is
necessary to reflect the statistical significance of all the
hotspots. This process is best seen through Figure 1.
For the rest of this paper, we will refer to “hotspot” and
“cluster” interchangeably.
While our algorithm is generalizable to m spheres

(m << N , where n is the total number of residues),
we note that the worst case running time is O

(N
m
)
. Due

to the nature in which we traverse the sample space of
possible sphere orientations (see Section “Algorithm for
identifying sphere positions”), we rarely hit the worst case
scenario, and even then, in the case of three spheres the
running time is only O

(N
3
)
which is still computation-

ally possible. Further, our algorithm was able to identify
only 1 or 2 significant spheres for over 70% of the struc-
tures considered. Even more so, for the structures that
did have 3 statistically significant spheres (hotspots), the
three spheres covered on average more than 75% of all
the mutations available. Given these empirical results,
three spheres were selected to balance computational
costs.
While sphere radii ranging from 1 to 10Å were con-

sidered in this study, the researcher can input larger
values. However, over all the structures evaluated in this
study, our methodology never required spheres of radius
10Å. Optimal sphere orientations were always found at
smaller radii. Thus while larger sphere radii could of been
considered, they would not have been selected by the
algorithm.
Finally, due to our consideration of only non-overlapping

spheres, additional constraints on the number of possi-
ble sphere orientations are placed which allows SpacePAC
to efficiently solve for the optimal sphere orientation. For
example, if two nearby residues are mutated, SpacePAC
will incorporate them into a larger sphere and then use
the remaining spheres to identify more distant clusters. If

sphere overlap was permitted, not only would it become
difficult to assign a mutation to a specific sphere but it
could also lead to uninformative results. For instance, con-
sider a worst case scenario where one residue has very
many mutations and two spheres are being used to find
the mutational hotspots. If the rest of the protein has no
mutations, the two spheres will perfectly overlap which
would in turn provide a meaningless result. If the muta-
tions were spread over two nearby residues, the sphere
overlap would again be almost perfect and not infor-
mative. By using the non-overlapping sphere constraint,
SpacePAC will dynamically increase the sphere radius
and capture the mutations in one sphere. On the whole,
by considering only non-overlapping spheres we impose
boundary constraints in order to find meaningful sphere
configurations.

Algorithm for identifying sphere positions
In the approach described in Section “Identifying
mutational hotspots”, we find the 1, 2 and 3 non-
overlapping spheres that cover the most mutations given a
pre-specified radius length. Ignoring sphere overlap for
the moment, if only one sphere is considered, the num-
ber of possible spheres is linear in the length of the
protein (namely, a sphere centered at each residue). If
two spheres are considered, there are

(N
2
)
possible sphere

combinations if the protein is N residues long. Simi-
larly, if three spheres are considered, there are

(N
3
)
such

combinations (once again ignoring sphere overlap). For
a medium-sized protein like PIK3Cα which is 1,068
residues long, considering three spheres allows for

(1,068
3

)
= 202, 461, 116 possible positions. This makes it pro-
hibitively expensive to perform a brute force approach.
To quickly find the best sphere orientation, we exe-
cute Algorithm 1 below. Algorithm 1 is presented for 2
spheres but is trivially extendable to 3 or more spheres
as well.
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Algorithm 1 SpacePAC algorithm. We are interested
in finding the two non-overlapping spheres that con-
tain the most mutations. The algorithm takes as input a
sorted vector v of mutation counts per amino acid where
the amino acids are sorted from largest to smallest by
mutation count. Amino acids with no mutations are not
included in v. Note that the “cand” variable is an ordered
list of 3-tuples.
Require: Sorted vector of counts v with length >= 2

starti = 2;
startj = 1;
k = length(v);
cand = [(starti, startj,v[starti] + v[startj])]
while (!is.empty(cand)) do

index =max(cand) {#Max over the 3rd element in the
3-tuple.}
i,j,s = cand[index]
cand = cand[-index] {#Removes the current max.}
if (No overlap between sphere i and j) then

Return (i, j, v[i]+v[j]) {#Successful combination
found.}

end if
if (j ==1) and (i < k) then

cand.append[(i+1, j,v[i+1] + v[j])]
end if
if (j + 1 < i) then

cand.append[(i, j+1,v[i] + v[j+1])]
end if

end while
Return NULL {#No successful combination found.}

To help illustrate this algorithm, consider a protein N
residues long with five mutated amino acid positions and
suppose that we are interested in finding the two spheres
that capture the most mutations. Without loss of gen-
erality and for ease of exposition, number the mutated
residues 1 through 5. Further, suppose that after aggre-
gating all the mutational counts from all samples the
following mutational counts are recorded: residue 1 - 50
mutations, residue 2 - 40 mutations, residue 3 - 30 muta-
tions, residue 4 - 20 mutations and residue 5 - 10 muta-
tions. For clarity, we assume that the mutation counts are
unique, but the algorithm is unaffected if there are identi-
cal mutation counts for some residues. We first construct
the table shown in Figure 2, where the inside of the matrix
is calculated to be the sum of the number of mutations
at amino acid i and amino acid j. Observing, that the
table is symmetric, we only need to evaluate the residues
below the diagonal as the entries on the diagonal originate
from residues that overlap each other perfectly. Thus for
entry (i, j)we are considering two spheres, one centered at
residue i and one centered at residue j.

The algorithm proceeds by appending to the “candidate”
stack the element directly below and the element directly
to the right starting from the (2,1) entry. An “element”
consists of a 3-tuple (i, j, s) where i represents the row, j
represents the column and s represents the value in posi-
tion (i, j). After every two potential appends to the stack,
the maximum value over the 3rd position is found (with
the third position corresponding to the number of muta-
tions covered by both spheres). The two spheres that con-
tribute to this max element are then checked for overlap.
If the spheres do not overlap, then a successful case has
been found and the algorithm completes. If the spheres
do overlap, the next set of elements are appended and the
process continues. By proceeding in the way described in
Algorithm 1, at each iteration, the pair of spheres being
considered contains the maximum number of mutations
possible from the remaining set of sphere combinations.
Hence, once the first pair of non-overlapping spheres is
found, the optimal sphere combination has been found
and the algorithm can terminate. To see this process, see
Figure 3.
It is worth noting, that by proceeding as presented

above, we are able to traverse the space of possible solu-
tions in a manner that does not require every combination
to be explicitly considered and yet at the same time results
in a globally optimal solution. At each step, every subse-
quent combination of spheres will capture fewer muta-
tions (or in very rare cases as many mutations). As soon
as the first combination of non-overlapping spheres is
found, it is immediately known that all the other remain-
ing sphere combinations will capture fewer mutations.
Therefore, there is no longer any need to explicitly con-
sider them. In the worst-case scenario (where the spheres
keep overlapping at every iteration), SpacePAC will still
need to consider all

(N
3
)
combinations, just as the brute

force method. However, by leveraging the fact that at
small enough radii the algorithm quickly identifies a case
where the spheres do not overlap, the worst-case scenario
almost never occurs and the running time is drastically
reduced.

Multiple comparison adjustment for structures
A multiple comparison adjustment was performed to
account for testing 1,110 protein structures. Since many
structuresmay pertain to one protein, a Bonferroni adjust-
ment is too conservative and an FDR approach was used.
Specifically, a rough FDR (rFDR) [29] approach, which is
a good approximation to the standard FDR approach [30]
when there are a large number of positively correlated or
independent tests, was applied. In our case, the cutoff is
set at:

rFDR = α

(
k + 1
2k

)
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Figure 2Organizing the data example. In our example, the protein has 5 residues with mutations. The residues are sorted from largest to smallest
(so residue 1 has the largest number of mutations, residue 2 the second largest number of mutations, etc.), and the inside of the table is calculated
as the sum of the mutations on both residues using all the samples in the study. For instance, as residue 1 has 50 mutations and residue 2 has 40
mutations, there were 90 total samples that had a mutation either on residue 1 or 2. In the actual code, only the lower half of the table is considered
and then only sequentially to decrease running time, but we present the whole table here for clarity.

where k = 1, 110, the total number of structures in the
study. Using an α = 0.05, the rFDR ≈ 0.025023. To be
conservative, we rounded down and deemed all clusters
with a p-value less than or equal to 0.025 to be significant.

Results and discussion
Of the 131 proteins considered, SpacePAC identified 18
proteins with significant clustering as shown in Table 1.
For a full list of which structures were found sig-
nificant under SpacePAC, GraphPAC and NMC, see
“Additional file 3: Results summary”. We note that
while Table 1 shows the p-values for the 18 proteins
found significant by SpacePAC, there were 5 proteins
that were found significant only by GraphPAC, 1 pro-
tein only by iPAC and 1 protein only by NMC (see
“Additional file 4: Results table” for a complete list of
what proteins were identified significant under each
method). However, we also note that SpacePAC iden-
tified the largest number of proteins with significant
clustering at the same false positive thresholda. We fur-
ther note that several of the proteins identified only by
SpacePAC have already been associated with cancer as
shown in Section “SpacePAC identifies additional proteins
containing clusters”. Furthermore, as shown in Figure 4,

14 out of the 18 proteins identified by SpacePAC have
their most significant hotspot overlap a biologically rel-
evant region and three of the remaining four proteins
(CTNNB1, FGFR3 and FSHR) have been implicated
with cancer. For a full description regarding the overlap
between SpacePAC identified hotspots and structurally
significant regions, see “Additional file 5: Relevant sites”.
Specifically, for CTNNB1, the SpacePAC identified

hotspot covers mutations G34R and G34V, which are
associated with hepatocellular carcinoma and hepato-
blastoma [31,32], respectively. Further, FSHR has been
shown to be expressed in the vascular endothelial tissue
of a wide range of human tumors including lung, breast,
prostate, colon and leiomyosarcoma [33]. For more detail
on FGFR3, see Section “SpacePAC identifies additional
proteins containing clusters”.
Finally, we evaluated SpacePAC performance via two

common machine learning methods, PolyPhen-2 [16]
and CHASM [17]. Before we summarize the results, we
note that PolyPhen-2 and CHASM utilize a large set of
features when evaluating each mutation. The advantage
of SpacePAC is that it is able to be run with vastly less a
priori information. Out of the 38 mutated amino acids
that fall within SpacePAC identified hotspots, PolyPhen-2

Figure 3 Algorithm execution example. This figure refers to the data in Figure 2. The first index, i, represents the row and the second index, j,
represents the column. The third index, s, represents the total number of mutations at amino acids i and j. Beginning in position (2,1,90), we then
add (3,1,80) to the stack, then {(4,1,70), (3,2,70)} and so forth. After each addition to the stack, we pick the element with the highest value in the third
position of the 3-tuple.
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Table 1 Summary of genes with significant clusters

Method

Gene SpacePAC iPAC GraphPAC NMC

AKT1 <1.00 E-03 4.48 E-04 5.54 E-04 5.55 E-04

ALK <1.00 E-03 1.99 E-42 3.89 E-35 2.16 E-21

BRAF <1.00 E-03 <2.23 E-308 <2.23 E-308 <2.23 E-308

CHRM2 1.10 E-02

CTNNB1 2.00 E-03 6.69 E-03 1.09 E-03 1.09 E-03

DOCK2 2.20 E-02 9.29 E-03 3.39 E-03

FGFR3 2.00 E-02

FSHR 2.20 E-02

HRAS <1.00 E-3 1.55 E-23 1.87 E-32 2.68 E-15

IDE 2.00 E-02 3.60 E-03

IGF2R 1.40 E-02 3.06 E-03 9.04 E-03

KIF18A 6.00 E-03 1.56 E-02 1.56 E-02 1.56 E-02

KRAS <1.00 E-03 <2.23 E-308 <2.23 E-308 <2.23 E-308

NRAS <1.00 E-03 1.53 E-75 6.65 E-77 6.77 E-77

PIK3CA <1.00 E-03 4.73 E-118 4.73 E-118 4.73 E-118

PTEN <1.00 E-03 5.71 E-03 7.60 E-04 1.68 E-04

SEC23A 1.70 E-02 1.18 E-02

TP53 <1.00 E-3 1.78 E-134 6.22 E-169 1.08 E-88

This table shows the p-value of the most significant cluster for each of the 18
proteins identified by SpacePAC as well as the corresponding p-value under
iPAC, GraphPAC and NMC. A blank entry in position (i, j) signifies that
methodology j did not find any structures with significant clustering for protein i.
Note that given ni total mutations for protein i, the pairwise methodologies
perform ni(ni−1)

2 comparisons, one for each pair of mutations. As such, the

p-values shown for iPAC, GraphPAC and NMC have been multiplied by ni(ni−1)
2 in

order to account for the multiple comparison and provide a number directly
comparable to the SpacePAC p-value. Also, while the GraphPAC methodology
was run under all three insertion methods (Cheapest, Nearest and Farthest) as
described by [25], we display the minimum p-value over the three methods.
Note that since 1000 simulations were used for SpacePAC, the most significant
result we can report is p < 1.00E− 03. Please see Figure 1 for further explanation.

identifies 36 (95%) as damaging while CHASM identifies
31 (82%) as driver mutations at a FDR of 20%. On the
protein level, PolyPhen-2 identifies all the 18 proteins
identified by SpacePAC as significant while CHASM
identifies 14 proteins as significant. Moreover, SpacePAC
identifies several proteins with significant clustering
that are missed by the machine learning methods. For
instance, SpacePAC identifies FSHR as significant, which,
as described above, has recently been associated with
cancer. However, CHASM calculates a FDR of 0.45 for
FSHR, which is above the significance threshold. See
“Additional file 6: Performance evaluation” for more
information.

SpacePAC identifies additional proteins containing clusters
As described in Section “Results and discussion”,
SpacePAC identified three proteins with significant clus-
tering that were missed by NMC, iPAC and GraphPAC.
We will now consider two of these proteins, Fibroblast
Growth Factor Receptor 3 (FGFR3), and Muscarinic
Acetylcholine Receptor M2 (CHRM2 or M2).
The CHRM2 structure (PDB ID: 3UON) [34] was iden-

tified by SpacePAC as having two significant mutational
hotspots (p-value = 0.011) located at residues 52 and 144
(see Figure 5). CHRM2, essential for the physiological
regulation of cardiovascular function [34] has been impli-
cated in a variety of cardiovascular diseases. Recently,
CHRM2 has also been associated with both autoimmune
diseases and cancer [35]. Current research shows that M2
receptors are expressed in both glioblastoma cell lines
and human samples. Moreover, the M2 agonist arecaidine
strongly decreases cell proliferation in both primary cul-
tures and cell lines in a dose and time dependent response
profile. This suggests that M2 activation has an impor-

Figure 4 Results summary. A breakout of what biologically relevant regions are overlapped by the most significant cluster for each of the 18
proteins. Overall, 77% of the hotspots overlap a binding site or a protein domain.
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Figure 5 CHRM 2 clustering. The CHRM2 structure (PDB ID: 3UON)
where residues 52 and 144 are highlighted.

tant role in suppressing glioma cell proliferation and can
provide a novel therapeutic target [36]. Had the spatial
structure not been taken into account, as under NMC, or
if the structure was accounted for but only via remapping
to 1D space followed by a pairwise multiple comparison
adjustment, as under iPAC and GraphPAC, this cluster
would have been missed.
SpacePAC identified the FGFR3 structure (PDB ID:

1RY7) [37] as having one significant hotspot (p-value =
0.020) centered at amino acid 248 (see Figure 6). FGFR3 is
a tyrosine-protein kinase which plays a critical role in reg-
ulating cell differentiation, proliferation and apoptosis and
is often associated with cancer and developmental disor-
ders [38]. Mutation R248C occurs in the Ig-like domain
and is a severe and lethal mutation associated with bladder

cancer [39] along with a variety of other phenotypes such
as thanatophoric dwarfism [40] and epidermal nevi [41].
This cluster represents a perfect example of signal loss
when all pairwise mutations are considered. In the case
of our data, as all the mutations occur on one residue, a
cluster is formed at that one residue only. There is there-
fore no difference between any of the pairwise methods
as the remapping step has no effect. However, since iPAC,
GraphPAC and NMC need to account for all pairwise
comparisons between mutations (all occurring on residue
248), the signal is lost under all three methods. On the
other hand, as SpacePAC does not need to perform such
a correction, it is successfully able to detect the cluster.
Moreover, we note that [42] recently developed an anti-
FGFR3 monoclonal antibody that interferes with FGFR3
binding and inhibits R248C [39].

SpacePAC improves cluster localization
For protein-structure combinations in which mutational
clusters are detected by other methods, SpacePAC is often
able to provide a smaller set of clusters compared to
the pairwise methods while still covering the majority of
mutations. To illustrate this point we consider two exam-
ples, the BRAF structure (PDB ID: 3Q96) [43] where
SpacePAC identifies 3 mutational hotspots and the ALK
structure (PDB ID: 2XBA) [44] where SpacePAC identifies
2 mutational hotspots.
BRAF is a well known oncogene that is part of the

RAS-RAF-MEK-ERK-MAP kinase pathway which is often
activated in human tumors. Further, it is estimated that
approximately 90% of mutations in this gene are a substi-
tution of a glutamate for a valine at residue 600 (V600E)
[45]. In our mutational data, 187 (83.5%) mutations were
on residue 600 with the remaining 37 mutations spread
over 13 other residues. Mutations on V600 typically result
in constitutively elevated kinase activity and have been
found in a wide range of cancers such as metastatic
melanoma, ovarian carcinoma and colorectal carcinoma

Figure 6 FGFR3 clustering. The FGFR3 structure (PDB ID: 1RY7) where residue 248 is highlighted blue.
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[5,7,46-49]. Due to the large number of V600 mutations,
SpacePAC and all the pairwise methods identified residue
600 as the most significant “cluster” in all structures where
tertiary information was available for that residue. It is
worth noting that BRAF V600 inhibitors, such as Vemu-
rafenib, have already been developed, further supporting
the hypothesis that mutational clusters may represent
pharmaceutical targets [50].
As the signal presented by V600 is so strong, it may

mask the signal from other mutations within the BRAF
protein. As such, we considered structure 3Q96 which
does not have tertiary information for residues 600 and
601. Of the remaining 28 mutations spread over 12
residues, SpacePAC identifies three hot spots with 7-8
mutations per cluster as shown in Table 2 (combined hot
spot p-value <1.00 E-03). Moreover, each of the three
regions identified have been associated with oncogenic
elevated kinase activity as well as a variety of cancers
such as lung adenocarcinoma, melanoma, colorectal ade-
nocarcinoma and ovarian serous carcinoma [5,46,51]. See
Figure 7 for a visual orientation of the clusters presented
in Table 2.
Together, the three hot spots identified by SpacePAC

cover 79% of the mutations for which tertiary information
is available. Moreoever, while NMC, iPAC and the three
GraphPAC methods report approximately 8 to 16 times
as many clusters as SpacePAC (see Table 3), the addi-
tional clusters only cover the remaining 21% of mutations.
Finally, all the residues that do not fall within SpacePAC
hot spots are those which have only one mutation. These
additional clusters stem from the fact that NMC, iPAC
andGraphPACmust consider every pairwise combination
of mutations resulting in many clusters that only differ
from each other by a few residues. Further, by consider-
ing every pairwise combination, many smaller clusters are
often combined into larger clusters with a less significant
p-value.While technically still a “significant” cluster, these
extra clusters provide little additional information. As
SpacePAC does not have to consider every combination, it
does not suffer from this issue.
We now consider the Anaplastic Lymphoma Kinase

(ALK) protein for which SpacePAC identifies two muta-
tional hotspots (combined hot spot p-value <0.001) (see
Table 4). The ALK protein is a receptor-type tyrosine
kinase that is preferentially expressed in neurons during

Table 2 BRAF clusters

Hotspot Center Within sphere # Mutations

A 465 (464, 465, 466) 8

B 470 (469, 470, 471) 7

C 596 (595, 596, 597) 7

The three hot spots identified by SpacePAC for the BRAF structure (PDB ID:
3Q96) at an optimal radius of 4Å. See Figure 7 for a visual orientation.

Figure 7 BRAF clustering. The BRAF structure (PDB ID: 3Q96) where
cluster 464-466 is shown in blue, 469-471 is shown in red and 595-597
is shown in purple. The central residue in each cluster (465, 470 and
596 for the blue, red and purple clusters, respectively) is labeled.

the late embryonic stages [52]. Mutations in this pro-
tein have been associated with both neuroblastoma as
well as non-small cell lung cancer [53,54]. Hotspots A
and B in Table 4 both occur in the protein kinase. Fur-
ther, mutations on F1174 and R1275 can cause consti-
tutive activation which impairs receptor trafficking [55].
We note that SpacePAC perfectly identifies both hotspot
locations. Moreover, it has recently been shown that acti-
vatingmutations F1174L and R1275Q provide therapeutic
targets in neuroblastoma [54], supporting the hypothesis

Table 3 Methodology comparison for BRAF

# Clusters/Hotspots

Method/ Protein-structure BRAF - 3Q96 ALK-2XBA

SpacePAC 3 2

NMC 22 11

iPAC 45 11

GraphPAC-Cheapest 36 7

GraphPAC-Nearest 45 8

GraphPAC-Farthest 47 6

The number of clusters found under each method. As SpacePAC does not need
to consider every pairwise combination of mutations, the method provides a
much smaller number of potential hotspots while still covering the majority of
mutations.
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Table 4 ALK clusters

Hotspot Center Within sphere # Mutations

A 1174 (1173, 1174, 1175) 11

B 1275 (1274, 1275, 1276) 12

The two hot spots identified by SpacePAC as significant for the ALK Structure
(PDB ID: 2XBA) [44] at an optimal radius of 4Å. See Figure 8 for a visual orientation.

that mutational clusters are indicative of activating muta-
tions. See Figure 8 for a visual orientation of the clusters
presented in Table 4.
The two hotspots identified by SpacePAC cover 88.5%

of all the mutations in our data with the remaining muta-
tions occurring on residues with only one mutation each.
Further, as seen in Table 3, the pairwise methods have 3 to
5.5 times as many clusters as SpacePAC. As before, by not
having to consider every pairwise combination and thus
not reporting similar clusters, SpacePAC is able to better
localize the critical mutational areas.

Conclusion
In this article we provide a novel algorithm to account
for protein tertiary structure when identifying mutational
clusters in proteins. By considering the protein structure
directly in 3D space, we avoid the use of a dimension
reduction algorithm and potential information loss. Fur-
ther, by not considering every pair of mutations, we are

Figure 8 ALK clustering. The ALK structure (PDB ID: 2XBA) where
cluster 1173-1175 is shown in blue and cluster 1274-1276 is shown in
red. The central residue in each cluster (1174 and 1275 for the blue
and red clusters respectively) is labeled.

able to reduce the multiple comparison penalty and iden-
tify additional clusters. We show several examples of clus-
ters that are not identified by alternative methods as well
as the ability to improve cluster localization while still cov-
ering the majority of mutations. Moreover, several of our
examples identified clusters which overlap potential ther-
apeutic targets, supporting the hypothesis that clusters
may be indicative of activating driver mutations. Finally,
since the SpacePAC methodology does not need to look
at every pairwise combination of mutations it also runs
much faster for proteins with many (> 400) mutations. In
these situations, while the pairwise methodsmay take sev-
eral days to complete, SpacePAC still finishes in a matter
of hours. For proteins with fewer mutations, the running
time of all the pairwise methods as well as SpacePAC is
comparable, with the majority of protein/structure com-
binations terminating in under 10 minutes when executed
on a consumer desktop with an Intel i7-2600k processor
(at a frequency of 3.40 GHZ) and 16 GB of DDR3 RAM.
SpacePAC, while presenting an important alternative to

the one dimensionality restriction required by iPAC and
GraphPAC, is nonetheless subject to several limitations.
First, SpacePAC is currently limited to atmost threemuta-
tional hotspots to save on computational time. While it is
unlikely that a single structure will have more than three
hotspots, the extension to allow SpacePAC to account for
more than three hotspots is algorithmically simple. As
SpacePAC was able to process our entire database of pro-
tein/structure combinations in under 5 hours (with all the
structures evaluated in parallel), this restriction is mini-
mal and will only grow smaller as computational power
increases.
Second, to satisfy the uniformity assumption, the muta-

tional status of each amino acid must be known. However,
due to improvements in high-throughput sequencing,
this is rapidly becoming a non-issue. Next, unequal rates
of mutagenesis in specific genomic regions may violate
the assumption that each residue has an equal prob-
ability of mutation. To help ensure that our data met
this statistical assumption, we only considered missense
mutations as many insertion and deletion mutations
are sequence dependent. Relatedly, while the literature
shows that CpG dinucleotides often have a mutational
rate ten times or higher when compared to other loca-
tions [56], approximately only 14% of the clusters presen-
ted in section “SpacePAC identifies additional proteins
containing clusters” and “SpacePAC improves cluster
localization” overlapped CpG sites. Similarly, cigarette
use typically causes transversion mutations within lung
carcinomas [23] while colorectal carcinomas result in
transition mutations [57]. In the case of KRAS however,
the vast majority of mutations are located on residues
12, 13 and 61 for both cancers. This signifies that while
the mutational type may differ, the impact on mutation
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location is minimal and does not violate the uniformity
assumption. We also note that while we used a uniform
mutational distribution for our simulations (as the goal of
this paper was to present a novel technique that utilizes
tertiary protein structure), this is not a requirement of
the overall approach. Prior knowledge of varyingmutation
rates can be integrated into the simulation step described
in Section “Identifying mutational hotspots”. This would
allow for increased accuracy when identifying clusters by
potentially increasing both the specificity and sensitivity
of the statistic. Further research is required in this area
to realize the full benefit of such an approach. Lastly, it
is worth noting that as we obtained our mutational data
from the COSMIC database, specific tissue types may
be more represented than others. However, under this
situation our analysis would be more conservative and
the resulting findings even more significant. Specifically,
aggregating over all tissues increases the total number
of mutations, thus increasing the number of simulated
mutations within any given segment of the protein. The
resulting p-value of any observed hotspot would lose sig-
nificance as more mutations would be simulated within
the cluster. Overall, while this as well as previous studies
are impacted by several external factors, it appears that
selection of the cancer phenotype is the primary cause of
clustering.
In conclusion, SpacePAC presents a novel approach to

account for protein tertiary structure when identifying
mutational hotspots. We show that SpacePAC identifies
novel clusters of biological relevance, improves cluster
localization and in several cases identifies pharmaceu-
tical targets for which therapies are already in produc-
tion. In turn, we further confirm the hypothesis that
mutational hotspots are indicative of driver mutations
and show that SpacePAC can be used to quickly locate
such potential mutations as additional structures are pub-
lished. Several novel areas for further research are directly
applicable as well. First, while the algorithm developed
here uses up to three spheres, the methodology can be
expanded to use more spheres when identifying clus-
tering. Further, the approach proposed here is not lim-
ited to identifying human mutational clusters in proteins,
but can be extended to other species as well as DNA
and RNA, once the requisite positional information is
available.

Endnote
aThe GraphPAC algorithm was run using each of the

three insertion methods described in [25]. While the
methodology is the same, the nature of the algorithm
leads to different results when different insertion
methods are considered. SpacePAC outperformed
GraphPAC in comparison to each of the individual
insertion methods.
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