
Wang et al. BMC Bioinformatics 2014, 15:255
http://www.biomedcentral.com/1471-2105/15/255
METHODOLOGY ARTICLE Open Access
Inferring the perturbed microRNA regulatory
networks from gene expression data using a
network propagation based method
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Abstract

Background: MicroRNAs (miRNAs) are a class of endogenous small regulatory RNAs. Identifications of the dys-regulated
or perturbed miRNAs and their key target genes are important for understanding the regulatory networks associated
with the studied cellular processes. Several computational methods have been developed to infer the perturbed
miRNA regulatory networks by integrating genome-wide gene expression data and sequence-based miRNA-target
predictions. However, most of them only use the expression information of the miRNA direct targets, rarely considering
the secondary effects of miRNA perturbation on the global gene regulatory networks.

Results: We proposed a network propagation based method to infer the perturbed miRNAs and their key target genes
by integrating gene expressions and global gene regulatory network information. The method used random walk with
restart in gene regulatory networks to model the network effects of the miRNA perturbation. Then, it evaluated the
significance of the correlation between the network effects of the miRNA perturbation and the gene differential
expression levels with a forward searching strategy. Results show that our method outperformed several compared
methods in rediscovering the experimentally perturbed miRNAs in cancer cell lines. Then, we applied it on a gene
expression dataset of colorectal cancer clinical patient samples and inferred the perturbed miRNA regulatory networks
of colorectal cancer, including several known oncogenic or tumor-suppressive miRNAs, such as miR-17, miR-26 and
miR-145.

Conclusions: Our network propagation based method takes advantage of the network effect of the miRNA
perturbation on its target genes. It is a useful approach to infer the perturbed miRNAs and their key target genes
associated with the studied biological processes using gene expression data.

Keywords: MicroRNA, Gene regulatory networks, Network analysis, Gene expression, Cancer
Background
MicroRNAs (miRNAs), a class of ~22 nt endogenous
small regulatory RNAs, can induce the degradation or
translational repression of mRNA transcripts through
sequence-specific binding to their 3’-UTRs [1,2]. To date,
many miRNAs and their target genes have been found to
play important roles in various biological processes. The
dys-regulations or perturbations of miRNA regulatory
networks are closely related to many cellular phenotype
changes and diseases [3,4]. Identifications of the per-
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turbed miRNAs regulatory networks are important for un-
derstanding the molecular mechanisms of the studied bio-
logical processes.
To study miRNA functions, biologists usually over-

express or knockdown specific miRNAs in cells and ob-
serve their impacts on cellular states and functions [5,6].
The miRNA regulatory networks are usually cell-type
specific [4], which makes it impractical to test and verify
all miRNAs in all cellular conditions due to the high
experimental cost. Currently, most miRNA-target anno-
tations come from sequence-based predictions without
cell-type or condition specific information [7]. There-
fore, some computational methods are developed to
infer the perturbed miRNAs regulatory networks
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associated with specific phenotype changes by integrating
the sequence-based miRNA-target predictions [8-10] with
the high throughput genome-wide gene expression data.
One popular method is gene set enrichment analysis
(GSEA), which determines whether a pre-defined set of
genes show statistically significant, concordant differences
between two biological states or phenotypes [11]. The
hypothesis is that if the expressions of the miRNA targets
are significantly changed, the corresponding miRNA
should be aberrant or perturbed in the studied process
[12]. In addition, miRNAs generally fine-tune the expres-
sion of target genes [13-15]. The methods (such as GSEA)
which only consider the expression changes of the direct
target genes frequently fail to identify the perturbed
miRNA regulatory networks. The intracellular system can
be regarded as a complex molecular network, some
studies combine the network information and the expres-
sion data to improve prediction performances [16]. For
example, GeneRank algorithm takes gene expression im-
portance into account and employs random walk on gene-
gene interaction network to re-score all genes [17]. The
new score better reflects the systematic importance of
genes in cells and it can also be used to analyze miRNA
target set enrichments. However, the gene expression
changes should be the responses of driver perturbations
on the global gene regulatory networks: when a miRNA is
perturbed, it will firstly impact its direct targets and subse-
quently affect the expression of the downstream genes
through intracellular molecular regulatory networks, and
finally change the global gene expression patterns in cells.
Therefore, a network propagation based model should be
more reasonable for interpreting the global transcriptional
response to miRNA perturbations than the methods only
considering the differential information of miRNA target
genes.
In this study, we proposed a network propagation

based method (NP-method) to identify the perturbed
miRNA regulatory networks from the gene expression
data. It used random walk with restart [18,19] in gene
regulatory networks to estimate the global network ef-
fect of miRNA perturbation on its direct target genes,
and meanwhile use a forward searching strategy [20] to
find the key target genes regulated by the perturbed
miRNAs, which are most likely to generate the observed
global gene expression changes. We tested it on several
gene expression datasets generated from miRNA over-
expression or knockdown experiments. Resuls show that
it can better rediscover the perturbed miRNAs than se-
veral compared methods. Then it was used to infer the
perturbed miRNA regulatory networks in colorectal can-
cer from a gene expression dataset of clinical patient
samples. Several known oncogenic and tumor-suppres-
sive miRNAs, including miR-17, miR-26 and miR-145
were identified by NP-method.
Methods
Overview
The network propagation based method (NP-method) is
developed to infer the key miRNA regulatory networks
whose perturbation is most likely to induce the observed
global gene expression changes (See workflow in Figure 1).
By integrating gene differential expression information
with biological prior knowledge, such as the miRNA-
target regulations and the TF-gene regulatory network, a
novel network-based random walk with restart (RWR)
plus forward searching algorithm is carried out to
calculate the network perturbation effect score (NPES) of
miRNAs and extract their leading-edge target genes. Gene
set permutation analysis is implemented to normalize the
score and estimate the p-value for each miRNA. The soft-
ware is freely available at [21].

Materials
Gene expression profiles
To verify the efficiency of NP-method in identifying per-
turbed miRNAs, we analyzed seven case-ctrl gene ex-
pression datasets, which were generated from the miRNA
overexpression or knockdown experiments, and one of
them was a time-course data involving seven time-point
gene expression observations (Table 1). We also applied
the method on a cancer-normal gene expression dataset to
infer the perturbed miRNA regulatory networks in colorec-
tal cancer. All raw microarray data or series matrixes were
downloaded from the Gene Expression Omnibus (GEO)
[22]. These raw data were firstly quantile-normalized with
the robust multichip average (RMA) method [23]. All gene
expression values were transformed into log2 scale and
their IDs were mapped into Entrez Gene IDs [24].

Prior molecular regulation information
It is well known that some miRNAs belong to the same
families with the same seed sequence, which is typically
defined as position 2–8 from the 5' end of a mature
miRNA and is very important for deciding which targets
the miRNA regulates [25]. The miRNAs within the same
families may regulate similar targets and are often thought
to have interrelated or redundant functions [25,26]. So we
focused our study objects on the miRNA families, which
could also reduce the number of candidates and thus be
better for the multiple testing correction in statistics [27].
Therefore, for the miRNA-target regulation information,
We collected the conserved targets of 153 miRNA fami-
lies from the widely-used miR-target prediction database
TargetScan v6.2 [8].
For the gene regulatory network information, we em-

ployed and compared two networks. One is a high-quality
human gene transcriptional regulatory network, which
comes from an open-access database of experimentally
verified human transcriptional regulation interactions –



Figure 1 Overview of the network propagation based method to infer the perturbed miRNA regulatory networks from gene expression
data.
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HTRIdb [28]. This network contains 18,310 nodes and
51,871 directed edges. The other one is a protein-protein
interaction (PPI) network, which comes from the PPIs
scored higher than 0.9 in database STRING v9.0 [29]. This
network contains 9,598 nodes and 57,326 edges, and is
Table 1 Gene expression data analyzed in this work

Dataset Cell miRNA Treatment

GSE33420 CRC (DLD-1) miR-143 Overexpres

GSE18625 CRC (DLD-1) miR-145 Overexpres

GSE7754 CRC (HCT116) miR-34a Overexpres

GSE16568 OVCA (ES-2) miR-22 Overexpres

GSE16569 OVCA (OVSAYO) miR-30a/30d Knockdown

GSE16572 OVCA (ES-2) miR-182 Knockdown

GSE6207 HCC (HepG2) miR-124 Overexpres

GSE4107 Colonic mucosa NA NA
often used as a highly-reliable PPI network in systems or
network biology. However, it is known that prior network
knowledge usually contains some noises. To discuss the
influence of the noisy edges, we randomly added and de-
leted 10% edges in the TF-gene regulatory network.
Sample

sion 4 case + 4ctrl

sion 4 case + 3ctrl

sion 2 case + 2ctrl

sion 3 case + 3ctrl

3 case + 3ctrl

3 case + 3ctrl

sion Case-ctrl, time-course (4 h, 8 h, 16 h, 24 h, 32 h, 72 h, 120 h)

12 cancer + 10 normal
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Methods
Random walk with restart from miRNA targets for modeling
the network effect of miRNA perturbations
In viewpoint of network biology, perturbation of a
miRNA firstly impacts its direct targets, and then the
effect will propagate through intracellular molecular
networks and ultimately influence the expression of all
genes in cells (Figure 1 and Additional file 1: Figure S1).
The exact gene regulatory parameters are unavailable, so
we utilized a method named random walk with restart
(RWR) to make use of the network topology for estima-
ting the network effect of miRNA perturbations [18].
Assume that a gene regulatory network G contains N

genes, and an adjacent matrix A with N*N dimension
represents the gene regulatory interactions. Aij = 0 means
no interaction between gene i and gene j. For the tran-
scriptional regulation network, A is an unsymmetrical
matrix where Aij = 1 means gene j regulates gene i. To
make it nonsingular and reversible, we set its diagonal
elements as 1e-10. While for the PPI network, A is sym-
metrical and Aij =Aji = 1 means gene i and gene j inter-
act with each other. Each column of A was firstly scaled
to have sum 1, and this produced a normalized adjacent
matrix A’.
Besides, suppose a miRNA that has x targets is per-

turbed, then the influence will spread across the network
starting from the target genes. In our RWR model, a
random walker starts from the x seed nodes (i.e. the
miRNA targets) in network G with an initial probability
distribution P0, whose length is N and elements corre-
sponding to the seed nodes are equally set as 1/x while
the others are 0. The walker appears in the network with
a probability distribution P following an iterative rule as
Eq. (1): at each step, the walk is decided iteratively by a
Markov chain with a probability transition matrix A’,
and the restart of the walk at the seed nodes is allowed
with a restart probability r.

Pnþ1 ¼ 1−rð ÞA0
Pn þ rP0 ð1Þ

When the system becomes stable and the P is con-
vergent, which means Pn+1=Pn, so the steady-state pro-
bability distribution P can be directly worked out as
below without the time-consuming iteration steps:

P ¼ I− 1−rð ÞA0
h i−1

rP0 ¼ MP0 ð2Þ

Here P represents the probability of each gene in the
network to be perturbed when the cell gets stable. The
expression of the gene with larger p is more likely to be
influenced by the miRNA perturbation. Under this hy-
pothesis, we calculated a network perturbation effect
score (NPES) for the miRNA, which is defined as the
Pearson correlation coefficient (PCC) between the global
gene perturbed probabilities (P) and the corresponding
gene differential expression levels (DE):

NPES ¼ PCC P;DEð Þ

¼
XN

i¼1
Pi−�Pð Þ DEi−DE

�� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
Pi−�Pð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
DEi−DE

�� �2q ð3Þ

Here DE can be any measure of the gene differential
expressions between two biological situations, such as
fold-change, t-statistic or z-score, and it is transformed
into the absolute value. N is the size of P and DE. �P and
DE
�

are the mean values. The score NPES quantifies the
degree of miRNA-induced gene perturbed probabilities
matching gene differential expression levels. The larger
the score is, the better the miRNA interprets the ob-
served gene expression changes.

Forward search the leading-edge targets of miRNAs
Averagely, a miRNA have hundreds of predicted targets,
but not all of them are regulated in a specific cellular
condition, and the same miRNA may regulate different
subsets of targets under different conditions. Therefore,
uncovering the key miRNA targets with relation to spe-
cific conditions is very important for understanding the
function and regulatory mechanism of a miRNA. In this
study, we borrowed the concept of leading edge subset
of genes introduced by GSEA, which is a small group of
genes in a specified gene set that can generate a maximal
enrichment score to evaluate the differential expression
of the gene set [11], and defined these key targets of a
miRNA to be its leading-edge (LE) targets, which can
maximize the NPES score and best explain the observed
gene expression changes for the specified miRNA.
In our method, miRNA targets are regarded as the

RWR seeds, so identifying the LE targets is actually opti-
mizing the seed set to generate a best network perturbed
probability P that can maximize the NPES. Here we
propose a forward searching strategy to achieve this
goal. Note in Eq. (2) M depends on the network adjacent
matrix A and the RWR restart probability r. When they
are fixed, M will be a constant matrix and the steady-
state probability P will only depend on the initial prob-
ability P0, which is decided by the seeds. Thus to search
the LE targets turns out to optimize the P0. Our sear-
ching procedures are shown as follows (given a miRNA
with x targets):

1. Let each target be the RWR seed at each time and
calculate the corresponding NPES, then get a score
vector [NPES1, NPES2, …, NPESx];

2. Sort this score vector in descending order and
sort targets accordingly, then get a target rank
[t(1) , t(2) , …, t(x)];
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3. Start from the first target in the rank and add the
rest one by one to compose new RWR seed sets and
calculate the corresponding NPESs, then get a new
score vector [NPES1', NPES2', …, NPESx'];

4. Extract the maximum score and the corresponding
seed set to get the final NPES and the LE targets of
the miRNA (Figure 1 S2).

Gene set permutation analysis to normalize NPES and
estimate p-value
To avoid producing bias towards the miRNAs with large
target set, we performed a permutation-based statistical
analysis to normalize the NPES and assess its statistical
significance. The gene labels of miRNA targets were ran-
domly assigned from whole network genes, and then a
group of new scores were calculated using the rando-
mized miRNA target sets through all the above steps.
This process was repeated several times (e.g. 1,000) to
generate null distribution of the NPES for each miRNA.
Subsequently, we computed the empirical p-value for

the score of each miRNA, which is the proportion of
obtaining NPES in the null distribution not less than the
one actually observed [30]. We implemented the false
discovery rate (FDR) multiple testing correction to
adjust the p-values of all miRNAs with the Benjamini &
Hochberg method [27] using a widely used R package
“p.adjust”. In addition, to eliminate the set size effect, we
normalized NPES as a z-score:

NPESzscore ¼ NPES−NPES
�Þ=SD NPESð Þ� ð4Þ

Here the mean and standard deviation were calculated
from the null distribution. Then the scores of different
miRNAs were comparable, larger score implied the
miRNA took more responsibility for the observed gene
expression changes and should be more important for the
studied biological process. We finally ranked miRNAs
according to the normalized scores.

Comparisons with other methods
We compared NP-method with two other methods on
predicting the perturbed miRNAs. One is the popular
gene set enrichment analysis (GSEA), which determines
whether an a priori defined set of genes shows statisti-
cally significant, concordant differences between two
biological states or phenotypes [11]. We used software
GSEA v2.0.14 Java version to analyze the differential
expression of each miRNA’s target set and estimate the
activity of corresponding miRNA. GSEA only uses the
gene expression information, while the other method,
termed GR.GSEA, further integrates gene-gene network
information. It firstly applies the GeneRank algorithm to
re-score all genes by using both gene differential expres-
sion and gene network information [17], then uses the
new gene scores to execute GSEA and estimate the
miRNA activities.
During the analysis of gene expression data coming

from miRNA overexpression or knockdown experiments,
we sorted miRNAs in descending order according to the
normalized scores (i.e. the NPESzscore in NP-method, the
normalized enrichment score in GSEA and GR.GSEA
generated by the GSEA software), and compared these
methods using the putative rank of the experimentally
perturbed miRNAs. If the desired miRNA is ranked at the
top, it implies the corresponding method can predict well
enough. While analyzing the gene expression data from
CRC patient, we used the area under the receiver ope-
rating characteristic (ROC) curve, named AUC, to eva-
luate the prediction of cancer associated miRNAs. Larger
AUC means better prediction [31]. For this analysis, we
extracted those miRNAs associated with CRC from a
miRNA-disease relationship database called miR2Disease
to be gold standard miRNAs [32].

Results
Rediscovering the experimentally perturbed miRNAs from
gene expression data
To verify the efficiency of identifying the perturbed
miRNAs, we firstly applied our method on several gene
expression datasets generated from miRNA overex-
pression or knockdown experiments (Table 1), and tried
to rediscover the experimentally perturbed miRNAs
through data analysis. We firstly calculated gene expres-
sion fold changes to be the gene differential expression
inputs, and then estimated the network perturbation
effect for each miRNA. We compared the putative rank
of each experimented miRNA using different r in NP-
method. When r = 0, P will be independent on P0, which
means the perturbation effect will be determined only by
the network topology and there will be no difference be-
tween any miRNAs; while when r = 1, P will always be
P0, which means a miRNA only influences its target
genes and there will be no network effect. So we tested
r = 0.1, 0.2, …, 0.9. The results show little differences
(Additional file 1: Table S1), so we used r = 0.5 as default
in this study, which intuitively means that a miRNA’s im-
pact is half on its direct targets and half on other genes
through the network propagation. We compared the re-
sults of inferring the perturbed miRNAs by using the
three different methods, and found that NP-method
nearly always ranked the desired miRNAs better than
the other two methods (See the first three columns in
Table 2, more details can be found in Additional file 2).
GSEA studies the expression of miRNA target set with-
out considering the influence of gene-gene interactions,
so it is not comprehensive enough to interpret the cel-
lular gene expression responses after miRNA perturba-
tions. For the GR.GSEA, although GeneRank integrates



Table 2 Results of inferring the experimentally perturbed miRNAs using different methods and different networks

Datasets GSEA GR.GSEA NP-method

HTRI HTRI10%add HTRI10%del STRING

GSE33420.CRC.mir-143 a1 (*) 1 (*) 1 (*) 1 (*) 1 (*) 1 (*)

GSE18625.CRC.mir-145 26 (0.033) 19 (0.035) 1 (*) 2 (*) 1 (*) 1 (*)

GSE7754.CRC.mir-34a 98 (0.672) 80 (0.796) 45 (0.484) 40 (0.539) 47 (0.503) 122 (0.99)

GSE16568.OVCA.mir-22 5 (*) 5 (*) 1 (*) 1 (*) 1 (*) 1 (*)

GSE16569.OVCA.mir-30a/30d 77 (0.004) 66 (0.245) 18 (0.011) 30 (0.037) 15 (0.01) 46 (0.192)

GSE16572.OVCA.mir-182 15 (*) 24 (0.044) 5 (0.008) 3 (0.005) 4 (0.007) 9 (0.03)
aPutative rank of the perturbed miRNA according to the normalized score (p-value of the miRNA); *< 0.001.
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network information to reprioritize genes, it performs not
so well as NP-method. The latter is more consistent with
the nature of intracellular molecular regulatory mecha-
nism and is a better model for explaining the miRNA-
induced global gene expression changes. In addition, the
results of NP-method using HTRI, HTRI10%add and
HTRI10%del networks shows little differences, which
imply that our method is robust in the transcriptional
regulation network even with a few noisy edges. While
using the STRING network, the method ranked these
perturbed miRNAs not as good as that using the HTRI
network (See the last four columns in Table 2). Therefore,
we recommend the HTRI network, which should be more
appropriate for analyzing intracellular gene expression
regulations than the PPI network, in the future applica-
tions of NP-method.
Except for detecting the perturbed miRNAs, NP-

method can also identifies their key targets, called leading-
edge (LE) targets, which are most likely regulated by the
perturbed miRNAs in the specified condition and give rise
to the observed gene expression changes. Take the CRC
dataset GSE18625 for example, it found 49 LE targets for
miR-145 in the transfected DLD-1 cells. Among them the
Src family member YES1 has been reported as a direct
miR-145 target that plays oncogenic function in colon
cancer [33], FSCN1 and PPP3CA are also directly regu-
lated by this miRNA in esophageal squamous cell carci-
noma and urothelial carcinoma [34,35]. Hence miR-145
may induce the observed transcriptional responses pri-
marily through this regulatory sub-network. Since GSEA
can also extract LE subset of genes, we used Fisher’s exact
Table 3 Enrichment results of validated and also CRC related

NP-method.LE GSEA.LE

Validated 6 12

Other 43 216

Total 49 228
ap-value = 0.014 ap-value = 0.1

aP-value result of Fisher’s exact test using a contingency table integrating the data
the current LE target set enriching with larger proportion of validated and function
test to analyze their enrichments of validated miR-145 tar-
gets that are also related to colorectal cancer. To obtain a
gold standard gene list for this analysis, we firstly collected
89 validated miR-145 targets from miRTarBase [36], which
is one of the most comprehensive databases of experi-
mentally validated miRNA-target interactions in various
cells. Then we employed a literature mining approach to
capture the genes associated with CRC: we automatically
downloaded all PubMed abstracts related to a query
of “(colon OR colorectal) AND cancer” using the NCBI
Entrez E-Utilities and captured 5,943 unique genes/
proteins. By intersecting these two gene sets, we obtain
58 gold standard genes that are proved direct targets of
miR-145 and also functionally related to CRC. In the end,
the LE target set extracted by our NP-method is signifi-
cantly enriched with the gold standard genes although its
size is small, while the p-values of other methods’ LE tar-
get sets are not significant (Table 3). These indicate that
our method can efficiently identify the authentic and
functional targets of the perturbed miRNAs. In fact, the
NP-method always outputs less LE targets than the
GSEA-based methods (Additional file 1: Figure S1), but it
is more convenient for the scientists to select candidate
miRNA targets for experimental dissection.
It is known that miRNAs tend to fine-tune the expres-

sions of genes [13,14], and some miRNAs may regulate
some targets only at protein level but not mRNA level
[37,38]. Considering the systematic propagation effect,
the impact of miRNA perturbation on target genes could
be explained by neighbor genes, so the NP-method
should be appropriate for the condition that the
miR-145 targets in the LE target sets

GR.GSEA.LE miR-145.target

12 25

282 655

297 680

94 ap-value = 0.204

of the current and the 4th columns, it indicates the statistical significance of
al miR-145 targets than the background target set.
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expressions of miRNA targets are not markedly changed
but the downstream genes are. Take the dataset GSE7754
as an example, by comparing gene expressions of the
HCT116 cells with and without enforced miR-34a expres-
sion we found that the fold change of miR-34a targets
were too indistinctive to be distinguished from the back-
ground genes (Figure 2A). From the putative ranks of
miR-34a in Table 2, we see that the GSEA-based methods
hardly predict this miRNA but NP-method performs
much better. Figure 2B shows the fold changes and NPESs
of the miR-34a targets. According to the multi-target-
based NPESs (red dots), we extracted 36 leading-edge tar-
gets that appear at and before the peak point. In the figure
we see a special LE target (CUX1), whose fold change is
small (marked in a red circle) but NPES is relatively large.
To illustrate the network perturbation effect of this target
gene, we investigated its surrounding gene regulatory
network (Figure 2C), where only CUX1 was target of
miR-34a. And we found that CUX1 had a small fold
change (0.138858, in log2 scale) but three downstream
genes (KIF23, ECT2 and RACGAP1) had remarkable fold
changes. Besides, CUX1 is a homeodomain transcriptional
regulator known to be involved in the development and
cell cycle progression, and its activity is associated with in-
creased migration and invasiveness in numerous tumor
cell lines including HCT116 or resistance to apoptosis in
pancreatic cancer [39,40]. And some other studies have
reported that KIF23, ECT2 and RACGAP1 play important
roles in the cell cycle and cell proliferation [41,42]. These
findings indicate that miR-34a can regulate the cancer
process in an indirect and inconspicuous way, and it can
be discovered only by our NP-method.
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Figure 2 A case study on the miR-34a overexpressed HCT116 cells. (A
by K-S test. (B) Fold change and NPES score of miR-34a targets. Blue dot repre
normalized by the maximum of all genes; Green dot represents the NPES com
searching, and all the miRNA targets are sorted according to this score; Red d
seed, the peak value is the optimal score and those targets appearing at and
of the miR-34a target CUX1. Gene name and expression fold change are labe
Analyzing time-course gene expressions in HepG2 cells
transfected with miR-124
Since NP-method can identify key target genes of miRNAs,
exploring the similarities and differences among the key
targets of the same miRNA under different situations can
further help to understand roles of miRNAs in different
context. Besides, it is said that the influence of miRNA per-
turbation on gene expression is time-dependent [43]. To
check this and further test our method, we applied it on a
time-course gene expression dataset from a miRNA trans-
fection experiment (GSE6207). In detail, pre-miR-124 and
negative control miRNA duplex were transfected into
HepG2 cell line using the Reverse Transfection protocol
recommended by Ambion, then the paired gene ex-
pressions at 7 time points (4, 8, 16, 24, 32, 72, 120 h) were
measured using Affymetrix HG-U133Plus2 microarray
platform [44]. To avoid noise signals, we firstly filtered the
low-expressed genes using a rank-based strategy: the genes
whose expression values ranked at the lowest 20% in more
than 80% samples were removed. This process generated
an expression profile containing 15,444 genes, whose fold
changes at each time point were then calculated to be the
differential expression inputs of the three methods.
Results demonstrate that NP-method ranks miR-124

much better than GSEA and GR.GSEA at 4 h and slightly
better than them at 120 h, and in the middle period all
methods perform very good (Table 4). According to the
prediction of miRNA-target interactions in TargetScan
[8], there are 1,564 conserved target genes for miR-124
family. Figure 3A shows the clustering diagram of the ex-
pression fold change of all miR-124 targets, from which
we see at 4 h after miRNA transfection the expressions of
•••••••••••••••••••
•
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) Fold change of all genes and miR-34a targets. The p-value is estimated
sents the absolute value of gene expression fold change, which is
puted by using single target as the RWR seed in the step 1 of forward
ot stands for the NPES generated by using multiple targets as the RWR
before this point are the leading-edge targets. (C) Neighbor sub-network
led in each node.



Table 4 Putative ranks of miR-124 at each time point after its transfection

GSE6207.HCC.miR-124 4 h 8 h 16 h 24 h 32 h 72 h 120 h

NP-method a2 (*) 1 (*) 1 (*) 1 (*) 1 (*) 1 (*) 15 (0.021)

GSEA 19 (0.081) 2 (*) 1 (*) 1 (*) 1 (*) 2 (*) 19 (*)

GR.GSEA 15 (0.04) 1 (*) 1 (*) 1 (*) 1 (*) 1 (*) 20 (*)
aPutative rank of miR-124 according to the normalized score (p-value of miR-124); *< 0.001.
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targets vary not much, and as time goes on more and
more targets’ expressions are markedly repressed, while at
120 h their differential expressions return indistinctive.
Maybe at the very beginning (4 h) the transfected miRNA
cannot rapidly and greatly affect the mRNA concen-
trations of target genes, but their protein translations are
directly repressed and further influence other genes within
network, so the NP-method performs much better than
the other two methods due to its innovative consideration
on the network propagation effect. However, after five
days (120 h) the influence of miRNA transfection fades
away because of the molecular degradation and some cel-
lular adaptation or robustness mechanisms [15,45,46],
then all methods cannot well predict miR-124, but still the
NP-method ranks it best. Since the score NPES represents
to what degree the miRNA-induced network perturbation
can explain the gene differential expression levels, so we
checked the NPES of miR-124 at every time point and
found it got the maximum at 24 h (Figure 3B), and also
we found most overlaps between consecutive LE target
sets at 24 h (Figure 3C). Maybe at this time period, the
A
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Figure 3 Analysis on the time-course data of miR-124 transfection. (A
of miR-124 at each time point. (C) Size and overlap number of the LE target s
red bar represents the overlap between the LE target sets of current and nex
miR-124 that appear at every time point.
impact of the miR-124 transfection gets sufficient and
stable in the HepG2 cells, and thus all the methods are
efficient in rediscovering the overexpressed miRNA from
gene expression data.
At the same time, NP-method identified 188, 165, 172,

184, 168, 197 and 231 LE targets respectively at the seven
time points (Figure 3C, see more details in Additional
file 3). These LE targets mostly have very large fold change
ratios among all the miR-124 targets and also they can ge-
nerate the largest NPES score (Additional file 1: Figure S2),
which means that these key targets are principally regu-
lated by the miRNA and contribute a lot to the observed
gene expression changes. There are 523 LE targets in total,
including some known functional targets of miR-124. For
example, the oncogenes ROCK2 and EZH2 that are direct
targets of tumor-suppressive miR-124 in hepatocellular
carcinoma [47], and the IQGAP1 who is directly repressed
by miR-124 in HCC cell lines and plays important func-
tions in the cell adhesion and motility [48]. We analyzed
the functional enrichment of all these 523 LE targets using
the DAVID Functional Annotation Tool [49], and found
D
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they were significantly enriched in the protein localization,
transport and signal transduction functions (Additional
file 1: Table S2, adjusted p-value Benjamini ≤ 0.05). Besides,
there were seven common genes shared by every time-
point’s LE target set. These genes should be regulated
by miR-124 all the time after its transfection. They are
CDK4, CD164, AMMECR1, RPIA, FAM177A1, RRBP1 and
MBOAT5. The fold change patterns of these genes look
very similar (Figure 3D), and according to the miRTarBase
[36] the first five genes have been validated as direct targets
of miR-124, so we guess RRBP1 and MBOAT5 are also its
true targets in the HepG2 cells, which deserve further
experimental verification.

Uncovering the perturbed miRNA regulatory networks in
colorectal cancer
Above analyses indicated that NP-method could identify
the perturbed miRNAs as well as the leading-edge targets
from the gene expression data of miRNA-perturbed can-
cer cell lines. Then we applied it on a gene expression
dataset of clinical patient samples to infer the perturbed
miRNA regulatory networks in colorectal cancer. The
dataset GSE4107 profiled gene expressions from colonic
mucosa cells of 12 patients and 10 healthy controls [50].
We firstly filtered low-expressed genes using the same
strategy as the above time-course data analysis, and this
left 15,996 genes. Then we calculated the gene expression
fold change and respectively applied NP-method, GSEA
and GR.GSEA to infer CRC associated miRNAs. From the
results of each method, we obtained a list of miRNA
families sorted in descending order according to the out-
put normalized scores. In the meantime, we searched
“colorectal cancer” in the miR2Disease, which is a ma-
nually curated database providing a comprehensive re-
source of miRNA deregulation in various human diseases,
and got 89 CRC related miRNAs. In our work the miRNA
family that contains at least one cancer miRNA was
marked as a positive family, this produced 58 CRC asso-
ciated miRNA families (See details in Additional file 4). Fi-
nally, we applied R package “pROC” [51] to calculate the
sensitivity (i.e. true positive rate) and 1-specifity (i.e. false
positive rate) along the miRNA family lists, and then drew
the ROC curves and calculated their AUCs (Figure 4A).
Results showed that NP-method had the largest AUC and
thus best predicted the CRC related miRNA families.
From the results (More details can be found in

Additional file 4) we selected 10 most significant miRNA
families with p-value < 0.01 to be the perturbed key
miRNAs, of which most had been reported playing im-
portant roles in the colorectal cancer progression. For
example, the miR-27a [52], miR-17 [53], miR-155 [54],
miR-9 [55] and miR-23a [52] can promote CRC cell pro-
liferation, invasion or motility, and the miR-26b [56],
miR-145 [57], miR-93 [58] and miR-23b [59] can inhibit
CRC tumor growth, proliferation and induce apoptosis.
Together with their LE targets we constructed a miRNA
regulatory network in Figure 4B, where the 10 diamond
nodes represent the miRNA families and 538 circular
nodes are the LE target genes. The colors of genes
characterize their expression fold change: red means sig-
nificant up-expression (fold change ≥ 1), green means
significant down-expression (fold change ≤ -1) and pink
means not significant change. In the network, miR-9 has
the largest out-degree and regulates 142 genes, which
again highlights its importance in CRC development;
while ACVR1C, also known as ALK7, has the largest in-
degree of 7 and is down-expressed in the studied patient
samples (log2 fold change −0.91), it is a type I receptor
for the TGFB family of signaling molecules and has been
found inducing apoptosis through activating SMADs and
MAPKS in tumor cells [60]. Then we also applied the
DAVID tool to analyze the functional pathway enrichment
of these 538 LE target genes, and found they were signifi-
cantly enriched in 5 KEGG pathways (Benjamini ≤ 0.05,
Figure 4C), which are all directly relevant to the cancer
development and progression. All these results indicate
that our method successfully finds out the key miRNA
regulatory sub-network that is functionally perturbed or
dys-regulated in colorectal cancer.

Discussion
We hypothesize that the miRNA’s impact on target genes
should propagate across the whole gene network and this
impact could be better interpreted by integrating the
differential expressions of all network genes not just the
miRNA target genes. So we propose a novel network
propagation based method (NP-method) to infer the per-
turbed miRNA regulatory networks using the differential
expression information of global gene network. It executes
random walk with restart (RWR) from the miRNA targets
in the gene regulatory network to model the intracellular
propagation effect of the miRNA perturbation, and mean-
while adopts a forward searching strategy to find the
leading-edge targets that are principally regulated by the
perturbed miRNAs and result in the observed global gene
expression changes.
The analyses of the miRNA perturbed cell line data

demonstrated that NP-method could detect perturbed
miRNAs from gene differential expression profiles better
than GSEA and GR.GSEA. Except for the prediction of
pivotal miRNAs, another advantage is to extract the
context-specific leading-edge targets for miRNAs at the
same time. Even those low-key but functional targets,
whose differential expressions are not much prominent
but their down-stream gene expressions are significantly
changed in response to the miRNA perturbation, can be
discovered by our method. For example the miR-34a
regulates CUX1 in HCT116 cells. Besides, the analysis of
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time-course gene expressions from the miR-124 trans-
fected cells revealed that the influence of miRNA
perturbation in cells might be time-dependent and
our method was more suitable for analyzing the
perturbation effect at early time than other methods. In
brief, NP-method can help to uncover the perturbed key
miRNA regulatory networks in cellular processes of
interest.
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When analyzing the gene expression data of CRC
patients, NP-method predicted the disease associated
miRNAs better than other methods, which again proved
its efficiency. And based on the results we successfully
built a key miRNA regulatory sub-network that should be
perturbed and play important functions in colorectal can-
cer. However, it is known that cancers are usually caused
by multiple factors not just a single molecular deregula-
tion like a miRNA overexpression or inhibition, so explo-
ring the synergetic effect of a miRNA group should be
more reasonable and meaningful. In this work, the NP-
method considered the miRNAs or miRNA families as in-
dependent determiners of global gene expression changes
and prioritized them according to the estimated network
perturbation effect score (NPES). The top-ranked miRNAs
are more likely to cause the observed gene differential
expressions and are considered more important for the
studied cellular process. In the future, we will take the
miRNA cooperative regulation into account and try to
infer the combination of miRNAs for better deciphering
the miRNA-mediated cancer pathologies.
NP-method is not only applicable for analyzing miRNAs,

but other problems about multiple interventions on a net-
work are also theoretically appropriate. For example, some
small-molecule drugs targeting several genes, proteins or
enzymes in molecular networks [61]. So our approach can
also be used to study the transcriptomic influence of the
pharmacological interventions in cells. And with the in-
creasing concerns on multi-target therapeutics [62,63], we
believe that our method can be further developed and help
to design high-efficient combinatorial therapies for com-
plex diseases.

Conclusions
Here we developed a network propagation based method,
which took advantage of the differential expression infor-
mation of global gene network, to infer the perturbed
functional miRNAs as well as their leading-edge targets.
We demonstrated its reliability and usefulness on several
cell line datasets and a clinical cancer dataset. Taken to-
gether, our method is a useful approach for studying the
miRNA-mediated molecular mechanisms of complex bio-
logical processes.
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