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Abstract

Background: Human epidermal growth factor receptor 2 (HER2) has an important role in cancer aggressiveness
and poor prognosis. HER2 has been used as a drug target for cancers. In particular, to effectively treat HER2-positive
cancer, small molecule inhibitors were developed to target HER2 kinase. Knowing that curcumin has been used as
food to inhibit cancer activity, this study evaluated the efficacy of natural curcumins and curcumin analogs as HER2
inhibitors using in vitro and in silico studies. The curcumin analogs considered in this study composed of 4 groups

considering them as a promising drug in the near future.

classified by their core structure, 3-diketone, monoketone, pyrazole, and isoxazole.

Results: In the present study, both computational and experimental studies were performed. The specificity of
curcumin analogs selected from the docked results was examined against human breast cancer cell lines. The
screened curcumin compounds were then subjected to molecular dynamics simulation study. By modifying
curcumin analogs, we found that protein-ligand affinity increases. The benzene ring with a hydroxyl group could
enhance affinity by forming hydrophobic interactions and the hydrogen bond with the hydrophobic pocket. Hydroxyl,
carbonyl or methoxy group also formed hydrogen bonds with residues in the adenine pocket and sugar pocket of
HER2-TK. These modifications could suggest the new drug design for potentially effective HER2-TK inhibitors. Two
outstanding compounds, bisdemethylcurcumin (AS-KTC006) and 3,5-bis((E)-34-dimethoxystyryl)isoxazole (AS-KTC021),
were well oriented in the binding pocket almost in the simulation time, 30 ns. This evidence confirmed the results of
cell-based assays and the docking studies. They possessed more distinguished interactions than known HER2-TK inhibitors,

Conclusions: The series of curcumin compounds were screened using a computational molecular docking and followed
by human breast cancer cell lines assay. Both AS-KTC006 and AS-KTC021 could inhibit breast cancer cell lines though
inhibiting of HER2-TK. The intermolecular interactions were confirmed by molecular dynamics simulation studies. This
information would explore more understanding of curcuminoid structures and HER2-TK.
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Background

Human Epidermal Growth Factor Receptor 2 (HER2) is
one of the tyrosine kinase receptors in EGFR family,
which includes EGFR/ErbB1, HER2/ErbB2, HER3/ErbB3
and HER4/ErbB4 [1]. Since there is no natural ligand
specific to HER2, HER2 tends to form heterodimer with
other ligand-induced members [2]. After dimerization,

* Correspondence: ifrots@ku.ac.th; fsciktc@ku.ac.th

2Institute of Food Research and Product Development, Kasetsart University,
50 Ngam Wong Wan Rd, Chatuchak, Bangkok 10900, Thailand
®Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam
Wong Wan Rd, Chatuchak, Bangkok 10900, Thailand

Full list of author information is available at the end of the article

( ) BiolVled Central

the complex can trigger downstream pathways such as
Ras/Raf/MAPK and PI3K/AKT pathways to increase
cell growth, cell survival and cell differentiation [3,4].
Considerable evidencesshowed that HER2 over expression
was involved in many types of cancer such as breast,
ovarian, gastric and prostate cancers [5]. Therefore, HER2
is considered as a drug target for cancer therapy focusing
on inhibiting HER2 to reduce tumor growth.

At present, there are two main approaches used to
inhibit HER2, namely; monoclonal antibodies such as
Trastuzumab, and small molecule inhibitors such as
Lapatinib [6] and SYR127063 (called SYR for short) [7]
targetingon tyrosine kinase domain (HER2-TK). Although
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Trastuzumab can downregulate HER expression,
cardiotoxicity and drug resistance can be found in
Trastuzumab-treated patients [8,9]. Moreover, side effects
such as diarrhea, rash or nausea can be observed in
Lapatinib treatment [10]. Hence, new inhibitors are urgently
required for HER2-overexpressed cancer treatment.

Recently, in 2011, the first HER2-TK structure
complex with pyrimidine compound SYR was released
(PDB access 3PP0), providing the new understanding
of the kinase structure [7]. Unlike the active- or
inactive-conformations of EGFR-TK, HER2-TK configur-
ation was somewhat in the middle of these typical confor-
mations. It was named “the active-like conformation”, due
to, the orientation of the helix-aC-out, the DFG-in
and unformed secondary structure of the activation
loop. The second crystal of HER2-TK complex with
TAK-285 (PDB access 3RCD) adopted the similar
conformation as mentioned above [11].

Curcumin (also known as diferuloylmethane) is generally
found as the major compound in rhizomes of turmeric
plants; Curcuma longa Linaeusas yellow residue. It has
been used as spice and ingredients in folk medicinal
remedies in many Asian countries. The curcumin and its
three natural analogs, curcumin II (demethoxycurcumin),
curcumin III (bisdemethoxycurcumin) and cyclocurcumin-
possess the remarkable pharmacological effects for centur-
ies, such as anti-inflammatory [12,13], antioxidant [14],
anti-carcinogenesis [15-18]. Moreover, curcumins is safe
to use in high dose with non-toxic report [19,20]. Despite
many advantages of curcumins, the poor stability and
bioavailability profiles of curcumins are questionable
when it comes to directly using crude curcumin as the
potent and selective cancer drug. Many researchers have
been focusing on the developing the curcumin ana-
logs to enhance their stability and bioavailability. In
particular, the novel series of curcumin-analog com-
pounds have been synthesized and studied their effect
in various cell targets [21-26]. They possess several prop-
erties, potent activity against parasite in Trypanosoma
and Leishmania species [21], antimycobacterial activity
[22], inhibiting nitric oxide production from Lps-activated
microglial cells [25] and estrogenic properties [23,24,26].
Thus, in this paper, we aimed to investigate the effect
of this set of curcumin analogs on the HER2-TK
activity using both experimental and computational
methods.

Curcumin has been shown to inhibit cancer growth by
means of inhibiting several tyrosine kinases including
EGFR, HER2, MAPK, phosphorylase kinase, pp60c-src
tyrosine kinase, protein kinase C, and protein kinase A
[18,27-34]. Furthermore, the curcumins can inhibit various
types of cancer including breast cancer cells [15,28] and
also induce the internalization of HER2 from cell surface
[35]. Recently, curcumin analog cyclohexanone has shown
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to selectively inhibit tyrosine kinase domain of EGEFR,
in vitro, in vivo and in silico studies [36] which reveals an
opportunity for direct binding between curcumins and
tyrosine kinase domains of other EGFR family members.
Furthermore, the in silico screening of the natural database
against HER2 kinase showed that such curcumins
could interact with kinase through benzene rings for
hydrophobic interactions and carboxyl groups for
hydrogen bond formation [37].

In this study, we investigated interactions between
curcumin analogs and HER2-TK by using virtual
screening based on molecular docking in order to
find potential compounds against HER2-TK. The hit
compounds have been validated by different inhibitions
between two types of breast cancer cell-lines with both
HER2-overexpression and HER2-non-overexpression.
Such findings might be useful for further development
of curcumins as a new HER2 inhibitor in the future.

Methods

Computational procedures

The preparation of ligand

The two dimensional (2D) structure of 143 curcuminoid
analogs were collected from the previous studies [21-26]
(Additional file 1: Table S1). The ionization states,
tautomers, stereochemistries, and ring conformations of all
curcuminoid structures were calculated and OPLS-2005
force field was applied using LigPrep module in
Schrodinger package. These structures were used as an
initial material during computational docking procedure
to study interactions with the binding site of the HER2
tyrosine kinase domain.

The preparation of protein

The atomic coordinate of HER2 tyrosine kinase domain
(HER2-TK) was obtained from the -crystallographic
structure, accession no. 3PPO in Protein Data Bank
(PDB) [7]. This structure contains asymmetric dimer of
HER2-TK complex with selective inhibitor HER2-TK,
pyrrolo[3,2-d]pyrimidine-based potent, SYR. In order to
perform the docking calculations, only chain A was
selected as the target template. Another chain of
HER2-TK as well as the co-crystalized ligand(s) and
crystal water molecules were removed. Hydrogen
atoms were assigned and parameterized with Optimized
Potential for Liquid Simulation version 2005 (OPLS-2005
force field) using the protein preparation wizard, which
continuously minimized the whole structure by the Impref
module in the Schrodinger package.

Docking procedure using Glide standard precision mode
(SP mode)

The structures of protein and ligands were prepared as
previously described. The OPLS-2005 force field was
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applied to both protein and ligands. The complexes of
HER2-TK and each curcuminoid, including the co-
crystal ligand were generated with molecular docking
approach using Grid-based Ligand Docking with
Energetics (Glide)with standard precision mode (SP mode)
[38,39]. The grid map was generated in Receptor Grid
Generation by setting the center of the grid map around
the catalytic site. Self-docking between HER2-TK and SYR
was performed to validate all parameters before being
applied to the study of interactions between HER2
and curcumins.

Post-docking analysis

In order to handle considerable number of docking
results, the sub-groups of modified core structure of
curcuminoids were classified. Top ranks docking score of
each sub-group were selected to further test in cell-based
assay. In addition, the poor scores of each curcumin
sub-groups were also chosen to be the control set in
breast cancer cell-line assay.

Molecular interaction and stability in binding pocket

All simulation steps were performed using the SANDER
module of the AMBER 12 package and AMBER FF03
force-field parameters [40]. The partial atomic charges
of ligand were computed by using AM1-BCC method
as implemented in the Antechamber module of the
AMBER package. Their atom types and missing force field
parameters were assigned based on the general AMBER
force field (GAFF). Each complex was immersed in an
isomeric truncated-octahedron box of TIP3P water
molecules (10 A from the solute surface) and neutralized
by additional Cl™ anions. The system was then minimized
with the five-step procedure (Additional file 1: Table S2).
All steps included 5,000 steepest-descent minimization
cycles and 5,000 conjugate-gradient minimization cycles
with different restraints on the protein structure. For
the first step, harmonic restraints with a force con-
stant of 5 kcal/(mol-A?%) were used to immobilize the
heavy atoms of protein coordinates, excluding hydro-
gen atoms, at the starting positions, while solvent
molecules were allowed to relax the unfavorable con-
tacts with other solvent and solute molecules. For the
second, third and fourth steps, harmonic restraints
with force constants of 5, 1 and 0.5 kcal/(mol-A?),
respectively, were used to restrain the backbone of
the protein. In the last step, the entire system was
minimized with no positional restraints.

With weak positional restraints on the protein
(force constant of 5 kcal/(mol-A?)), all systems were
heated from 0 to 300 K during a 200 ps MD simulations.
After removing the restraints from the protein, we
equilibrated the system with constant volume and set
the constant temperature at 300 K for 500 ps. Note that
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we observed the equilibrium of energy (potential, kinetic
and total energy), temperature, pressure, volume, density
and RMSD before moving on to the production runs. The
production MD simulations were performed from 30 ns
while maintaining constant pressure and temperature.
With a collision frequency of 1 ps™*, the temperature in
all simulations was controlled by Langevin dynamics.
Using an isotropic position scaling algorithm with a
relaxation time of 2 ps, the pressure in NPT simulations
was maintained at an average pressure of 1 atm. The
random number generator was reseeded [41] for every
simulation. A cut-off of 10 A and the particle mesh
Ewald method were employed with the default parameters
to calculate long-range non bonded interactions. With the
tolerance parameter of 107> A, SHAKE constraints
[42] were used to eliminate bond-stretching freedom
for all bonds involving hydrogen, thereby allowing
the use of a 2 fs time step. To monitor the stabilities
of all systems, the Ca root-mean-square deviations
(RMSD) were calculated. The RMSD of binding resi-
dues within 5 A of the inhibitor were examined. The
ptraj modules in the AMBER software were used to
calculate the hydrogen bond occupancy and hydrogen
bond distance between inhibitors and proteins [43,44].
All MD simulations were calculated on 22-node Linux
High Performance Computer Cluster with 32 cores of
AMD 2.2 GHz.

The energy calculations were done as implemented in
the MMPBSA.py script in AmberTools. The MM-PBSA
approach is an acceptable method to compute the free
energies of binding of ligands to proteins or to estimate
the absolute free energies of molecules [43,44]. One
hundred frames from the last 5 ns of each 30 ns MD
studies were selected for the analysis of ligand binding
energies, sampled at 50 ps intervals. Binding free energy
was estimated from each energy terms as following
equations (equation 1-4),

AGpmpBsA = AGcomplex_ (AGprotein + AG’ligand) (1)

AGummresa = <AEvine + <AGgoy>—<TAS> (2)
AGgo> = (AGpp> + (AGpp> (3)
AEmm> = <AEyqw> + <Agele> (4)

AGnmpesa> is referred to final calculated MM-PBSA
binding energy. It is described by the difference of
AGcomplex by the summation of AGprotein and AGiigand
(1). The free energy of each molecular system is given by
the expression in the terms of equation (2). <AEynp
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is the total molecular mechanics energy in the gas
phase, <AGg,,» is a correction term (solvation free energy)
of each system surrounded by solvent, and <TAS» is the
entropy. <AEynp includes electrostatic <Ag>, and van der
Waals <AE,q,> energies, while <AGg,},» is the sum of
electrostatic solvation energy <AG,, and the non-
electrostatic solvation component <AGpy, (3—4). The
polar contribution is calculated using PB model, while
the non-polar energy is estimated by solvent access-
ible surface area (SASA). In this study, <TAS> term
was excluded.

Experimental procedures

Proliferation and viability assay

Cell proliferation and viability were measured by tetrazo-
lium 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium
bromide (MTT) assay. The reaction was catalyzed by mito-
chondrial succinate dehydrogenease and requires NADH,
which must be supplied by living cells. SKBR3 and MCF7
cell line were seeded in flat-bottomed 96-well tissue culture
plates as 1 x 104 cells/well/100 pL and cultured overnight.
Pure curcumin extracts and its analogs with different
concentrations were dissolved in 100 pL 10% FBS-RPMI
1640 medium and added into the cells and incubated for
48 h. Then 100 pL of medium was removed and 10 pL of
MTT dye (Sigma-Aldrich; USA) was added, followed
by 4hourof incubation. Subsequently, the supernatant
from each well was aspirated off, leaving the purple
form azan crystals. Optical density was measured by
an ELISA micro plate reader at 540 nm with a refer-
ence wavelength of 630 nm. Percentage of cell sur-
vival was calculated by the formula below. Each assay
was done in triplicate and the standard deviations were
calculated.

% Cell survival = Absorbance of treated well x 100

Absorbance of vehicle control well.

All curcumin analog compounds were synthesized and
published [21-26] by the laboratory of Prof. Dr. Apichart
Suksamran, Department of Chemistry and Center of
Excellence for Innovation in Chemistry, Faculty of Science,
Ramkhamhaeng University.

Results and discussion

Selection of the curcumin analogs and structure analyses
Considering to the core structures of all 143 curcuminoid
compounds, the middle-linear seven carbon linkage
between two phenyl rings can be classified into four
sub-groups,-diketone, monoketone, pyrazole (N-N
heterocyclic), and isoxazole (N-O hetorocyclic). Schematic
diagram of the workflow is shown in Figure 1. All 143
curcumin analogs were docked against tyrosine kinase of
HER2 by Glide SP docking. A few compounds of each

Page 4 of 13

143 Curcumin analogs

Y

Molecular
Docking

Docking
Results

\/24 curcumin compounds

Cell line assays

ICso T i ICso

Molecular Dynamics
simulations

Figure 1 The rational workflow of this study, starting from in silico
screening based on molecular docking and validated with cell line
assays (SKBR3:a breast cancer cell line which over-expresses the
HER2 gene product, MCF-7: a breast cancer cell line that absence
of HER2 protein overexpression) and deep interaction study by
molecular dynamic simulation.

sub-group in the docking top ranks were selected. All 24
chosen compounds were classified into four groups based
on their core structures. From Table 1, compounds
AS-KTCO001 to AS-KTCO011 were classified into -diketone
group. Monoketone composed of two compounds,
AS-KTC012 and AS-KTCO013. For AS-KTCO014 to
AS-KTCO017 were categorized as pyrazole curcumin ana-
logs. The last group, isoxazole curcumin analogs consisted
of seven molecules, AS-KTCO018 to AS-KTC024. The
docked conformations of all curcumin compounds were
well oriented in the ATP-binding pocket of HER2-TK
(Figure 2C and 2D). One phenyl-end of curcuminoids
compounds oriented well in deep hydrophobic pocket,
while another phenyl-end exposed to the open gate. They
could form interactions either with Met801 (adenine
region) or with Cys805 (hydrophobic pocket II), depending
on each configuration of analog (Figure 2D). According to
the revealed three dimensional structure of HER2-TK
adopted the active-like conformation, the binding cave
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Table 1 Two dimensional structures of curcumin analogs and its Gscore
Code Structure Dock score Ref
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Table 1 Two dimensional structures of curcumin analogs and its Gscore (Continued)
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Table 1 Two dimensional structures of curcumin analogs and its Gscore (Continued)
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stayed in the tunnel shape rather than the opened cave
as presented in EGFR-TK. This pocket possesses approxi-
mately the volume of 475 A% As the binding pocket
adopted the tunnel-like shape, the curcuminoid structures
are also in the linear cylinder shape that can fit into this
pocket quite well. The hydrophobic-I site merged with the
phosphate binding region (Ser783, Arg784, Leu785,
Leu769, Gly770, Ala771, Met774 and Phe864) as the deep
semi-closed site of ATP-binding pocket. This pocket is
occupied by the trifluoromethyl-phenoxy fragment of
SYR, the co-crystal ligand (Figure 2A and 2B).
Furthermore, one of the phenyl rings and its hydrophobic
substituent groups of curcuminoids compounds were
perfectly fit to this deep hydrophobic pocket. The
functional groups of modified middle-linear seven carbon
linkage of curcurmin analogs pointed to the DFG motif,
especially the adjacent residue Thr862. In addition,
another phenyl-end and its hydrophobic substituent

groups of curcumin analogs could span around adenine
region to hydrophobic-II site (Figure 2C and 2D).
This observation was found as the common interaction
among curcuminoid compounds, conformed to the
pyridine and amine fragments of SYR pointed to the
same residues (Figure 2A and 2B). These occupancy and
interactions were considered important to increase
selectivity and affinity for HER2 inhibitors [45-47].
However, the curcumin analogs could not interact
with Met801 as any other EGFR/HER2-TK inhibitors,
which contain 4-anilinoquinazoline, pyrrolopyrimidine,
pyrrolotriazine and cyanoquinoline cores. The carbonyl
group of the linkage chain, from B-diketone or monoke-
toncurcumins, could form a hydrogen bond directly with
one of the key residues Thr862 (Thr862 OH—-OC curcu-
mins). This interaction differed from that of SYR127063
and other HER2 inhibitors that was a water-mediated
hydrogen bond between N3 of quinazoline and Thr862
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Figure 2 The illustration of A) two dimensional (2D) structure and B) three dimensional (3D) structure of SYR from the x-ray structure
3PPO, while panel C) and D) present 2D and 3D structures of curcumin analogs in the binding pocket of HER2-TK from the
docking results.

[48]. As the direct hydrogen bond formation at this
position was crucial to enhance binding affinity, N3 of
quinazoline was modified to nitrile group to form the
direct hydrogen bond [48]. These occupancy and
interactions mimicked those of a heterocyclic core of
HER?2 inhibitor in an adenine ring of ATP [49]. All
24 selected compounds have been processed in further
experiments, to investigate the bioavailability profiles
of curcumin analogs on two types of human breast
cancer cell lines.

The bioavailability profiles of curcumin analogs on two
types of human breast cancer cell lines

The HER2-TK inhibitory assay was performed using a
commercialized HER2-TK, but unfortunately, activity of
the HER2-TK could not be detected (data not shown).
Moreover curcumins were stable and soluble in very low
pH which is not suitable for HER2-TK to stay active.
Therefore, the cell-based assay was chosen instead of the
purified protein based assay to investigate the inhibitory
effect of curcumin analogs to HER2-TK. In order to
identify the curcumin analogs against HER2-TK, two dif-
ferent types of human breast cancer cell lines, MCF-7

and SKBR3 were performed. The SKBR3 is a breast can-
cer cell line which over-expresses the HER2 gene prod-
uct while the MCF-7 is in absence of HER2 protein
overexpression [50-54]. Therefore, such compounds
should be more effective against SKBR3 than MCEF-7.
The lapatinib which was tested on both breast cancer
cell lines showed the IC50 on SKBR3 lower than MCEF-7
[55]. Twenty-four selected compounds were determined
ICso on both breast cancer cell lines by MTT assay as
shown in Table 2. Although most of curcumin ana-
logs have very similar structures, each analog showed
different activities on both cells. In the [-diketone
group from Table 1, only AS-KTC006 showed the
effective inhibiting to HER2-positive cancer cell-line
(SKBR3), vice versa, lack of inhibiting to HER2-
negative cancer cell-line (MCF-7). The core structure
of this group composes of B-diketone which is modi-
fied substituent from natural curcumins. On the other
hand none of curcumin analogs in monoketone and
pyrazole groups showed selectively inhibiting activity
among both cancer cell-lines. In the last group, AS-
KTCO021 also presented the outstanding suppress on
SKBR3 but not MCF7 among isoxazole analogs. The
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Table 2 The inhibitory activity profiles of curcumin
analogs on MCF7 and SKBR3 cells

SKBR3 MCF7 SKBR3 MCF7
ASKTC  1Cso ICso AS-KTC  1Csp ICso

(uMV) (um) (uM) (uM)
001 83+06  419+123 013 > 100 > 100
002 130+18  444+108 014 108455 99+35
003 249+23  816+260 015 309+45 154+38
004 > 100 794+98 016 426+55 338+58
005 > 100 > 100 017 213438  143+19
006 154+39 > 100 018 338472  224+77
007 79425 175+45 019 > 100 3894091
008 79425 367+58 020 25455 441490
009 82404  221+01 021 169+34 > 100
010 > 100 > 100 022 > 100 > 100
011 > 100 > 100 023 > 100 243+87
012 99+10 143416 024 > 100 > 100

ICs5o for AS-KTCO006 and AS-KTCO021 in SKBR3 were
15.4 and 16.9 uM, respectively, and ICs, for both com-
pounds in MCF7 were higher than 100 pM. Since both
AS-KTC006 and AS-KTC021 were selected from dock-
ing results, they could inhibit the breast cancer cells
through blocking of HER2-TK activities. Therefore,
the AS-KTCO006 and AS-KTC021 were chosen for fur-
ther investigation the interaction mechanisms by molecular
dynamics simulations.

Molecular interaction, stability binding free energy via
MM-PBSA

The molecular dynamics (MD) simulations were per-
formed to examine the molecular interaction of
the bothAS-KTC006 and AS-KTC021 curcuminoids in
the ATP-binding pocket of HER2-TK. As mention in the
previous section, the x-ray crystal structure of HER2-
TK, 3PPO has been used as the model reference template
of this study. The complexes of HER2-TK-AS-KTC006
and HER2-TK-AS-KTC021 which were constructed
using molecular docking procedure have been used as
starting coordinates for MD calculations. The root
mean square deviations (RMSD) of all systems (back-
bone atoms, ligand atoms and binding site atoms)
seemed to fit nicely in the binding pocket of HER2-TK
(Figure 3, Additional file 1: Table S3). The structure of
curcuminoid distinguishes from other known tyrosine
kinase inhibitors, which generally containing either
quinazoline or pyrrolopyrimidine based structures
[56]. The structures of curcumin analogs adopted the
long thread with two knots at each end, resulting in
freely flexible structure in the tunnel-like binding
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pocket. Interestingly, the MD results revealed that the
hydrogen bonds between H-N atom of Met801
(located on adenine region) and N-atom at position
N11 of SYR existed about 94.73% along the entire 30
ns of simulation time. On the other hand, the curcu-
min analogs possess the interesting hydrogen bond
pairs in both AS-KTCO006 and AS-KTC021. Rather than
forming hydrogen bond with Met801, the -diketone cur-
cumin analog (AS-KTC006) formed hydrogen bonds to
Thr862, Cys805 and Asp863, in the binding pocket of
HER2-TK. The formation with these three amino
acids existed approximately 34.67%, 10.17% and
9.17%, respectively along the entire MD simulations
(Table 3). Distances chromatograms of each pairwise
atom from H-bond analyses were shown in Figure 4.
One of these three residues is DFG-motif (Asp863),
and another is adjacent residue of DFG-motif
(Thr862). For AS-KTCO021 (isoxazole curcumin ana-
log), the hydrogen boding with Cys805 and Thr862
existed about 35.97% and 5.37%, respectively, along
the entire MD simulations. As illustrated in Figure 2C
and 2D, one of the phenyl-end of curcumin com-
pounds were well oriented in the ATP-binding pocket
of HER2-TK, while the other-end exposed to solvent
giving a chance to interact with Cys805, while the linker
in the middle of cucurmin structure could interact
with Thr862. The binding residues of SYR-HER2-TK
systems appear to be stable along the MD simulations
(Figure 3A-1 and 3A-2). The system started to converge
since 15 ns of simulations time (Figure 3A). In addition,
the simulation systems of AS-KTC006-HER2TK and
AS-KTC021-HER2TK seem to converge after 25 ns of
simulations time (Figure 3). From the molecular
dynamic results suggested that AS-KTC006 had better
binding affinity with HER2-TK than that of AS-KTC021.
Considering at the curcuminoids structures, AS-KTC006
is more flexible than AS-KTCO021. In particular, AS-
KTCO0006 possesses [p-diketonemoiety on both sides
providing the flexibility of the molecule and allowing
O-atom of ketone to interact with Thr862. The bind-
ing energy calculations were performed to further
understand the interactions of each system. It is to be
noted that protein-ligand entropy contributions were
not included in these free energy values since the
present MM-PBSA are typically time consuming and
unreliable. Considering the intermolecular interaction
of the ligands with HER2-TK in contribution terms
(Table 4), non-polar contributions, the summation of
AEypw and AG,,), are significant with all ligand(s)-
HER2TK systems. Interestingly, ligand AS-KTC006
shows the most favorable electrostatic interaction with
the binding pocket of HER2TK. There are the agree-
ment between MM-PBSA binding energy calculations,
docking and MD simulations. The consistent observations
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Figure 3 RMSD plots of each MD simulations, presenting the backbone (N, O, C and Ca atoms of HER2-TK, the binding residues
atoms of HER2-TK and ligand atoms in upper, middle and lower rows, respectively, in the panel of A) SYR B) AS-KTC006 and

were presented in all three different computational
approaches, namely, focusing on O-atom of ketone to
interact with Thr862 of the system AS-KTC006-HER2TK
complex. Recently, the computational model of anti-
HER? ligands, the analogous of 4-anilinoquinazoline were

reported [57,58]. These works showed that the vdW term
could be a major factor of the ligand-protein interactions;
hence, the deep hydrophobic pocket would be the se-
lectivity pocket of HER2-TK [57,58]. Rather than
focusing on the 4-anilinoquinazoline core structure

Table 3 Conclusion of H-bonds between compounds and tyrosine kinase of HER2

System Donor Acceptor % occupied distance (A)
SYR-HER2TK Met801 N H SYR N11 94.73 3.128+0.15
SYR o1 H1 Asp863 OD1 1067 2761+0.17
AS-KTC006-HER2TK Thr862 0G1 HG1 AS-KTC006 024 34.67 2.851+0.18
Cys805 N H AS-KTC006 025 1017 3191+£0.18
AS-KTC006 021 H39 Asp863 0] 9.17 2758+0.16
AS-KTC021-HER2TK Cys805 N H AS-KTC021 022 3597 3.142+0.18
Thr862 OG1 HG1 AS-KTCO021 021 537 3.100+0.20
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Figure 4 Distance between the pairwise atoms of H-bond analyses, A) SYR-HER2TK, B) AS-KTC006-HER2TK, and C) AS-KTC02-HER2TK.
(the known HER2-TK inhibitors), we focused on the lines to select the specific active HER2 kinase

curcuminoid core structure in this study. Both
selected curcumin analogs form the distinguish inter-
action moiety from the known inhibitors of HER2-TK.
Furthermore, they occupied well in the deep hydrophobic
pocket of HER2-TK.

Conclusion

In the present study, we screened a series of curcumin
compounds using a computational molecular docking.
Then, the bioavailability assay of curcumin analogs,
were conducted on two types of human breast cancer cell

inhibitors. The results suggested that bisdemethylcurcumin
compound (AS-KTC006, CAS no. 60831-46-1) and 3,5-bis
((E)-3,4-dimethoxystyryl)isoxazole (AS-KTC021, CAS no.
1118765-46-0) could inhibit breast cancer cell lines
though HER2-TK. In addition, the intermolecular studies
from MD simulation suggested that both selected curcu-
min analogs form the distinguish interaction moiety
from the known inhibitors of HER2-TK. MM-PBSA
binding calculation suggested that non-polar contributions
are not only significant with all ligand(s)-HER2TK systems
but also a major factor of the ligand-protein interactions.

Table 4 Individual terms of MM-PBSA binding energy (kcal mol™"), entropy term excluded

System AEygw AEge? AGpp AGpp AGgon? «AGmmpesa>  Nonpolar/ Polar/electrostatic
hydrophobic

SYR-HER2TK —6785 (032) —1638 (0.53) 4548 (044) —-43.74 (0.13) 173 (046) —8250 (045) —11159 (045) 29.10 (0.97)

AS-KTCO006-HER2TK —42.81 (0.28) —57.70 (046) 76.27 (037) —34.02 (0.08) 4225 (037) -5826 (0.39) —-76.83 (0.36) 1857 (0.83)

AS-KTCO21-HER2TK —51.24 (0.30) —18.15 (0.63) 37.15 (0.63) —-34.75 (0.16) 241 (060) —6698 (038) —8599 (046) 19.00 (1.26)

<AE,4, and AEqe - van der Waals and electrostatic contributions to binding energy.
AGpyy and «AG,,, - electrostatic and nonpolar contributions to the solvation free energy.

AGpmmpssa - final calculated MM-PBSA binding energy.
Nonpolar contribution = AE, 4, + AGy,,; polar contribution = AEeje + AGpp,
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Additional file

Additional file 1: Table S1-S3. Table S1. List of 143 curcuminoids
compounds, which used in this present study. Table S2. Explanation of
each simulation steps of minimization and molecular dynamics
simulations. Table S3. List of binding residues of each system, which
mentioned in Figure 3.
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