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Abstract

and other methods.

Background: The interest of the scientific community in investigating the impact of rare variants on complex traits
has stimulated the development of novel statistical methodologies for association studies. The fact that many of
the recently proposed methods for association studies suffer from low power to identify a genetic association
motivates the incorporation of prior knowledge into statistical tests.

Results: In this article we propose a methodology to incorporate prior information into the region-based score test.
Within our framework prior information is used to partition variants within a region into several groups, following
which asymptotically independent group statistics are constructed and then combined into a global test statistic.
Under the null hypothesis the distribution of our test statistic has lower degrees of freedom compared with those
of the region-based score statistic. Theoretical power comparison, population genetics simulations and results from
analysis of the GAW17 sequencing data set suggest that under some scenarios our method may perform as well as
or outperform the score test and other competing methods.

Conclusions: An approach which uses prior information to improve the power of the region-based score test is
proposed. Theoretical power comparison, population genetics simulations and the results of GAW17 data analysis
showed that for some scenarios power of our method is on the level with or higher than those of the score test
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Background

In spite of the success of genome-wide association stud-
ies (GWAS) in identifying hundreds of common single
nucleotide polymorphisms (SNPs) associated with dis-
eases and complex traits (http://www.genome.gov/gwa
studies/), in many cases the proportion of heritability ex-
plained by these discovered SNPs is low [1-3]. One of
the potential explanations of this observation is that rare
variants (usually defined as those with minor allele fre-
quency below 1%), which are absent from conventional
GWAS studies, are responsible for the missing heritabil-
ity. Indeed, there is strong evidence that rare variants
are associated with some complex traits [4-8].
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When performing rare variants association analysis re-
searchers face significant methodological challenges. The
single SNP approach, which is popular in GWA studies,
is underpowered when applied in rare variants associ-
ation studies with moderate sample size due to low allele
count for each individual rare variant. To overcome this
problem, testing multiple rare variants within a region
has been recommended [9,10], and a number of region-
based rare variants tests have been proposed [11-15].
However, these novel methodologies may still be under-
powered for association studies with moderate sample
size [16]. This motivates the development of statistical
methods that utilize prior information with the purpose
of improving power. Currently, much biological informa-
tion is publicly available, such as the prediction of degree
of deleteriousness of non-synonymous variants (PolyPhen
http://genetics.bwh.harvard.edu/pph2/, SIFT http://sift.bii.
a-star.edu.sg/), SNP prioritization (FastSNP http://fastsnp.
ibms.sinica.edu.tw), functional SNP annotation (SNPnexus
http://www.snp-nexus.org/) etc. Although several methods
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that use prior information have been proposed [17-20], fur-
ther research is needed to utilize prior knowledge more effi-
ciently [21] and to expand statistical tools available for
researchers.

In this article we propose a method that incorporates
prior information into the region-based score test. Within
our framework, prior information is used to partition
SNPs within a genomic region of interest into groups.
Then within each group asymptotically independent SNP
scores are combined into a one degree of freedom (d.f)
chi-squared statistics. These group statistics are then used
to construct a global test for a region. The proposed meth-
odology has several distinct advantages. First of all, the de-
grees of freedom of our test statistic equals to the number
of groups, which may be much less than the number of
SNPs within a region. Secondly, under partitioning that
approximately separates associated variants from neutral
ones (“informative” partitioning) the proposed method ef-
ficiently handles noise introduced by neutral variants. We
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have evaluated the performance of our method on theor-
etical power comparison, population genetics simulations
and analysis of the GAW17 (http://www.gaworkshop.org/
gawl7/) real sequencing data set. The results showed that
under some scenarios the proposed methodology per-
formed as well as or outperformed the score test and
other competing methods.

Results

Theoretical power comparison

Figure 1 shows the difference between the theoretical
power of the proposed method and those of the score
test for different scenarios at the fixed type-1 error rate
of 0.05. For Panel 1 of Figure 1, the number of SNPs
within a region L=10, the number of groups in a parti-
tioning K=2, the range of values for the non-centrality
parameter (NCP) r 0-30 (x-axis), and the number of
variants in a causal group L;=2,4,6,8 (different values of
L, correspond to different curves). As can be seen, the
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Figure 1 The difference in theoretical power (vertical axis) of the proposed test and the score test as a function of the total non-
centrality parameter r (horizontal axis) at the type-1 error rate a =0.05. Each curve corresponds to the number of SNPs in the single causal
group L; given in the legend (Panels 1 and 2), the number of groups K (Panel 3), and the number of causal groups m (Panel 4). The parameters
for each of the Panels are as follows: Panel 1: L =10, K= 2; Panel 2: L =100, K= 10; Panel 3: L =50, L, =5; Panel 4: L = 54, K=6, equal number of
SNPs in each group, and equal non-centrality parameters in all causal groups.
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power gain of the proposed method reached as high as
15 percent when the number of SNPs in the causal
group L; was not large. However, the power of the pro-
posed test was lower than those of the score test when
L, was large. This can be explained from the formula
(3), which implies that with an increase in the number
of variants in a causal group L; and fixed NCP r the
value of the group statistic H; monotonically decreases.
Also, it is noticeable that with an increase in NCP r up to
some point the power difference also increased when L;
was small, whereas the power difference decreased for large
values of L,. For very large values of NCP r the power dif-
ference became close to 0 as theoretical powers of both
tests tended to 1. Similar conclusions can be obtained from
Panel 2 of Figure 1 which shows the results for the scenario
with the following parameters: L=100, K=10, varying NCP
r (x-axis), and varying L;=10,20,30,40.

To investigate the impact of the number of groups K
on power the following model was considered (Panel 3
of Figure 1): L=50, L,=5, and K=8,16,24,32. As can be
seen, the power difference is below zero for large values
of K and above zero for small values of K. This may be
explained by the fact that the test statistic 77 (4) is dis-
tributed as chi-squared random variable with K d.f.
Thus, for the fixed NCP r and increasing value of K the
power of the proposed method monotonically decreases.

Alongside the models considered above, it is important
to include a scenario when causal variants are split be-
tween several groups. Panel 4 of Figure 1 depicts the
power difference under the following model: L = 54, K =
6, and the number of causal groups m = 2,3,4,5. Also,
for simplicity of presentation it was assumed that each
group contained equal number of variants (54/6 = 9),
and NCP r was split equally between all causal groups.
For this scenario the calculation of theoretical distribu-
tion of T (4) was done using 500,000 simulations of test
statistics under the alternative hypothesis, as equation
(6) cannot be used here. As can be seen from Panel 4 of
Figure 1, our methodology could gain power if associ-
ated SNPs were split between several groups. When the
number of causal groups became large, our method was
slightly worse than the score test. It should be noted that
for all models the maximum power gain of our method
(and equivalently the maximum power loss) was achieved
when the power of the score test was around 50%. Conclu-
sions similar to those above can be derived from Additional
file 1 which shows the same scenarios for the fixed type-1
error rate set at the genome-wide level assuming 35,000
genes (a = 0.05/35000).

Population genetics simulations results

Using population genetics simulations we compared our
method with the score test and other proposed ap-
proaches, namely, weighted selective collapsing strategy
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(WSCS) [22], variable threshold (VT) [18], weighted
sum of squared scores test (SSUw) [23], and optimal se-
quence kernel association test (SKAT-O) with linear
kernel and beta weights [24]. Since these tests utilize
only genotype and phenotype information, we applied
our method with MAF (minor allele frequency) parti-
tioning: variants within a region are divided into two
groups, namely, those with observed MAF above and
below 1%. To estimate the empirical type-1 error we ran
the analysis of simulated data under the null model of
no association (Additional file 2). As can be seen from
Additional file 2, the type-1 error was well controlled
for all the tests.

Figure 2 shows the results of the population genetics
simulations. As can be seen, our method was the most
powerful for both “Low Frequency” and “Common”
phenotype models, closely followed by WSCS and SSUw
respectively. For the “Interaction” model WSCS achieved
slightly higher power than other methods. For the “Rare”
model WSCS and VT tests showed the highest power,
whereas our method performed worse than most other
methods. Although in this scenario all the causal vari-
ants had MAF < 1% in a haplotype pool, some of the
causal variants were expected to have MAF > 1% in a
data replicate, since causal alleles increased the probabil-
ity of a disease. Thus, in this case applying MAF parti-
tioning could result in causal variants with high MAF
being combined with neutral common SNPs.

GAW17 analysis results

In addition to theoretical power comparison and popula-
tion genetics simulations we also used the GAW17 data
set to compare our test with other methods. The
GAW17 data set was designed to mimic a real exome
sequencing study of a complex disease. Full description
of the method used to generate the GAW17 data can be
found in Almasy et al. [25]. Briefly, the whole-exome
sequencing data from 1000 Genomes Project (http://
www.1000genomes.org) was the basis for simulation
of 200 replicates of dichotomous phenotype and 200
replicates of 3 quantitative traits (endophenotypes) in
697 unrelated individuals from six populations (Chinese,
Japanese, Yoruba, Luhya, Utah residents with Northen
and Western European ancestry — CEPH, and Tuscan).
Causal variants were chosen to be common and rare
non-synonymous SNPs concentrated in genes from specific
pathways. Also, dichotomous phenotype and quantitative
traits were impacted by covariates such as smoking status,
gender and age.

We conducted an association analysis of known causal
genes with two quantitative traits (third quantitative
trait was simulated independently from genotype) and a
dichotomous phenotype adjusting for covariates and
population stratification. The adjustment procedure was
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Figure 2 Comparison of the proposed method with MAF partitioning and other statistical tests on population genetics simulations.
In the “Rare” phenotype model only rare variants (MAF<1% in haplotype pool) were causal with uniform effect size. “Low Frequency” and
“Common” phenotype models had only one low frequency (MAF between 1% and 5%) and one common (MAF>5%) causal SNP respectively.
Finally, the “Interaction” scenario models the interaction of rare variants with a common SNP. A minor allele of a rare causal variant had an
impact on phenotype if and only if it was present on the same haplotype as a minor allele of a common SNP chosen beforehand.

50 60 70 80 90 100
= SSUw = SKAT-O

similar to those described by Jiang and Dong [26]. Let G
be the genotype matrix of a gene under investigation;
Q1,Q2,D — vectors of two quantitative traits and a di-
chotomous phenotype respectively; E;, = 1,2,3 — vectors
of age, gender and smoking status respectively; R —
matrix of ten principal components obtained from
Eigenstrat [27]. First, phenotypes, genotype and co-
variates were adjusted for population stratification
as follows: adjusted genotype G = G-RR”G; adjusted
phenotypes Q, = Q-RR'Q,,Q, = Q,-RRTQ,,D = D-
RRT D; adjusted covariates E;=E-RRTE; i=1,2,3.
Second, covariates were regressed out from adjusted
phenotypes using the following models:

3 3
Q1Zao+zﬂ55i+q1;Q2:b0+zb55i+qz;
i1

i=1

(1)

where g1,q, and d are regression residuals. These resid-
uals were tested for an association with adjusted ge-
notype G. Statistical significance for each method was
assessed using 1000 permutations. The power was calcu-
lated as a proportion of phenotype replicates significant

at the type-1 error rate of 0.05.

GAW17 analysis results: comparison with the score test

We considered three partitionings for our method: MAF
partitioning (two groups: variants with MAF above and
below 1%), functional partitioning (two groups: non-
synonymous variants; synonymous and unknown vari-
ants), and combined partitioning (four groups defined by
MAF and functionality). To assess the empirical type-1

error rate of our method and those of the score test we
ran the analysis with randomly permuted residuals g;,4>
and d from (1). Additional file 3 shows the empirical
type-1 error rates for Q; and Q, traits (Panel 1) and di-
chotomous phenotype (Panel 2). It should be noted that
the estimate of type-1 error rate is distributed as an ob-
served probability of success for a binomial random vari-
able with the sample size of 200 (number of phenotype
replicates) and the probability of success 0.05 (theoret-
ical type-1 error rate). The double-sided 99% confidence
interval for the estimate of type-1 error rate is 0.015—
0.095. As can be seen from Additional file 3, the type-1
error was well controlled.

Panel 1 of Figure 3 shows the results for our method and
the score test on genes that impacted Q; and Q, (genes
from ARNT to VEGFA were tested on association with Q;,
genes from BCHE to VWF — with Q). Panel 2 of Figure 3
depicts the results of the analysis for the dichotomous trait.
As can be seen, the score test was significantly more power-
ful for KDR, BCHE and SOS2 genes (dichotomous
phenotype), whereas for at least one partitioning the pro-
posed method was substantially more powerful for ARNT,
ELAVL4, HIFIA genes (Qp trait); VNNI gene (Q, trait);
FLTI and PIK3C3 genes (dichotomous phenotype). Table 1
shows our suggested reasons for the difference in perform-
ance between the score test and our proposed method for
the genes listed above. As can be seen, for all the genes for
which our method outperformed the score test, some of
the considered partitionings contained a group consisting
of only associated variants. This is likely to have resulted in
our method achieving higher power compared with those
of the score test. It should be noted that for ELAVL4 gene
the major association signal is borne by common variants,
although according to the GAWI17 phenotype model
this gene contains only rare causal variants. To confirm
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Figure 3 Some results of GAW17 analysis. Panel 1: Comparison of the proposed method (with different partitionings) with the score test for
Q; and Q, causal genes and respective quantitative traits (Q; causal genes are those from ARNT to VEGFA, Q, causal genes are those from BCHE
to VWF); Panel 2: Performance of the proposed method (with different partitionings) and the score test for the causal genes and a dichotomous

trait; Panel 3: Comparison of the proposed method (MAF partitioning) with other methods on Q; causal genes.

this hypothesis, we performed an association analysis of
ELAVL4 common SNPs with Q; trait using the score test.
The power to identify an association was 79% after adjust-
ing for population stratification and confounders. For the
genes KDR, BCHE and SOS2 we did not observe any clear
separation of associated variants using any of the consid-
ered partitionings.

GAW17 analysis results: comparison with other tests
We contrasted the performance of our method (MAF
partitioning) with those of WSCS [22], VT [18], SSUw

[23] and SKAT-O with linear kernel and beta weights
[24]. Also, we included some of the published results ob-
tained by the participants of the GAW17 workshop: the
performance of Multivariate Distance Matrix Regression
(MDMR) and Mantel tests on Q, causal genes [28], the
performance of aggregated U-test (AggregateU) and
CMC method (QuTie) on Q; causal genes [29]. It should
be noted that the adjustment for covariates and population
stratification for SKAT-O test was done via the function
“SKAT_Null_Model” of the R (http://cran.r-project.org)
package “SKAT”. Also, in our implementation of the WSCS


http://cran.r-project.org

Zakharov et al. BMC Bioinformatics 2014, 15:24
http://www.biomedcentral.com/1471-2105/15/24

Page 6 of 10

Table 1 Suggested reasons for the difference in power between the score test and our approach for some genes

Genes Partitioning Suggested reason for the difference in performance
Genes for which our method outperformed the score test

ARNT MAF and functionality All common non-synonymous SNPs are causal.
ELAVL4 MAF Association of the three common non-causal SNPs with Q;*.
HIFTA MAF The only common SNP is causal.

VNNT MAF The only common SNP is causal.

FLT1 MAF and functionality All common non-synonymous SNPs are causal.
PIK3C3 MAF and functionality All common non-synonymous SNPs are causal.

Genes for which the score test outperformed our method

KDR, BCHE, SOS2 -

No clear separation of associated variants from neutral ones using any of the considered partitionings.

The table contains only those genes for which there was a significant difference in performance between the score test and our approach for any of the

suggested partitionings.

*for details, see the subsection “GAW17 analysis results: comparison with the score test”.

method rare variant weights were proportional to the abso-
lute value of correlation between those rare variants and
phenotype, since the original weights described by Dai et al.
[22] were not applicable due to the adjusted phenotype
being quantitative. Additional file 4 shows the empirical
type-1 error estimates for WSCS, VT, SSUw and SKAT-O
tests. Given that the 99% confidence interval for the empir-
ical estimate of type-1 error rate is 0.015-0.095 as described
previously, there was no evidence for type-1 error inflation.

Panel 3 of Figure 3 depicts the analysis results for Q
causal genes. As can be seen, our method was among
the top three most powerful approaches for ANRT,
ELAVL4 and HIFIA genes. Panel 1 of Additional file 5
shows the results for Q, causal genes. Our method was
the top performer for VNN3 gene, and was among the
top three performing approaches for LPL and VNNI
genes. Panel 2 of Additional file 5 depicts the results of
an association analysis of all causal genes with dichot-
omous phenotype. As can be seen, SKAT-O achieved
the most notable power gains for PIK3C3 and PTK2B
genes. This emphasizes that SKAT-O may significantly
outperform other tests under some phenotype models.
However, this method also may significantly underper-
form other tests for some phenotype models, for ex-
ample, ELAVL4 gene with Q; trait and VNNI gene with
Q, trait. Our proposed method was among the top three
performing methods for SOS2, PTK2B, PRKCA genes
and some other genes for which the power of all the
methods was low.

Discussion

In this article we have described a methodology that in-
corporates prior information into a region-based score
test with the purpose of improving power to identify an
association. Prior information, such as observed MAF,
functional annotation, predicted deleteriousness of non-
synonymous variants, may be used to partition variants
within a region of interest. Then, this partitioning is

utilized to construct a test statistic whose distribution
under the null hypothesis has lower degrees of freedom
compared with those of the score test. Based on the
theoretical power comparison, population genetics simu-
lations and GAW17 sequencing data analysis, we have
shown that under some scenarios our method may per-
form as well as or outperform other methods.

Our suggested partitioning is splitting by functionality
and if rare variants are present — by MAF with an arbi-
trary threshold, e.g., 1%. One of the major justifications
for considering MAF in a partitioning design is that
MAF may distinguish between different evolutionary
forces acting on causal variants. Evolutionary theory pre-
dicts that variants that confer susceptibility to a disease
which in turn reduces fitness are expected to have
low MAF due to purifying selection. Empirically, using
whole-exome sequencing data, it was found that non-
synonymous substitutions are more significantly skewed
towards low frequencies compared with synonymous
variants. This finding “almost certainly reflects the oper-
ation of purifying selection” [30] acting on many genes
across genome. Thus, if a causal gene is under strong
purifying selection incorporating MAF into partitioning
design is likely to be beneficial. On the other hand, a
causal variant could have risen to higher frequency due
to other forces such as balancing selection, mutation-
selection balance, antagonistic pleiotropy, etc. [31]. Thus,
for example, if a causal variant has been under a strong
balancing selection it is likely to be common; and incorpor-
ating MAF into partitioning design may lead to power im-
provement. Partitioning by functionality may be beneficial
for gene-based analysis in cases when an association signal
comes from one or several functional groups of variants.
For example, if highly deleterious non-synonymous variants
within exons of a gene are causal, then partitioning by
functionality is likely to improve power. Although the mis-
classification rate for prediction tools may be high (e.g.,
PolyPhen-2 achieved 92% power to detect truly damaging
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variants at 20% type-1 error rate over HumDiv data [32]),
our method may still benefit from grouping variants by
functional significance, since this is an effective way to give
more emphasis on variants that are more likely to be causal
[33]. The benefit of using functional information was dem-
onstrated in several simulations and candidate gene se-
quencing studies [18,34,35].

There are a few limitations of the proposed methodology.
First, it is unknown in advance which prior information is
relevant for a given genomic region. Prior information that
does not help to uncover groups of associated variants is
likely to have negative impact on statistical power. Second,
the test statistic (3) is, in general, not invariant with respect
to the ordering of SNPs. This can be seen, for example, when
the covariance matrix V'is invariant with respect to permuta-
tion of elements of the score vector U (e.g., all the cross-SNP
covariances are the same, and diagonal variances are equal).
So, for any SNP ordering the Cholesky decomposition A is
the same; hence, the test statistic is, in general, dependent on
ordering. To clarify the ambiguity the ordering of SNPs ac-
cording to a position on a chromosome may be assumed.

Conclusions

A novel statistical approach that incorporates prior in-
formation in a region-based score test with the purpose
of improving power has been proposed. Theoretical
power comparison, population genetics simulations and
the results of the GAW17 data set analysis showed that
under some scenarios our method may perform as well
as or outperform other methods.

Methods

Consider a rare variants association study of a genomic
region with a dichotomous or quantitative trait. Let us
introduce the following notations: genotype matrix G =
{gwn=1,..,N,[=1,...,L} coded as minor allele counts,
where 7 and [ are indices for individuals and variants re-
spectively; N x 1 vector of genotypes for the /th variant
g=1{g.wn=1,..,N}; mean of genotype for the /th variant
g;; phenotype vector Y ={y,, n =1, ..., N}, mean of pheno-
type Y. Consider the generalized linear model g(Ey) = b,
+ Gb, where b ={by, ..., b;} is a vector of regression coef-
ficients, and g is a monotone link function. The score
test statistic used to test an association of phenotype
with genotype is as follows [36]:

T, =U"vU, (2)
N L
where U = {Z(yn—Y)(gn,—gl)} is the vector of scores,
n=1 =1

N
V= Cov(G)Z(yn—Y)z is L x L the score covariance matrix as-

sumed to be 1non—singular, and Cov(G) = {Cov (g1-47) }ZL re1

is the L x L genotype covariance matrix. Under the null
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hypothesis (none of the variants is associated with pheno-
type) Tp asymptotically follows chi-squared distribution
with rank(V) degrees of freedom (d.f.). Under the alterna-
tive hypothesis (at least one variant is associated with
phenotype) the asymptotic distribution of (2) can be ap-
proximated by a non-central chi-squared distribution.

Following is the description of our proposed method.
First, let us transform the coordinates of score vector
U to be asymptotically independent under the null
hypothesis. If we denote C= (AT)Y, where matrix A is a
Cholesky decomposition of V' (V=ATA), the vector S=
CU, under the null hypothesis, is asymptotically distrib-
uted as a standard multivariate normal random vector
(since  Cov(CU) = CCov(L)CT = (AT 'va1 = (AT 1(474)
A™'= D). It should be noted that under the alternative hy-
pothesis S is approximately distributed as a multivariate
normal random vector with nonzero mean and unit covari-
ance matrix under the assumption of V being a reasonable
approximation for the covariance matrix of U [37]. In gen-
eral, any other decomposition of the covariance matrix V of
the form V= A”A can be used. We apply Cholesky decom-
position because it is fast to compute even for big covari-
ance matrices.

Next, let us describe group statistics. Consider parti-
tioning of L SNPs within a region into K disjoint groups
G k=1,...,K of size Ly, k=1, ..., K. This partitioning is
done using prior information, for example: by observed
MATF (below and above some arbitrary frequency thresh-
old); by functional annotation (non-synonymous and
synonymous for exon sequencing studies; exonic, in-
tronic, 3'UTR, 5'UTR and intergenic for gene-based
studies); by functional significance for non-synonymous
SNPS (benign, probably and possibly damaging from
SIFT or PolyPhen output) etc. For each group let us de-
fine t; = Zslz,k =1,....K, where s, [ =1, ..., L is the Ith

leGy

coordinate of the vector S. It should be noted that parti-
tioning based on prior to §,since S= AN U is the
vector U in a new basis, which is the set of column vec-
tors of the matrix AT (old basis is a standard basis).
Since the vector S is multivariate normal with unit co-
variance matrix, f;, k=1,...,K are asymptotically inde-
pendent. Under the null hypothesis #; asymptotically
follows central chi-squared distribution with L; degrees
of freedom, whereas under the alternative hypothesis at
least one of the #,k=1,...,K is distributed as a non-
central chi-squared random variable. Let us denote as P,
and P;! cumulative distribution function (CDF) of cen-
tral chi-squared random variable with / d.f. and its in-
verse respectively. Group statistics Hj are defined as
follows:

Hy = Py (Py, (tx)). (3)
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It should be noted that under the null hypothesis Hj
follows a central chi-squared distribution with 1 d.f.
Finally, the test statistic of our proposed method is:

K
Tl = ZH]( (4')
k=1

Under the null hypothesis 77 is distributed as a chi-
squared random variable with K d.f. Large value of T
indicates the deviation from the null hypothesis. Trans-
formation (3) is used to decrease the degrees of freedom
of the final test, as some of the groups G, k=1,...,K
may contain only neutral variants. If kth group does not
contain associated SNPs, group Gy contributes only 1 d.f. to
the final test, whereas it adds L d.f. to the score test. Thus,
under “informative” partitioning our proposed method may
gain power compared with the score test.

There are few notes that should be taken into account
when applying our method. First, the theoretical ap-
proximation for distribution of # may not hold under
moderate sample sizes. Hence, in all our simulations and
real data application we used the empirical CDF of #,
denoted as Fj, obtained via 1000 permutations under the
null hypothesis. Instead of Py, (¢) in (3) we calculated a
Gaussian kernel CDF estimate Fi(f;) with a multi-stage
plug-in bandwidth of Polansky and Baker [38]. R (http://
cran.r-project.org) package ‘kerdiest’ contains all the ne-
cessary algorithms. Second, the covariance matrix V may
happen to be computationally or exactly singular when,
for example, considering a region with high LD between
common SNPs. In general, to avoid singularity issues we
apply Monroe-Penrose pseudoinverse in (2) instead of V.
This pseudoinverse is uniquely defined and equals the
standard inverse matrix when V is non-singular. From the
same considerations instead of usual Cholesky factoring
we used generalized Cholesky decomposition, which is
well defined for square symmetric positive semi-definite
matrices. If V'is non-singular, the generalized Cholesky de-
composition equals the usual Cholesky factoring. Also, it
should be noted that in general our test statistic is not in-
variant with respect to the ordering of variants within a re-
gion. To clarify the ambiguity we assume the ordering of
SNPs according to a position on a chromosome (see the
“Discussion” section).

Theoretical power calculations

To evaluate our method we compared its theoretical
power with those of the score test. Denote the non-
centrality parameter (NCP) of the test statistic (2) under
the alternative hypothesis as r (the connection between r
and effect size is provided in the Additional files 6 and
7). Also, we will use the notations P;, and P, for the
CDF of non-central chi-squared random variable with /
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d.f. and NCP r and its inverse respectively. The power of
the score test with type-1 error rate « is:

1Py (41001 ) (5)

where q;_,; is 1 — a quantile of the chi-squared distribu-
tion with L d.f. Let us assume that all the causal SNPs
are uncorrelated with other SNPs within a region, and
that they are in one of the K groups (without loss of
generality, let it be the first group k=1). Then, the
power of the proposed test is:

I‘P(Hl + Xk < ql—oc,K)’ (6)
K
since th follows a central chi-squared distribution

=
with K-1 d.f, because all associated SNPs are in the
first group. The probability in (6) can be computed using
the convolution of two CDFs as follows:

ql-a.K

P<H1 +){?<71 < ql—a,l() = J P<H1 < ql,mK—x>dP1<,1(x).
0

(7)

Under the alternative hypothesis non-centrality par-
ameter of T and those of ¢; are equal, since both sta-
tistics include all the associated SNPs within a region.

Thus, the distribution of H, is P;* (PLl (X%hr))’ and the

integrand in the equation (7) can be calculated as P

(H1 < ql—a,K_x> = PLl,r (Pill (Pl (ql_a"K—x))) . This al-

lows us to compute the theoretical power of our
method.

Population genetics simulations

Boyko et al. [39] found a simple two-epoch expansion
model to be one of the best-fit models for population gen-
etics simulations of African-American genotype. Also, the
authors found strong evidence of selective effects acting on
new amino acid replacing mutations and inferred the
distribution of those selective effects. The scaled population
selection coefficient (defined as a selection coefficient
multiplied by twice the effective population size) was as-
sumed to follow a negative gamma distribution with the
following parameters: shape 0.184 and scale 8200. Mutation
rate was set at 1.8 x 10~® per nucleotide per generation.
The selective disadvantage was additive. Using the forward
simulator SFS_CODE (http://sfscode.sourceforge.net) with
the parameters described above, we generated 100 haplo-
type pools for a 3 kb coding genomic region. Each haplo-
type pool contained 4000 haplotypes. In our simulations we
considered only non-synonymous variants. To generate a
data replicate we first selected a haplotype pool at random.


http://cran.r-project.org
http://cran.r-project.org
http://sfscode.sourceforge.net
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Within that pool we sampled a pair of haplotypes at ran-
dom and added those haplotypes to form a multi-site geno-
type of an “individual”. Dichotomous phenotype was
assigned based on this multi-site genotype using a linear lo-
gistic model through which we controlled the odds ratios
of causal variants. The probability of a disease conditional
on the wild type genotype was set at 1% for all phenotype
models.

We considered four phenotype scenarios. For the first
model called “Rare” randomly chosen 50% of rare vari-
ants (defined as those with MAF<1%) within a haplotype
pool were assigned to be causal with uniform odds ratio
of 3. For the “Low Frequency” scenario one randomly
chosen low frequency SNP (MAF between 1% and 5%
in a haplotype pool) was causal with odds ratio of 2.5.
If there was no SNP with MAF between 1% and 5% in a
haplotype pool, we selected a SNP with the lowest MAF
above 5%. For the “Common” scenario one common
SNP with MAF>5% in a haplotype pool was causal and
had the odds ratio of 1.5. Finally, the “Interaction” sce-
nario models the hypothesized interaction of common
and rare variants in RET gene associated with Hirsch-
sprung’s disease [40,41]. The simulation framework for
this scenario was previously described by Liu and Leal
[42]. Briefly, 50% of rare variants were assigned to be
causal. Each causal rare minor allele increased the odds
of a disease by 6 times if and only if it was present on
the same haplotype as a minor allele of a common SNP
randomly chosen beforehand.

Sample sizes were the following: 500 cases and 500
controls for “Rare”, “Low frequency” and “Common”
scenarios; 1000 cases and 1000 controls for “Interaction”
model. In total 1000 data replicates were generated for
each scenario. Power was estimated as a proportion of
data replicates significant at a fixed type-1 error of 0.05.
For all the statistical tests 1000 permutations were ap-
plied to estimate a significance level.

Additional files

Additional file 1: The difference in theoretical power (vertical axis)
between the proposed test and the score test as a function of the
total non-centrality parameter r (horizontal axis) at the genome-
wide type-1 error rate a =0.05/35000. Each curve corresponds to
the number of SNPs in the causal group L; given in the legend
(Panels 1 and 2), number of groups K (Panel 3), and number of
causal groups m (Panel 4). The parameters for each of the Panels are as
follows: Panel 1: L =10, K=2; Panel 2: L =100, K=10; Panel 3: L =50,

Ly =5; Panel 4: L = 54, K=6, equal number of SNPs in each group, and
equal non-centrality parameters in all causal groups.

Additional file 2: The estimate of empirical type-1 error rate of the
proposed method with MAF partitioning, the score test, VT, WSCS,
SSUw and SKAT-O for population genetics simulations. The theoretical
type-1 error was assumed to be 0.05. The data for the estimate of

the type-1 error was generated using the null phenotype model: no
association of genotype with phenotype.
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Additional file 3: The estimate of empirical type-1 error rate of the
proposed method with different partitionings and those of the
score test for the causal genes in GAW17 data. The theoretical type-1
error was assumed to be 0.05. Panel 1: Q; and Q, causal genes and
respective quantitative trait (Q1 causal genes are those from ARNT to
VEGFA, Q, causal genes are those from BCHE to VWF); Panel 2: causal
genes and dichotomous trait.

Additional file 4: The estimate of empirical type-1 error rate of
WSCS, VT, SSUw and SKAT-O tests for the causal genes in GAW17
data. The theoretical type-1 error was assumed to be 0.05. Panel 1: Q;
and Q, causal genes and respective quantitative trait (Q; causal genes
are those from ARNT to VEGFA, Q, causal genes are those from BCHE to
VWEF); Panel 2: causal genes and a dichotomous trait.

Additional file 5: Some results of GAW17 analysis. Panel 1:
Comparison of the proposed method (MAF partitioning) with other
methods on Q, causal genes; Panel 2: Comparison of the proposed
method (MAF partitioning) with other methods on causal genes and a
dichotomous phenotype.

Additional file 6: The link between the non-centrality parameter
and the effect size for the region-based score test. The derivation of
the equation connecting the non-centrality parameter (NCP) and the ef-
fect size for a region-based score test, and the description of assumptions
for illustrating the dependence of NCP on the effect size in Additional file 7.

Additional file 7: The non-centrality parameter (vertical axis) as a
function of the effect size (relative risk) of each causal variant (hori-
zontal axis) under the assumptions described in Additional file 6.
Curves within each panel correspond to the number of causal variants
within the region. The assumptions are as follows: all variants within a
region are independent; all the causal variants have the same MAF and
the same effect size; 500 cases and 500 controls. The MAF of the causal
variants are as follows: Panel 1 — 1%; Panel 2 — 0.5%; Panel 3 - 0.25%:
Panel 4 — 0.125%.
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