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Abstract

different groups of samples.

identified in both datasets.

will be made part of the BioConductor package SIM.

Background: A number of statistical models has been proposed for studying the association between gene
expression and copy number data in integrated analysis. The next step is to compare association patterns between

Results: We propose a method, named dSIM, to find differences in association between copy number and gene
expression, when comparing two groups of samples. Firstly, we use ridge regression to correct for the baseline
associations between copy number and gene expression. Secondly, the global test is applied to the corrected data in
order to find differences in association patterns between two groups of samples. We show that dSIM detects
differences even in small genomic regions in a simulation study. We also apply dSIM to two publicly available breast
cancer datasets and identify chromosome arms where copy number led gene expression regulation differs between
positive and negative estrogen receptor samples. In spite of differing genomic coverage, some selected arms are

Conclusion: We developed a flexible and robust method for studying association differences between two groups
of samples while integrating genomic data from different platforms. dSIM can be used with most types of
microarray/sequencing data, including methylation and microRNA expression. The method is implemented in R and

Keywords: Group effect, Joint analysis, Penalized regression

Background

Many experimental studies produce multiple types of
molecular profiles per sample to help understand if, and
how, different molecular levels influence each other. This
has led to a growing interest in methods for analyzing
multiple high-dimensional datasets together. As a result,
a number of methods have been developed in recent
years for studying the association patterns between high-
dimensional datasets, i.e. performing integrated genomic
analyses [1-6]. In a study where DNA copy number and
gene expression profiles are available for all samples, there
is often interest in questions such as which copy number
changes effectively affect gene expression levels, as well
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as which genes have their expression levels regulated by
copy number changes. Both questions can be answered by
a method such as the one described in [7]. This method is
characterized by testing for the association between one
variable in one dataset, say copy number at a fixed locus,
and a set of variables in the other dataset, such as the
expression levels of genes around the locus. This approach
is implemented in R and available through Bioconductor
as the package SIM.

Studying these association patterns using integration
analysis evokes another very important but yet overlooked
question: Do these association patterns differ between
groups of samples? Consider for example the case where
gene expression regulation is studied on the basis of
genomic copy number changes. In such studies, there is
often interest in comparing gene-dosage led gene expres-
sion variation between groups of samples. Furthermore, if
there are clinical variables defining the groups of samples,
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there is interest in finding group-specific associations
between copy number and gene expression.

In this paper, we propose a method, named dSIM, to
find these association differences between two groups of
samples, while using an extension of the model described
in [7]. It first corrects for the baseline association present
for both groups using ridge regression [8]. Testing is
done using the global test [9,10] on the residual associ-
ations, to check if they differ between the groups. The
final p-values are calculated using permutation testing.
The various steps involved in the method are discussed
in more detail in the methods section (section ‘Methods’).
To demonstrate its performance, we applied dSIM to sev-
eral simulated datasets (section ‘Simulation study’) and
to two publicly available breast cancer datasets (section
‘Application to breast cancer data’), where we compare
samples on the basis of their estrogen receptor status.
Throughout this paper we use examples based upon copy
number and gene expression datasets, but this method
can be applied to other types of genomic data as well.

Methods

Motivation

We first give a brief overview of the model and method of
SIM [7] before describing our extension to that method.
Suppose there is interest in finding regions where copy
number variation regulates gene expression. Then, if the
copy number data corresponding to a single copy num-

ber probe y with 7 observationsisy = (y1, 2, ...,¥x) ', the
regression model can then be written as
p
EQgp=a+) BXp j=1...n 1)

k=1

Xji is the gene expression measured for j* sample and k"
probe, and « is the intercept. Here, Bi is the coefficient
value for K gene expression probe; it explains the asso-
ciation patterns between copy number probe y and gene
expression data {X,»k,j =1...,.mk=1,.. .,p}. For test-
ing the copy number and gene expression associations, the
global test [9,10] is used. The global test tests the hypoth-
esis {Hy : Bx = 0,k = 1,...,p} in high-dimensional
data by using a random effects model context, where it
is assumed that the coefficients {8¢} come from a nor-
mal distribution with mean 0 and variance w?. Instead
of testing Hyp : Bx = O, the global test [9,10] considers
the null hypothesis Hy : w?> = 0 against the alternative
Hy:0?>0.

The main objective of this work is to test for differences
in association between copy number and gene expression
data, when the samples are grouped according to some
binary grouping variable (for example estrogen recep-
tor status in the case of breast cancer). In other words,
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we would like to find regions where copy number varia-
tion regulates gene expression differentially between two
groups. One possible way of doing this would be to divide
the datasets into two groups and to fit the model given
in (1) for these two groups separately. However, this idea
has three serious drawbacks. First, analyzing the two sub-
sets separately results into two distinct sets of p-values,
that should be combined and interpreted. Second, it is
inefficient as the power of finding associations is reduced
by considering a subset of samples at a time. The third
issue ignored by analyzing the datasets separately like
this is the baseline association between copy number and
gene expression. Association patterns common to both
groups should be removed before we start looking at the
differences between them.

Our new approach dSIM extends the model given in (1)
as follows. It starts by correcting for the baseline associ-
ations and then works with the corrected data to directly
test for differential association patterns. For the sake of
simplicity, we describe the model in the following sub-
sections by using one copy number probe at a time. In
practice and in the examples shown in this paper, it is
applied to all copy number probes in a similar way.

Correcting for the baseline association

For removing copy number and gene expression associ-
ations common to both groups, we start by fitting the
model given in (1) on all samples together. The issue of
(p > n) is dealt with by fitting (1) using ridge regres-
sion [8]. It is obvious that the ridge regression fit requires
estimation of a tuning parameter A. We do this by leave-
one-out cross-validation. For each A value, the dataset
is divided into a test set containing a single sample i
from the original sample set, and a training set contain-
ing all remaining samples withj = 1,...,n,j # i. The
ridge regression model is fitted and the coefficients are
estimated on the training dataset. Note that the coeffi-
cients estimated here are obtained without introducing
the group effect. These estimated coefficients are then
used to predict the test sample as

p
E(J’LP):O“FZ,ék_iXik, i=1,...,n (2)
k=1

where /§]: " is the estimated coefficient for the ki gene
expression probe, obtained after leaving the i sample out
from the training set. This is repeated such that each sam-
ple is used once as the test set. Once this is done for all A
values, the A* leading to the set {yip *} which maximizes
the cross-validated likelihood is chosen. The predictions
{y,-P *} obtained during cross validation for all samples
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using that A* value are then used to get the leave one out
cross-validated residuals as

Ri=y—y"* j=1...,n (3)
This approach helps in choosing a A that does not overfit
the data. The residuals {R;,j = 1,...,n} now represent

the copy number data corrected for association with gene
expression over all samples regardless of the group.

Testing for the group effect

The cross validated residuals {R;} from (3) are now used
for testing the association differences between the two
groups of samples. For performing the test, first we write
a linear model with the residuals as dependent data. This
model holds for all samples together and is given as

P
R;:Scj+Zyijk+ej, j=1,...,n (4)
k=1

In this model, § acts as the intercept and dc; represents
the baseline shift in association between copy number and
gene expression for group 2 when compared to group 1.
Here, ¢; € c, where ¢, the factor defining the groups,
can be written as ¢ = (c1,¢2,...,¢,) . Now, since {R;}
represents average residual effects over all samples, it is
important to parameterize c in such a way that 1'c = 0.
Here 1 is a column vector of ones with length #. Therefore,
for all examples in the paper, we define ¢; = "% if the j
sample belongs to group 1 and ¢; = —"9" if the j# sample
belongs to group 2, where c; are values in ¢ and g1, 762
are the number of samples for group 1 and group 2 respec-
tively. The value My is the gene expression data for the
j** sample and k?* probe with grouping effect in it. It can
be defined, in words, as an gene x group interaction term
or M, = Xjxcj, where Xj is the gene expression measured
for /™ sample and k? probe and ¢j is the corresponding
group variable. The error term in the model is denoted
by €;.

The effect of interest in model (4) is represented by the
parameters {yx, k = 1,...,p}, which account for the dif-
ference in association between the copy number data and
gene expression data between the two groups. Similar to
the {Bx} coefficients, we here assume that {4} come from
a normal distribution with mean 0 and variance 62. Our
approach is to then test the variance for the distribution
of these {yx} values with, Hy : 2 = 0 against the alter-
native H; : #* > 0. This is done by using the global test
[9,10]. More information on the test statistic used is given
in the Additional file 1: section 2. The distribution of the
test statistic under the null hypothesis Hy : 62 = 0 is
not known because of the ridge regression step. Hence,
we propose to use permutation of the independent data
sample labels to yield p-values.
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Permuting the sample labels

Permutation resampling can be used to estimate p-values
while avoiding parametric assumptions about the joint
distribution of the test statistic. In the microarray setting,
the joint distribution under the complete null hypothesis
of the test statistic can be estimated by permuting the rows
of the matrix X, where X is the n x p gene expression data
matrix with samples as rows and genes as columns. For
this, we first permute the sample labels B times. The base-
line association is corrected, residual values are obtained,
and the global test [9,10] is done for every permuted
dataset. For each permutation we get a global test statis-
tic Ti*, or, as in our case, 1-1 transformation of it such as
the asymptotic global test p-value P}, leading to a set of
permutation based values {T}, i=1,...,B}or {P}, i=
1,...,B}.

As described in subsection ‘Correcting for the baseline
association’, while fitting the regression model and calcu-
lating the residuals using ridge regression, one needs to
optimize the tuning parameter A. This ridge regression
step given in (2) does not involve the grouping factor c.
Moreover, permuting the sample label of X retains the cor-
relation structure, distributional characteristics exhibited
by the genomic data matrix X and the ill-conditionedness
of XTX. Since A depends on X" X, we can use the same
optimized A value and hence, the same residuals for each
permutation. Permuting the sample labels avoids the opti-
mization of A parameter for every permutation, making
the method computationally less intensive.

The steps involved in the method described in the pre-
vious subsections as well as this one are done for a single
copy number probe at a time. These are then repeated
for all m copy number probes which gives us a matrix
of global test p-values, P*, with m rows and (B + 1)
columns. The first column of this matrix consist of the
observed global test p-values for all probes, obtained
for the observed data (subsection ‘Testing for the group
effect’), whilst remaining columns represent permuted
global test p-values obtained after permuting the sample
labels.

Multiple testing correction

To exploit the dependence structure of the permuted
dSIM p-values, we use Meinshausen’s procedure for mul-
tiple testing correction [11]. For general sets of hypotheses
R, Meinshausen’s permutation based method makes false
discovery proportion (FDP) confidence statements of the
form P(o(R) < o(R)) > 1 — « by finding critical values.
Here o(R) is the proportion of type I errors for the set R
in hypothesis testing and o(R) is the estimate of this pro-
portion [11,12]. We apply this procedure on the matrix
of permuted global test p-values P*, which gives us a sin-
gle vector of length m;, containing the multiple testing
corrected dSIM p-values.
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Results

Simulation study

We perform various simulations to study the properties of
dSIM. For this, we start with generating the copy number
data and gene expression data, both of them with same
dimensions. The copy number probes are assumed to have
similar distribution across the two groups and the gene
expression data is generated per group, as a function of
copy number. In our case, we consider copy number as the
dependent data and use Meinshausen’s approach for mul-
tiple testing correction. More details on the simulation
setup are given in the Additional file 1.

dSIM detects correct regions

This simulation study tests if dSIM is able to detect desired
regions of differential associations. It also tests the accu-
racy of dSIM by studying the number of false positives
in the scenario when there is no differential association
between groups of samples. We test dSIM in three dif-
ferent scenarios. In each scenario, we vary the type of
association present between copy number data matrix Y
and the two different groups of gene expression data X as
follows:

Scenario 1 For this scenario, copy number and gene
expression show similar association patterns for both
groups of samples. Hence, no significant association dif-
ferences between the two groups are expected. Under this
scenario, we test the specificity of dSIM.

Scenario 2 In this scenario, copy number and gene
expression show different association patterns between
groups of samples. Hence, significant association differ-
ences between two groups should be detected.

Scenario 3 This scenario has association patterns
between copy number and gene expression for one group
of samples only, so here again differences should be
detected. This scenario is similar to the second scenario
in the sense that there are association differences present
between groups of samples.

For scenario 1, no probes are selected, as expected
(Figure 1A). For scenario 2, most probes in regions
affected are detected (Figure 1B), although there are some
false negatives. Results of scenario 3 are similar to those
of scenario 2 (Figure 1C). For each scenario, 50 datasets
were simulated, and the accuracy of dSIM was calculated
based on those 50 runs. Figure 1D (for scenarios 2 and 3)
shows that dSIM has overall good accuracy and specificity,
although it sometimes has false negatives, lowering the
sensitivity.

dSIM corrects for baseline effect
The validity of the results obtained from dSIM is based
on how well we correct for the baseline association. The
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model uses the simple structure of explaining copy num-
ber aberrations on the basis of gene expression variations.
One of the factors that might differ between these two
groups is the distribution of copy number variations or
gene expression intensities.

If the method does not correct for baseline effects, then
our results will be biased, resulting in possible false pos-
itives. To test if dSIM really corrects for the baseline
association, we perform 4 simulation studies. These four
simulation studies are divided under two cases as follows,

Case 1: The copy number and gene expression data for
both groups of samples were generated with similar asso-
ciation patterns. Hence, there is no association differences
between groups of samples.

Case 2: The copy number and gene expression data for
both groups of samples were generated with different
association patterns. Hence, there is significant associa-
tion differences between groups of samples.

Under each of these two cases we perform two simulation
studies which can be described as follows,

Case 1.1 and Case 2.1: The distribution of copy number
aberrations are kept exactly the same for the two groups
of samples. This makes sure there are no distributional
differences between the two groups for copy number
aberrations.

Case 1.2 and Case 2.2: The distribution of copy number
aberrations for one group of samples are made to differ
from the other group. This is achieved by using different
means for generating the copy number aberrations for the
two groups of samples.

All the other parameters are exactly the same between
the cases, including the number of samples, number of
genes etc. Each study was then run 50 times and dSIM was
applied on these 50 simulated datasets for the simulations.

Figure 2 shows the regions picked up in one of the runs
for all simulation studies. For case 1 (Figure 2A and 2B),
dSIM detects nothing as significant with similar or differ-
ent copy number aberrations as there are no differential
associations. The sensitivities and accuracies (Figure 2C)
are comparable for datasets with similar copy number
aberrations and different copy number aberrations. Sim-
ilarly, for case 2 (Figure 2D and 2E) the desired regions
with differential associations are detected by dSIM in both
sub cases. The accuracies and sensitivities (Figure 2F) in
this case are also similar for datasets with similar and
different copy number aberrations between groups of
samples. These results show that dSIM correctly adjusts
for the baseline effect. It detects significant results only
when there is differential association between two groups,
irrespective of their copy number distributions.
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Figure 1 dSIM detects correct regions. (A): 1 of 50 runs for simulation study 1 with no difference in association patterns. (B): 1 of 50 runs for
simulation study 2 with different levels of association effects between the groups. (€): 1 of 50 runs for simulation study 3 with association patterns for
one group while no associations between copy number and gene expression for the other group. Significant p-values, selected by Meinshausen'’s
procedure at significance level 0.01 (horizontal black dotted line), are the ones close to 0. The regions with differential associations in each of the
three cases, are marked by gray dotted bars. (D): This figure summarizes the accuracy, sensitivity and specificity for the 50 simulation runs.

Sensitivity of dSIM towards changes in lambda values

Our results depend upon the ridge penalty parameter A,
which is estimated using cross-validation. We will now
study the sensitivity of dSIM towards the variation of these
A values.

Firstly, we study the variation of A value within and
across different cases. For this, we conduct four dif-
ferent simulation studies. In every simulation study,
a certain parameter that affects the value of lambda
(number of probes, association differences, signal to noise
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Figure 2 dSIM corrects for baseline effect. (A): 1 of 50 runs for case 1.1 with no differential association and similar distribution of copy number
aberrations between the groups of samples. (B): 1 of 50 runs for case 1.2 with no differential association and different distribution of copy number
aberrations between the groups of samples. (C): Accuracy, sensitivity and specificity for 50 runs, for the two simulation studies under case 1. (D): 1 of
50 runs for case 2.1 with differential association and similar distribution of copy number aberrations between the groups of samples. (E): 1 of 50 runs
for case 2.2 with differential association and different distribution of copy number aberrations between the groups of samples. (F): Accuracy,
sensitivity and specificity for 50 runs, for the two simulation studies under case 2. Significant p-values, selected by Meinshausen'’s procedure at
significance level 0.01 (horizontal black dotted line), are the ones close to 0. The regions with differential associations in each of the four figures, are
marked by gray dotted bars.
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ratio) is changed. Each study is then run 50 times,
producing 50 simulated datasets from the same setup.
The data points for the matrix X change between these
50 runs, but the number of probes and the regions
showing differential association between the the two
groups remain exactly the same. For every run, the A
value is estimated using the method described in section
‘Correcting for the baseline association’. This makes sure
that while the value of A might vary a lot across the
four simulations, intra-study variations would be minimal.
The ROC curves for these simulation studies are given in
Additional file 1: Figure S1 (A,B,C,D). Each graph depicts
an individual simulation study with 50 ROC curves for
each run of the setup. From the graphs we can see that,
for a given setup, all 50 ROC curves are tightly bound
together with very little or almost no variation. This sug-
gests that the true positive rate of dSIM remains the same
even if A displays some variations.

Secondly, we study the effect of changing A values over
the dSIM p-values. For this we perform a simulation study
where only some simulated copy number probes show dif-
ferential association with gene expression data. For each
probe, the optimum lambda value (A;) is obtained and a
range of 50 A values around A,; is generated. For each of
these A values, Meinshausen-selected dSIM p-value is cal-
culated, resulting in a vector of 50 p-values for each probe.
These p-values are then plotted against the correspond-
ing A value for some chosen probes. From Additional
file 1: Figure S1E and 1F, we can see that the Meinshausen
selected dSIM p-values exhibit a similar trend over a wide
range of A values. The probes that exhibit differential
association between groups of samples are selected as sig-
nificant irrespective of the A values. The probes with no
association, on the other hand, are never selected by dSIM
and Meinshausen’s method, irrespective of the changes in
Aopt. This shows that dSIM is capable of identifying the
probes with differential association and maintaining the
true positive rate, even with small variations in the value
of )\opt'

Effect of small sample size on separate analysis and dSIM

To demonstrate that separate analysis suffers from dif-
ferences in sample sizes, we performed a small simula-
tion study. In this study we simulated 50 datasets with
45 samples and 100 probes in each. Out of these 45
samples, 30 were assigned to group 1 and 15 to group
2, so that to have one larger and one smaller group
of samples. All the other parameters between the two
groups of samples are kept exactly the same, including the
region of copy number aberrations. The samples in both
groups show similar type of associations with between
copy number and gene expression data. Hence, there is
no differential association between the two groups of
samples.
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We started with performing a separate analysis of these
50 datasets, using SIM. The multiple tested corrected
p-values obtained from separate analysis, for one of the 50
simulated datasets, are shown in Additional file 1: Figure
S2A. From the figure, we can see that although the asso-
ciations between gene expression and copy number are
exactly the same for both groups, separate analysis is more
sensitive for the larger group of samples. These separate
analysis results give a specious indication that there is
differential association between the two groups of sam-
ples. On the other hand, dSIM results, in Additional file 1:
Figure S2B, are in line with the simulation setup with no
significant detection of differences in associations. This
shows that separate analysis gets influenced by the sam-
ple size, specially when it is small. The overall sensitivity
of separate analysis and dSIM, for 50 simulated datasets,
is shown in figure Additional file 1: Figure S2C. It can be
clearly seen that the separate analysis is more sensitive
towards larger number of samples. On the other hand, the
overall sensitivity and specificity for dSIM is not affected
by the sample size differences.

Application to breast cancer data
Datasets
We apply dSIM to two publicly available breast cancer
datasets, namely, the TCGA dataset and the NKI dataset
[2]. Both datasets are very different when considering the
platforms, genomic coverage, and the sample sizes used.
The TCGA data (166 samples) consist of copy number
(SNP 6.0) for 29101 locations (segmented data) and gene
expression (Agilent) for 74895 probes. In the NKI dataset,
the arrayCGH (BAC arrays) data and the gene expression
data (Agilent) have both 18,184 probes and 68 samples.
We considered estrogen receptor (ER) status of the
samples as the grouping variable. The TCGA dataset
consists of 134 ER-positive samples and 32 ER-negative,
while the NKI data consists of 43 ER-positive and 25
ER-negative samples. ER status is considered an impor-
tant prognostic and a predictor factor for endocrine
response in breast cancer. It has been shown to have
strong association with the prognosis of the disease and
exhibits strong associations with distinct gene expres-
sion patterns [13-15]. This makes estrogen receptor status
an interesting grouping variable when studying differen-
tial associations in the TCGA and NKI breast cancer
datasets.

Separate analysis using SIM

We start by simply analyzing the NKI and TCGA datasets
by fitting model (1) per group, ER-positive and ER-
negative. We report the results through whole genome
plots for both groups, while controlling the FDR at 5%.
The R package SIM was used to perform these analyses.
The results from the separate analyses are then compared
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with the results from the application of dSIM to the NKI
and TCGA datasets.

The selected probes for the two groups of samples,
obtained from separate analyses of the NKI dataset, are
shown in Additional file 1: Figure S3. It can be seen
from the figures that a lot of associations present for the
larger ER-positive (43) group, are not there for the smaller
ER-negative (25) group, for example chromosome arm 1q
and chromosome arm 3p. These different results for the
groups might be due to sample size difference between
the two groups. On the other hand, many associations on
chromosome arms 12p and 20p are specific to ER-negative
group of samples and are not detected for the larger ER-
positive group. Apart from group-specific effects, there
are chromosome arms, such as 17q, where separate anal-
yses detects effects in both groups, and chromosome arm
7q, where not many effects are seen for any of the two
groups.

Similar results can be seen from the separate analysis of
TCGA dataset also (Additional file 1: Figure S4). Most of
the associations detected for the larger ER-positive group
are not detected for the smaller ER-negative group. Ana-
lyzing the two groups separately produces two distinct
sets of p-values. These p-values are useful when answering
questions about group-specific associations between copy
number aberration and gene expression levels. However,
we cannot say anything about the differences between
these association patterns without an additional step
of combining these p-values and measuring the error.
This makes the separate analyses more complicated and
less interpretable when it comes to studying differential
association patterns between two groups of samples. In
addition, any combination of these two separate analysis
results will have power limited by the smallest sample size,
which in this case is only a quarter of the size of the biggest
groups.

Joint analysis using dSIM

We now apply dSIM on both NKI and TCGA datasets.
Since we consider copy number as the dependent data,
Meinshausen’s procedure is used for multiple testing cor-
rection while controlling the significance level at 0.1.

As described in section ‘Methods’, dSIM takes all sam-
ples together while testing for differential associations,
thus, avoiding the loss of power of separate analyses per
group. From Figure 3, it can be seen that significant probes
were identified in partially overlapping regions in the two
datasets despite the larger power yielded by the TCGA
data due to having twice as many samples as the NKI
data. Some examples are chromosome arm 1q, 7q, 12p,
and 17q. In the case of chromosome arm 1q, the differ-
ence seems to be due to a relatively larger gene dosage
affecting gene expression levels in the ER-positive group
(Additional file 1: Figure S5 for NKI data). Although the
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difference in copy number is subtle, it is enough to moti-
vate differential associations. The findings from dSIM for
chromosome arm 1q are in line with the results obtained
from the separate analyses. This suggests that the absence
of effects for ER-negative group, in contrast with effects
for ER-positive group, may not be simply due to sample
size difference between the two groups.

Another chromosome arm in the NKI data where
separate analyses detect strong association patterns for
ER-positive group of samples, but very few for ER-
negative groups of samples, is 3p. However for this chro-
mosome arm, dSIM does not detect significant probes for
the NKI dataset (Figure 3). If we examine the empirical
p-value distribution yielded by SIM (Additional file 1: Figure
S6), we note that p-values do not follow a uniform dis-
tribution, suggesting that there are associations between
copy number and gene expression in both groups. How-
ever, due to the smaller sample size in the ER-negative
group, very few probes are selected at 5% FDR. Thus, the
differences in significant probes found for ER-positive and
ER-negative group are likely due to lack of power in the
smaller ER-negative group, in line with the dSIM results.

In contrast with 1q, separate analyses of the two groups
of samples for chromosome arm 12p identified most of
the significant probes in the smaller group of samples with
ER-negative. When dSIM is applied to 12p for NKI and
TCGA datasets, similar regions are identified (Additional
file 1: Figure S7), confirming the differential association
patterns suggested by the separate analyses.

Some other examples of chromosome arms where sep-
arate analyses results correspond with dSIM results are
17q and 7q. For 17q, dSIM detects significant associa-
tion differences between the two groups in both datasets
(Figure 3). This supports the separate analyses result for
17q where it detects association effects in both groups,
though more strongly in the larger ER-positive group
than in ER-negative group. Similarly, for chromosome arm
7q, separate analyses results show almost no associations
between copy number aberrations and gene expression
levels for both groups. Correctly, dSIM also does not find
differences in associations.

Acloser lookat 11913
An interesting chromosome region to analyze is 11q13. A
recent study shows that the amplification of chromoso-
mal region 11q13, including the CCND1 gene is associated
significantly with ER-positive breast tumors [16]. We ana-
lyzed this chromosome region using SIM and dSIM on the
larger TCGA dataset to see if copy number driven gene
expression differs between ER-positive and ER-negative
groups of samples.

From the Additional file 1: Figure S4, we can see that
separate analysis of ER-positive and ER-negative group of
samples, using SIM, suggests differential associations by
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detecting a lot of associations in the larger ER-positive
group and no associations in the ER-negative group. How-
ever, as the ER-negative group involves a much smaller
sample size than the ER-positive group, we cannot be
sure that these differences are not due to differences in
power. For refining the results further, we reduced the
window size to 2 Mb (including the CCND1 gene) so
as to focus just on 11q13 and re-analyzed the datasets
using SIM. The raw p-value distributions are shown
in Additional file 1: Figure S8A, where it is evident
that the larger ER-positive group has strong associations

between copy number and gene expression levels. On
the other hand, the smaller ER-negative group of sam-
ples show almost no association between copy num-
ber and gene expression. These separate analysis results
suggest that 11q13 associations are indeed specific to
ER-positive subtype and hence suggests differential asso-
ciation between ER-positive and ER-negative group of
samples. However, when we analyzed the same region
of 11q13 using dSIM, it detected no significant differ-
ential associations between the two groups of samples
(Additional file 1: Figure S8B). This motivated us to
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explore the datasets the underlying association patterns in
more details.

Firstly, we fitted a ridge regression between each copy
number probe and all gene expression probes in 11q13.
We then found that coefficients with the largest ridge
estimates tended to be the same for ER-positive and
ER-negative groups of samples, for those copy number
probes with significant association with all gene expres-
sion probes, as given by SIM. Secondly, we looked at the
SIM results for these copy number probes in more detail,
by studying the individual (standardized) influences of
each gene expression probe on the global test. The scatter
plot of global test z-scores for ER-positive and ER-negative
groups of samples are shown in Additional file 1: Figure S9
for a chosen copy number probe. From Additional file 1:
Figure S9, we can see that both in ER-positive and ER-
negative groups of samples same probes drive the SIM
results. From these results, it is evident that gene expres-
sion probes with the largest influences are the same, for
ER-positive and ER-negative groups of samples, confirm-
ing the ridge regression results. This led us to conclude
that ER-positive and ER-negative groups of samples dis-
play the same copy number-led regulation of gene expres-
sion on 11q13, in agreement with dSIM results. The lack
of power due to small sample size is also one of the reasons
why SIM suggests differential association, whilst dSIM
does not. However, here similar underlying association
patterns in ER-positive and ER-negative groups of sam-
ples lead to dSIM not detecting differences in association
between groups.

Biological interpretation
From the biological viewpoint, it is important to check
if the genes detected by dSIM are known to be associ-
ated with breast cancer and more, importantly, estrogen
receptor status. Literature review brings up important
breast cancer-associated genes located in regions detected
by dSIM. Here we focus on chromosome arm 12p of
the NKI dataset, where tumors in the ER-negative group
showed more frequent gains compared with the ER-
positive group, and several regions of differential associa-
tion were detected. We selected the five most differentially
associated copy number probes on 12p (Additional file 1:
Figure S10) and for each of those, four gene expres-
sion probes were selected based on association priority
(global test p-values signifying their association with the
selected copy number probe) and proximity (closest to
selected copy number probe based on their genomic loca-
tions). More information on the selection criterion and
the list of copy number probes along with the selected
gene expression probes is given in the Additional file 1:
Table S1.

In the first region, from 1 to 2 Mb, one copy
number probe was selected, covering a genomic region
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from 1,855-2,005 kb and including the ADIPOR2,
CACNA2D4 and LRTM?2 genes. The highest associated
gene expressions were ADIPOR2, which overlaps with
the gene expression probe, RAD52 and WNK1, which
are more upstream, and /TFG2, which is more down-
stream (Additional file 1: Figure S11). Loss of heterozy-
gosity of RAD52 is related to breast cancer. However, no
link is known between RAD52 expression and ER sta-
tus. The adiponectin receptor ADIPOR2 was found to be
expressed in human breast cancer cells [17-20]. Its ligand
adiponectin, an adipocyte-secreted hormone that plays
an important role in diabetes and cardiovascular disease,
may also be of importance in the development and pro-
gression of several malignancies, including breast cancer
[21]. A peptide-based adiponectin receptor agonist has
been proposed for cancer treatment that restricted pro-
liferation and suppressed growth of human breast cancer
xenografts in mice [22]. Since we found ADIPOR2 over
expressed due to copy number gain in the ER-negative
group, these data suggest that ER-negative breast cancer
may be a potential target for future adiponectin receptor
agonist treatment.

In the second region, from 8-19 Mb, copy number
gains were also more frequently found in the ER-negative
group, and the selected gene expression probes showed
positive association with copy number in the ER-negative
samples (Figure 4, Additional file 1: Figure S12). Among
these genes, three have been described in breast cancer.
Two embryonic stem cell genes, GDF3 and NANOG, were
shown to be expressed in breast cancer [23]. GDF3 was
upregulated in 4/24 breast cancers compared to paired
normal, and downregulated in 12/24 [24], but no infor-
mation on ER status of the studied patients was available.
Our data suggest that GDF3 may be a novel gene whose
expression is related to ER status.

Overexpression of NANOG was shown to character-
ize an embryonic stem cell-like signature in breast can-
cer, associated with high-grade estrogen receptor negative
tumors, often of the basal-like subtype, and with poor
clinical outcome [25]. Our data suggest that the embry-
onic stem cell-like signature is associated with increased
copy number of 12p that is more frequently found in
ER-negative breast cancer. In the same region, PHB2 (pro-
hibitin 2), was positively associated with copy number
gain in the ER-negative samples (Figure 4C and 4D).
PHB2 functions as an estrogen receptor (ER)-selective
coregulator that potentiates the inhibitory activities of
anti-estrogens and represses the activity of estrogens
[26]. While upregulation of PHB2 might inhibit tumor
growth in ER-positive tumors, the biological conse-
quences of upregulation in ER-negative breast cancer are
unknown.

It should be noted that in examples where gene expres-
sion probe and copy number probe do not overlap with
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Figure 4 Data points for selected copy number and gene expression (PHB2) probe. (A): Significant gene expression probes (colored dots)
selected for copy number probe (grey dotted line) on 12p for ER-positive samples (43) in NKI breast cancer data. (B): Significant gene expression
probes (colored dots) selected for copy number probe (grey dotted line) on 12p for ER-negative samples (25) in NKI breast cancer data. (C):
Association between selected copy number probe and gene expression probe (PHB2) data points for all ER-positive samples. (D): Association
between selected copy number probe and gene expression probe (PHB2) data points for all ER-negative samples.

gene expression for negative samples

each other, it is important to check for specious associ-
ations. It is possible that the dSIM detections are due to
co-amplification of copy number probes, for example.
Together, these results show that by testing differen-
tial copy number-expression associations between rele-
vant groups of tumors, new hypotheses for tumor biology
based on underlying genetic aberrations can be generated.

Computation time of dSIM
In this subsection we show the approximate computation
time of dSIM. To demonstrate how the computation time

is effected by size of the gene sets, we ran dSIM on datasets
with different number of probes. For all datasets, num-
ber of samples in Group 1 and Group 2 were 67 and 16,
respectively. Calculation time of dSIM is more affected by
the size of the gene set (specially for the outcome data)
than by the sample size itself. The reason for this is that
dSIM is fitted per outcome gene. Hence, larger the num-
ber of genes, higher will be the calculation time. Sample
sizes (for dependent and independent datasets) have an
effect on the calculation time but it is almost negligible.
We ran all analyses using R i386 2.15.2 on an Intel(R)
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Table 1 Computation time for dSIM for data sets with
increasing numbers of copy number probes

Computation

time (s) CN probes GE probes Group 1 Group 2
18631.36 471 1142 67 16
14148.00 367 1088 67 16
74837.76 850 2935 67 16
55835.08 588 3185 67 16

Core2Duo CPU with 3.00 GB of RAM. The run times are
given in Table 1.

Discussion

We proposed a method to compare associations found
between two high-dimensional data sets, for two groups
of samples. Our method models associations between fea-
tures in one data set and sets of covariates in the other,
thus facilitating the search for markers that are related to
a set of features.

Our method uses all data at the same time in the
model, thus being less susceptible to small sample sizes
in (at least) one of the groups, compared with separate
analysis per group. In addition, we consider associations
between probes and gene sets. These characteristics make
for a powerful method that finds robust differences in
associations.

To the best of our knowledge, we are the first to suggest
an integrated analysis method for comparing association
patterns between two groups of samples. The most closely
related method seems to be the one proposed by Artmann
et al. [27], as they consider two high-dimensional data
sets and a grouping factor. Artmann et al. [27] essentially
proposed to first look for differential behavior between
features in the two groups of samples, per data set sep-
arately. Subsequently, results are combined via meta-
analysis. Their proposed method is in the context of
microRNA and mRNA analysis, so their meta-analysis
involves connecting microRNAs to a set of possible tar-
gets. So there is no actual joint analysis of the two data
sets, but rather a combination of results of two separate
analyses.

Our method does not require that features are differen-
tially valued between the two groups of samples. Indeed,
we argue that this is not necessary and, in our view, not
even desirable. We have in fact made sure that dSIM
results cannot be driven merely by differences on the
data distribution of the dependent data between the two
sample groups. In our view, such differences in a single
data set would not necessarily mean different associations
between sample groups, and should not be seen by the
method as such either. Furthermore, the lack of differen-
tial values does not rule out differential associations, so
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by considering differential values one actually restricts the
results too much.

This makes biological sense. Let us take for example
the setup in the TCGA data example. It is entirely possi-
ble that DNA copy number behaves in the same way, and
displays the same distribution, in both ER-positive and
ER-negative groups, and yet are associated differently with
gene expression sets in those groups. This could happen
due to another molecular mechanism coming into play,
say. We feel that an open-minded analysis should be able
to pick up those effects.

A unique feature of dSIM is that it corrects for the
baseline association before looking for differential associ-
ations between groups of samples. Thus, the association
effects common to both groups are eliminated, and only
those association patterns left over in the residuals are
analyzed. In subsection ‘Correcting for the baseline asso-
ciation’, we describe the steps taken by dSIM to correct
the baseline association while using ridge regression. The
rational behind the usage of ridge penalty is that the
metric for the global test statistic is the same as that
of ridge. Therefore, the entire method makes use of the
same metric.

The residual effects studied by dSIM are relatively small
as they are obtained after removing the large associa-
tion effects during baseline association correction. These
effects may weaken further due to overfitting of the
ridge penalized model, making them harder to detect.
Hence, for detecting these weak effects, it is impor-
tant to minimize the loss of information during baseline
association correction. We ensure this by optimizing the
tuning parameter A for ridge penalization using leave-
one-out cross-validation. Then the leave-one-out cross-
validated predictions, corresponding to the selected X
value, are used to get the residuals. Unlike the tradi-
tional way of using the fitted predictions, we use the
cross-validated predictions, as leaving out a sample during
cross-validation makes the estimated coefficients unbi-
ased towards that sample. This, in turn, avoids overfitting
of the model when predicting the outcome for the left
out sample, hence minimizing the loss while obtaining the
residuals.

The fact that we test for a large number of copy number
probes simultaneously requires choosing an appropriate
multiple testing correction method. As the dSIM p-values
are generated using permutation testing, the traditional
methods for controlling FWER like Bonferroni, Holm or
Hommel are not very useful. Firstly, they are too conserva-
tive and secondly, they do not take into account the depen-
dence structure of the data [28,29]. The less stringent FDR
control methods such as Benjamini-Hochberg also do not
fully exploit the information concerning dependence in
the dataset, hence suffering from loss of power. Therefore,
we use Meinshausen’s multiple testing correction method
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which not only takes into account the dependence struc-
ture of the permuted p-values, but is also more powerful
if the effects are small and spread over a larger region (as
in copy number data). Since we consider copy number as
dependent data, using Meinshausen’s procedure ensures
detection of subtle yet significant effects, like in the case
of chromosome arm 1q. Another method that can also
be used is the Westfall and Young’s multiple testing cor-
rection method [30]. Like Meinshausen’s approach, it also
takes into account the dependence structure of the data
and is useful for working with permuted p-values when
gene expression is considered as the dependent data.

In this paper we focus on analyzing copy number reg-
ulated gene expression, where the gene sets are defined
on the basis of their genomic locations. The method can
be easily extended to analyze other types of genomic data
and gene sets as well. For example, there could be inter-
est in finding group-specific interaction effects between
microRNA and mRNA expression, while looking at path-
way specific genes. It is also possible to invert the model
given in (1) to have copy number as independent data and
gene expression as dependent data. However, we should
indicate that ridge penalty does not exploit the inherit spa-
tial correlation structure found in natural ordering of the
copy number probes. In the case where copy number data
is independent data, one possible option would be to use
fused lasso penalty instead of ridge.

Another interesting extension of this model is to con-
sider more than two groups of samples. The extension
involves complex steps as the degrees of freedom goes up
from one to ng — 1, where ng is the number of groups. As
the association patterns are then compared between more
that two groups, the number of interaction terms (y) in
the model increases. One possible way to compare multi-
ple groups is to use the method proposed in this paper for
performing pairwise comparison. This problem is beyond
the scope of this paper and will be dealt with elsewhere.

Our method, dSIM, is based on a linear model where we
assume that there is a linear relationship between the two
genomic datasets. However, we should point out that the
non-linear associations present between the datasets may
not be detected by dSIM. We also assume the the distribu-
tion of the errors to be normal. In cases, with non-normal
random errors, one can consider transforming the data
before using dSIM. Another assumption made by dSIM
is in using the global test for testing the null hypothesis
Hy : 62 = 0, where 62 is the variance of the distribution for
{yx}. The permutation test not only tests for Hp : 2 = 0
but also for § = 0, where § is the intercept. The correct
size of the test is therefore not guaranteed if 2 = 0 but
8 # 0. However, because we use a global test for the null
hypothesis Hp : 62 = 0 internally in the permutation, it
is unlikely that the permutation procedure has any serious
power for Hyp : § = 0. In practice, dSIM is not sensitive
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to those copy number variations that do not affect gene
expression levels.

In summary, we developed a method to test for the
copy number and gene expression associations differing
between two groups of samples. Through several simu-
lation studies, we showed the robustness of dSIM under
various conditions. Application of dSIM to the TCGA and
NKI breast cancer datasets highlights the importance of
having all samples together in the model.

Conclusion

We propose a novel method for identifying genes that
show different expression regulation between two groups.
By using all samples together, it can more objectively
and effectively find such differences, compared to sep-
arate analyses. It can help elucidate differences in gene
expression regulation between two groups of samples due
to copy number alterations or other (epi) genetic changes.

Availability of supporting data
The data sets supporting the results of this arti-
cle are available in the LabArchives repository
(https://mynotebook.labarchives.com/share/Supporting%
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