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Abstract

Background: DNA barcodes are short unique sequences used to label DNA or RNA-derived samples in multiplexed
deep sequencing experiments. During the demultiplexing step, barcodes must be detected and their position
identified. In some cases (e.g., with PacBio SMRT), the position of the barcode and DNA context is not well defined.
Many reads start inside the genomic insert so that adjacent primers might be missed. The matter is further
complicated by coincidental similarities between barcode sequences and reference DNA. Therefore, a robust strategy
is required in order to detect barcoded reads and avoid a large number of false positives or negatives.
For mass inference problems such as this one, false discovery rate (FDR) methods are powerful and balanced
solutions. Since existing FDR methods cannot be applied to this particular problem, we present an adapted FDR
method that is suitable for the detection of barcoded reads as well as suggest possible improvements.

Results: In our analysis, barcode sequences showed high rates of coincidental similarities with theMusmusculus
reference DNA. This problem became more acute when the length of the barcode sequence decreased and the
number of barcodes in the set increased. The method presented in this paper controls the tail area-based false
discovery rate to distinguish between barcoded and unbarcoded reads. This method helps to establish the highest
acceptable minimal distance between reads and barcode sequences. In a proof of concept experiment we correctly
detected barcodes in 83% of the reads with a precision of 89%. Sensitivity improved to 99% at 99% precision when
the adjacent primer sequence was incorporated in the analysis. The analysis was further improved using a paired end
strategy. Following an analysis of the data for sequence variants induced in the Atp1a1 gene of C57BL/6 murine
melanocytes by ultraviolet light and conferring resistance to ouabain, we found no evidence of cross-contamination
of DNA material between samples.

Conclusion: Our method offers a proper quantitative treatment of the problem of detecting barcoded reads in a
noisy sequencing environment. It is based on the false discovery rate statistics that allows a proper trade-off between
sensitivity and precision to be chosen.

Background
Multiplexed deep sequencing is a cost-saving and time-
saving technology used with Next Generation Sequencing
that combines and sequences multiple DNA samples as
one. This method relies on labeling genomic sequences
from separate samples with specific tags, also known as
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barcodes [1-4]. These barcodes are short sequences, 3
to 14 nucleotides in length, that are distinct from each
other and can have error-correcting properties to protect
against the sequence alterations introduced during syn-
thesis, amplification, or sequencing [5,6]. Recently, two of
us proposed the Sequence-Levenshtein distance barcode
design that corrects a pre-defined number of insertions,
deletions, and substitutions while taking into account
any possible DNA sequence that might follow the bar-
code sequence [7]. It can be easily shown that Sequence-
Levenshtein distance-based barcode sets with a minimal
distance of 3 or more will correct at least one error.
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However, even with the best possible barcode design,
recognition of short barcode sequences in the DNA con-
text is often problematic. For example, in many cases the
identification of barcode sequences alone cannot be done
properly because large genomes provide a full set of all
possible combinations of short subsequences (“words”) of
up to 9 nt length [8], including those reserved for bar-
codes. Frequencies of words in the genome are neither
equal nor random [9] and absent words (also known as
unwords) could be found for large genomes starting from
10 nt to 11 nt [8]. Curiously, unwords have not received
any attention as potential barcodes, whereas small and
potentially redundant DNA sequences are largely used
instead.
At the moment, the main strategy for recovering short

barcodes relies not only on the sequence identity, but
also on the expected position of the barcode, which is
usually found at the beginning of the sequence either
behind a sequencing primer or in front of a PCR primer.
This strategy was successfully implemented for Illumina
HiSeq machines and Roche Pyrosequencing platforms.
For instance, Illumina uses a strategy of separating the
barcodes from the analyzed sequence by putting them on
different ends of the sequencing adapter [10,11]. There-
fore, the barcode and genomic sequence may be read
separately in mutually opposite directions. This approach
however is also prone to sequencing errors and bar-
code misassignments [10,12]. For example, substitution
errors might occur. Also, the beginning of the bar-
code may be shifted by one or more positions which
then appears as an insertion or deletion error in the
barcode.
Some newer machines generate longer reads using

smaller amount of DNA in the sample. These improve-
ments, however, come with new challenges. The PacBio
platform can sequence several kilobases of DNA in one
piece [13]. However, the platform is prone to insertion
and deletion errors and adds a deliberate time delay before
the onset of DNA sequencing, resulting in each DNA
molecule having its DNA polymerase positioned at a
different location at the start of sequencing [14,15]. Con-
sequently, the recognition of the barcode position on the
basis of primer position alone is imperiled. Theoretically,
any sequence can be decoded as a barcode. Therefore a
naive decoding of the start of every read would poten-
tially lead to a large number of reads being assigned to
the wrong samples or left un-assigned. This decreases
the power of the experiment in a multiplexed setup,
and cross-contaminates different samples with invalid,
precision-decreasing reads. Obviously, such damage to
the experimental results is highly undesirable. Thus the
detection of barcoded reads in these technologies or in
circumstances such as unknown positions of barcodes is
an interesting and challenging task.

The problem of detecting the originally attached bar-
code sequence, the so-called barcode reference sequences,
in a large number of reads belongs to the category of large-
scale inference problems (also calledmultiple testing prob-
lems) that have been previously successfully approached
in statistics using false discovery rate (FDR) methods,
for example by Benjamini and Hochberg [16], Efron [17],
and Storey [18]. When thousands and millions of sta-
tistical hypothesis tests are calculated at the same time,
statistically significant results may occur due to random
chance (a common problem in GWAS and differential
gene expression studies [19-21]). In these FDR meth-
ods, the expected proportion of erroneously rejected null
hypotheses among the rejected ones is estimated and used
as a decision criterion for truly significant results. When
some of the hypotheses are indeed incorrectly rejected,
FDR methods potentially offer a higher sensitivity than
naive or Family Wise Error correction methods that esti-
mate the probability of one or more false discoveries
instead [20].
A common approach of FDR methods is to estimate

the parameters and shapes of the distributions of null and
alternative hypotheses. From the estimated cumulative
distribution function, the false discovery rate (1 - preci-
sion) is inferred to determine the level of confidence in
the significance of an alternative test. This FDR variant
is commonly called tail area-based FDR and is short-
ened to “Fdr” to distinguish it from other FDR variants
[22]. A similar strategy can be applied to the problem
of detecting barcoded reads. Every comparison of a read
to the experimental barcode set is a statistical test that
determines whether the read is barcoded or not. Apply-
ing the test to thousands of reads inevitably results in
many false detections due to random chance and natu-
rally occurring similar DNA or RNA sequences, so that
FDR methods are applicable. However, directly applying
the FDR methods mentioned above is not possible, as
the distributions of similarities between reads and bar-
code sets do not follow the assumptions required by these
methods. For example, Efron’s method requires a normal
distribution of z-values [17], and Storey’s solution requires
a uniform distribution of p-values under the null hypoth-
esis [18]. Both methods require that the majority of tests
(> 80%) belong to the null hypotheses, while no such
prerequisite can be made for the detection of barcoded
reads.
Therefore, our goal was to develop a solution tailored

towards making a particular distinction between reads
that still contain the attached barcode sequence (“bar-
coded reads”), and reads that start with or within the
genomic insert (which we will call “orphaned reads”
because they are no longer assignable to their origi-
nal samples). The method provides a way to estimate
and control the Fdr of the detection of barcoded reads.
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Detection of barcoded reads is only the first step in
the demultiplexing pipeline, so we further investigated
the quality of correcting errors in the detected bar-
code sequence and thus assigning reads to their original
samples.
Our method is intended to be applicable to different

sequencing technologies. For demonstration purposes we
have tested and investigated the application of the method
to a particular technology, which in our case is PacBio
SMRT with continuous long reads (CLR).

Approach
Calculation of the minimal distance δ between a read and
a set of reference barcodes is a statistical hypothesis test
and δ is its test statistic. A high minimal distance cor-
responds to a low likelihood for the read to start with a
barcode (the null hypothesis), while a low minimal dis-
tance corresponds to a high likelihood of the read to start
with a barcode (the alternative hypothesis). Detecting bar-
codes in a huge number of experimental reads is a form
of multiple hypothesis testing where a high rate of false
detections (Type I errors) is expected. Our approach is
to estimate and control the tail area-based Fdr from the
frequency function of minimal distances δ of the whole
empirical set of reads.
The frequency of minimal distances δ between bar-

code reference sequences and reads follows a discrete
irregular distribution. This empirical distribution is the
mixture of two entities: 1) The distribution of orphaned
reads forphaned(δ) (the null hypothesis distribution f0(δ))
and 2) the distribution of barcoded reads fbarcoded(δ) (the
alternative hypothesis distribution f1(δ)). Estimating the
shape and mixing proportions of these two distributions
allows us to calculate the Fdr and sensitivity from the
estimated cumulative distribution functions F̂0 and F̂1
when using a distance δt as threshold to distinguish bar-
coded reads (δ ≤ δt) from orphaned reads (δ > δt).
We estimate these two sub-distributions by fitting a set
of simulated barcoded and orphaned reads to empirical
data. In our model, six parameters influence the simu-
lated distributions: the fraction of barcoded reads, the
sequencing error rate, the variance of the sequencing
error rate and the ratios of insertions, deletions, and sub-
stitutions. For parameter search, we decided to use an
evolutionary algorithm which finds a set of parameters
that best fits the simulated data to the empirical data.
Details of this algorithm are presented in the Methods
section.
Lastly, we validate the method using real multiplexed

DNA sequencing data obtained on the PacBio SMRT plat-
form, which includes the detection of barcoded reads,
assigning barcoded reads to their samples and finding
sequence variants.
Figure 1 depicts an overview of the approach in practice.

Methods
Barcode preparation
The Sequence-Levenshtein distance between two DNA
sequences A and B is the minimal number of inser-
tions, deletions, and substitutions necessary to transform
one sequence into any prefix of the other or vice versa.
This property makes it suitable for use in DNA con-
text (for full definitions and descriptions of this distance
and algorithms described in this subsection see our pre-
vious work, [7]). The prefix of a sequence can be an
empty sequence, the sequence itself, or any subsequence
starting from position 1 up to any end position. A fast
dynamic algorithm was available for the calculation of
the Sequence-Levenshtein distance dSL(A,B) between any
two sequences A and B (we make the algorithm available
in Additional file 1).
The minimum Sequence-Levenshtein distance δ

between a set of barcodes BC and a sequence s is the
minimum of the distances between the barcodes and the
sequence:

δ(BC, s) = min
b∈BC

(dSL(b, s))

Barcode sets were built to ensure the Sequence-
Levenshtein distance between every pair of barcodes to
be at least dmin

SL ≥ 3. Such a barcode set allows the cor-
rection of at least 1 insertion, deletion, or substitution
in DNA context. For the experiment, a set of 20 7-nt-
long DNA multiplexing barcodes based on the Sequence-
Levenshtein distance was prepared (list of barcodes in
Additional file 2, Section S2).
We decided not to use PacBio’s original set of 16-nt-

long DNAmultiplexing barcodes for the following reason.
In previous work, we have shown that more errors accu-
mulate in longer sequences. Furthermore, we did not
find informationwhether PacBio-barcodes were systemat-
ically engineered to optimise their robustness under such
adverse conditions. Thus, we decided to use our own bar-
code design [7]. It was specifically designed to optimize
the robustness and length of sequences for a given number
of samples.
In the following, we will identify barcode sets by the

length of their barcodes and the minimal Sequence-
Levenshtein distance between them. We denominate a
set with barcodes of length l and minimal Sequence-
Levenshtein distance d as “[l,d] barcode set”. Hence, the
aforementioned experimental barcode set will be called
“[7,3] barcode set”. For simulation purposes, other bar-
code sets of various set size or barcode length (e.g., 20 ×
[6,3], 150× [8,3], various [12,3] etc.) were generated using
the same algorithm.
The barcode sets were generated heuristically: First,

we generated an initial set of eligible fixed-length DNA
sequences excluding those with a GC-content of less than
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Figure 1 Overview of the approach. (1) A multiplexed sequencing experiment is conducted on the PacBio SMRT platform (2) The similarity
between the obtained reads and the used barcode sequences is calculated. We show it as a histogram of distances. (3)We simulate orphaned reads
and barcoded reads. The input to the orphaned reads simulation are fragments of the empirical reads. Input to the barcoded reads simulation are
known barcode sequences attached to reference sequences. (4) Simulations are repeated for different parameter combinations. We modify
parameters until the simulated data closely matches the empirical data. (5) The false discovery rate is estimated from the proportions of barcoded
and orphaned reads for each possible distance value. (6) A satisfying false discovery rate (e.g., 0.05) is used to choose a threshold for the highest
acceptable dissimilarity between reads and the barcode sequences. All reads with a higher distance to the used barcodes are discarded. (7) Reads
are matched with their original samples (de-multiplexing).
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40% or more than 60%, perfect self-complementation, or
more than two sequential repetitions of the same base.
Second, from the eligible DNA sequences we randomly
chose a set of three sequences with a pairwise Sequence-
Levenshtein distance of at least three (the seed). Third,
we scanned DNA sequences in lexicographic order and
added a sequence to the seed if the newly added DNA
sequence had a Sequence-Levenshtein distance of 3 from
each sequence already in the set [23]. We repeated the
third step for a large number of iterations with different
random and randomly modified seeds [24].
When necessary for comprehension, we will denomi-

nate known barcodes as “barcode reference sequences” or
“reference barcodes”. In our terminology, sets of barcodes
are without exception sets of reference barcodes.

Similarity of barcodes and barcoded primers to
unbarcodedmRNA and DNA
The reference genome ofMus musculus, reference mRNA
for allM.musculus transcripts, and the reference sequence
of the murine Atp1a1 transcript of the gene for Na+/K+-
ATPase (NM_144900.2) were acquired from NCBI
[25-27]. For similarity simulations, we sampled 10 mil-
lion random 50-nt-long subsequences from the reference
transcripts.
Similarities are tested between the aforementioned set

of subsequences and sets of barcodes or so-called bar-
coded PCR primer sequences. The latter are concate-
nations of reference barcodes and primer sequences
that were used to amplify the Atp1a1 transcript in our
experimental validation (The experiment is described
in Section “Experimental validation”. The barcodes and
barcoded PCR primers are listed in Additional file 2,
Sections S2 and S3). The degree of similarity between
these barcodes or barcoded PCR primers and sampled
subsequences was established by counting the frequency
of their minimum Sequence-Levenshtein distances δ (see
Equation 1).
Formally, the frequency function f (δ) of the minimal

Sequence-Levenshtein distances δ between a set S of
sequences and a set BC of barcodes or barcoded PCR
primers was defined as:

f (δ) = |{s|s ∈ S, δ(BC, s) = δ}| (1)

(The frequency of the minimal Sequence-Levenshtein
distance δ is the number of sequences s that have such a
minimal Sequence-Levenshtein distance with the set BC).
The cumulative distribution function of f (δ) was

defined as:

F(δ) =
δ∑

i=0
f (i)

Simulation of barcoded and orphaned PacBio reads
We begin with a set of experimental reads Semp which
we want to simulate for further analysis (c.f., Figure 1, we
explain the generation of such a set Semp in detail in the
experimental section “Experimental validation”).
The set Ssim of simulated reads is a union between a set

Ssimbarcoded of barcoded reads and a set S
sim
orphaned of orphaned

reads. The purpose of the simulated read set Ssim is to
closely resemble the properties of the targeted set of the
empirical reads Semp in regards to the minimal distances
δ between the reads and the respective reference barcode
set BC.
Simulations of reads must to be individually adapted

to the particular simulated technology. Here, we target
PacBio Continuous Long Reads (also called “subreads”
and henceforth just “reads”) for which we developed our
own read simulation. Our simulation assumptions rely on
findings of Ono et al. [28]:

• accuracies of reads are normally distributed
• probabilities of sequencing errors per base are

uniformly distributed over positions
• probabilities for insertions, deletions, and

substitutions are possibly unequal
• differences in spatial distribution patterns of

insertions, deletions, and substitutions are negligible

Hence, the following parameters governed the compo-
sition and traits of the read sets:

• The number m of reads in the set Ssim
• The fraction π1 of reads that started with a barcode
• The average base sequencing error rate μerror
• The standard deviation of the base sequencing error

rate σerror
• The ratios R = {RINS,RDEL,RSUB} of insertions,

deletions, and substitutions.

Set Ssim of all simulated reads was thus described as:

Ssim(m,π1,μerror , σerror ,R) = Ssimbarcoded(�π1 · m�,μerror , σerror ,R)

∪ Ssimorphaned(�(1 − π1) · m�)

In the simulation and for a given set of parameters
m,π1,μerror , σerror , and R, sets Ssimbarcoded and Ssimorphaned were
generated as follows:
For set Ssimbarcoded, we constructed �π1 ·m� reads by choos-

ing barcode reference sequences randomly from set BC
and appending the reference sequence of the experimen-
tally targeted insert. We then mutated the bases of each
read randomly. The per-base sequencing error probabil-
ity was Perror ∼ N (μerror , σerror) with Perror being fixed for



Buschmann et al. BMC Bioinformatics 2014, 15:264 Page 6 of 16
http://www.biomedcentral.com/1471-2105/15/264

each sequence. The respective probabilities of individual
operations OP ∈ {INS,DEL, SUB} were then

POP = Perror · ROP
RINS + RDEL + RSUB

Set Ssimorphaned of orphaned reads was generated by choos-
ing �(1 − π1) · m� random 50-nt-long subsequences of
the experimental reads Semp starting after position 40.
We chose this particular simulation set as we could rea-
sonably assume these subsequences do not start with a
barcode and have almost identical characteristics to the
experimental orphaned reads.

Frequency of test statistic in simulated data
The frequency distribution of such a set Ssim was the sum
of the frequency distributions of both sets Ssimbarcoded and
Ssimorphaned :

f sim(δ) = f simbarcoded(δ) + f simorphaned(δ)

For the purpose of this method, we defined the fre-
quency distribution of barcoded reads as the estimate of
the alternative hypothesis distribution and the frequency
distribution of orphaned reads as the estimate of the null
hypothesis distribution, so that

f̂1(δ) = f simbarcoded(δ)

and

f̂0(δ) = f simorphaned(δ)

The cumulative distribution functions were respectively

F̂1(δ) = Fsim
barcoded(δ)

and

F̂0(δ) = Fsim
orphaned(δ)

The estimated cumulative distribution function was
then given by:

F̂(δ) = F̂0(δ) + F̂1(δ)

Fitting simulated read sets to empirical read sets
In the next step, we fitted one set of simulated reads Ssim
to the set of empirical reads Semp. Parameter m was pre-
determined by the number of reads in the empirical data
set (m = |Semp|).
The parameter R of ratios between insertions, deletions,

and substitutions had to be supplied by the user, for exam-
ple, based on information supplied by the manufacturer
or experimentally derived knowledge. We chose to esti-
mate these ratios from those reads that had a very high
likelihood of having been barcoded, identified as reads
with a minimal distance of exactly δ = 1 to the set of
barcodes. For these reads we determined the sequenc-
ing errors that corrupted the barcoded reference primer

sequence through alignment and calculated the ratios of
sequencing error types.
To fit one set of simulated reads to the set of empir-

ical reads, we used an evolutionary algorithm to search
for the remaining parameter set (π1,μerror , σerror) that best
explained the encountered frequency of similarities f emp

of the experimental sequences [29]. The fitness (i.e., the
eligibility) of a particular parameter set was the root mean
square (RMS) Euclidean distance between the simulated
frequency distribution of minimal barcode distances f sim
and the experimental frequency distribution of barcode
distances f emp:

fitness(Ssim) =
√√√√

∞∑
δ=0

(f sim(δ) − f emp(δ))2

The parameter set with the best observed fitness (i.e.,
lowest RMS) was selected to generate the simulated data
set that was the closest to the empirical data set.

Tail area-based false discovery rate
By adjusting the highest acceptable minimal distance δt
(the so called threshold) between a set of reads and set of
barcodes to distinguish between barcoded and orphaned
reads, we manipulated (i.e., controlled) the false discovery
rate of detecting barcoded reads. We defined the tail area-
based false discovery rate (i.e., the fraction of barcode calls
that are incorrect) as follows:

ˆFdr(δt) = F̂0(δt)
F̂(δt)

For the interpretation of biological results, we preferred
to work with precision values (i.e., the fraction of barcode
calls that are correct) which were given by:

precision(δt) = 1 − ˆFdr(δt)
Sensitivity (i.e., the fraction of sequences with actual

barcodes that are correctly called) was then defined as:

sensitivity(δt) = F̂1(δt)
F̂1(∞)

Precision and sensitivity of assigning reads to samples
Experimental reads are classified as starting with a bar-
code when their minimal barcode distance δ is equal to
or below a chosen threshold distance δt . We equivalently
simulated this form of detection of barcoded reads by cal-
culating an estimated set of barcoded reads Ŝsimbarcoded(δt) as
a subset of all simulated reads Ssim:

Ŝsimbarcoded(δt) = {
s|s ∈ Ssim, δ(BC, s) ≤ δt

}

In this step, we decoded the (possibly altered) barcode
that starts the read and assign the read to its original sam-
ple accordingly. When decoding only those reads in the
set Ŝsimbarcoded(δt) and comparing the decoded barcodes with
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the reference barcodes used to generate set Ssimbarcoded , we
defined precision (i.e., the fraction of reads with detected
barcodes that were correctly assigned to their original
samples) and sensitivity (i.e., the fraction of all reads that
were correctly assigned to their original samples) as:

precision(δt) =
∣∣reads correctly assigned to original samples

∣∣
∣∣∣Ŝsimbarcoded

∣∣∣

sensitivity(δt) =
∣∣reads correctly assigned to original samples

∣∣
|S|

Experimental validation
To validate the Fdr approach, we asked whether we
could successfully identify single-nucleotide variants
(SNVs) within the genomic portion of samples that
were sequenced in multiplexed fashion. C57BL/6 murine
melanocytes were plated in 150 mm culture dishes at
10, 000 − 40, 000/cm2 and 18 hrs later they were exposed
in PBS to 0, 500, 1000, 2000, or 3000 J/m2 of nar-
rowband UVB radiation (principally 311 ± 2nm; Philips,
Eindhoven, Netherlands). After allowing 2-4 days for
mutation expression (∼ 2 cell doublings), cells were
incubated for 7 or 14 days in medium containing 10
mM ouabain octahydate (g-strophanthin, Sigma, St Louis,
MO) to select for cells mutated in the Na+/K+-ATPase
sodium pump [30,31]. Clones larger than 100 cells were
isolated and expanded. For 20 of the clones, total RNAwas
isolated, reverse transcribed to cDNA, and PCR ampli-
fied. Because UV mutation frequencies are ∼ 10−4 per
gene, each clone is expected to have only 1 mutation
(SNV) in the Atp1a1 gene. A heterozygous mutation con-
fers ouabain resistance, so the SNV is expected to be
present in ∼ 50% of the mRNAmaterial, with the remain-
der wildtype. PCR amplicons were sequenced by PacBio
single-molecule sequencing as follows.
Twenty barcoded PCR primer pairs were synthesized

for the murine Atp1a1 gene. Each pair consisted of one
7-nt-long barcode 5′NNNNNNN3′ (details can be found
in Additional file 2, Section S3) followed by the 20-
nt-long sequence 5′GGGAGCTGCTCTCTTCTCTT3′ (for-
ward primer) and the same 5′NNNNNNN3′ followed by
5′TATAAACCTTGCCCGCTGTC3′ (reverse primer).
Total RNA was isolated from cells (RNeasy Mini Kit,

Qiangen, Valencia, CA), reverse transcribed to cDNA
(SuperScript III First-Strand Synthesis, Invitrogen,
Carlsbad, CA), and the 3.4 kb Atp1a1 cDNA spanning
the start and stop codons amplified by PCR (PrimeSTAR
Max DNA Polymerase, TaKaRa, Kyoto, Japan) and gel
purified without UV illumination. The pico green assay
(Invitrogen) was used to mix equal DNA amounts from
the 20 samples, and the mixture was ligated to Pacific
Biosciences (Menlo Park, CA) SMRT adapters to create
circular molecules for single-molecule sequencing in two

SMRT cells using Continuous Long Read mode [13]. Raw
reads were pre-processed by PacBio by cutting of raw
reads at the sequencing adapters to generate so called
subreads, henceforth just “reads”.
A complete and unaltered forward read would be

the concatenation of a barcode, the forward primer,
the Atp1a1 transcript sequence, the reverse complement
primer, and the reverse complement of the same barcode.
In practice, reads typically begin internal to the Atp1a1
transcript sequence.
For detection of barcoded reads, we assembled the

set Semp of all empirical reads as the union of the read
sequences and their reverse complements, because a com-
plete read was supposed to have the identical barcode
both at the 5’ and 3’ end. The frequency of minimal Dis-
tances δ between Semp and a set of reference barcodes or
reference barcoded primers BC is named f emp and calcu-
lated as described in subsection “Similarity of barcodes
and barcoded primers to unbarcoded mRNA and DNA”.
Final assignment of reads to their respective samples

was executed by finding the reference barcode with the
minimal Sequence-Levenshtein distance to either the 5’
or 3’ end of the read, provided this distance was below or
equal to the previously determined threshold δt . If no such
reference barcode was found or more than one reference
barcode with such a minimal distance was found, the read
was not assigned to any sample.

Variant calling
The reads of the 20 samples were stripped of their bar-
codes and then aligned to the Mus musculus reference
mRNA using the software package bwa-mem (version
0.7.8, [25,32]). Variant calling was performed using the
software package SAMtools (version 0.1.19, [33]). Param-
eter details are elaborated in Additional file 2, Section S4.
Variants with a Phred quality score below 30 (p = 0.001), or
less than 20 high-quality aligned reads (DP4) were filtered
out.

Results
Coincidental barcode similarities in the referenceMus
musculus DNA database
All our experimental and simulation barcode sets were
designed to correct one insertion, deletion, or substitu-
tion error. However, DNA sequences of such length are
frequently similar to naturally occurring subsequences of a
Mus musculus genome. Figure 2(A) depicts the frequency
of the similarity between a set of 150 [8,3]. Sequence Lev-
enshtein barcodes and 10 million random 50-nt-long sub-
sequences of the Mus musculus reference DNA database.
In 1,080,761 cases one of the reference barcodes was equal
to the reference subsequence or had a distance of only
one (dSL(barcode, subsequence) ≤ 1). Using this arbitrary
threshold of δt = 1 (the error rate that the barcode set
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Figure 2 Similarities between 10million random subsequences of theMusmusculusDNA database and barcode sets of different sizes and
barcode lengths. (A) Distribution of minimal distances f (δ) between 150 [8,3] barcodes and subsequences. The separation by a naive threshold
δt = 1 is illustrated by a vertical dashed line. (B) Falsely detected subsequences as proportion of all tested subsequences based on a threshold of
δt = dSL(barcode, subsequence) ≤ 1 for different sizes of the barcode set and barcodes of length 10 nt, 11 nt and 12 nt (C) Falsely detected
subsequences as proportion of all tested subsequences based on a threshold of δt = dSL(barcode, subsequence) ≤ 1 for different barcode lengths.

was designed to correct) to distinguish between barcoded
and unbarcoded subsequences, we would have wrongly
identified approximately 10.8% of subsequences as having
been barcoded (which corresponds to 0% precision or a
100% Fdr). We will call this threshold δt = 1 the naive
threshold and compare it to the Fdr method that we have
developed.
Analyzing [12,3] barcode sets of different sizes (rang-

ing from 20 barcodes to a maximum of 20,810 barcodes),
we found a linear increase in proportion of subsequences
that were falsely detected as barcoded based on the
naive threshold of δt = 1. While only 428 subsequences
(0.00428%) were falsely detected as barcoded when com-
pared to the set of 20 barcodes, the ratio increased to
8.34% when the maximum set of 20,810 barcodes was
tested (Figure 2(B)). The linear increase in proportion of
falsely detected subsequences holds true for other barcode
sets of 10 nt and 11 nt in length.
For a constant set size, the proportion of falsely

detected subsequences decreased when the barcode
length increased (Figure 2(C)). When using a set of 20
short [6,3] barcodes, 19.3% of subsequences were falsely
detected to be barcoded, while this was true in approxi-
mately 0.004% of the subsequences when using the longer
[12,3] barcode set that had the same number of elements.
The relationship between barcode length and wrongly
detected subsequences holds true for different barcode
set sizes. If no information about inserts are available
and only known barcode sequences are used for barcode
detection, the results suggest to use at least 10-nt-long
barcodes for 20 samples, 11-nt-long barcodes for 50 sam-
ples, 12-nt-long barcodes for 150 samples and even longer
barcodes for larger sample sizes. It should be noted that
longer barcodes come with problems of their own, as
more mutations aggregate in longer barcodes. We will
show in Section “Influence of attached reference PCR
primer sequence on detection of barcoded reads” that a

shorter barcode can be combined with knowledge about
the insert template to alleviate the problems addressed in
this section.

Coincidental and genuine barcode similarities in Atp1a1
sequencing data
In the experimental data, the expected complete size of
the Atp1a1 insert was 3,388 bp (including 7-nt-long bar-
codes at both ends). We collected 101,878 reads with an
average length of 1,765 bp, and 95% of the reads were
between 136 bp and 3,796 bp long. 89% of the reads were
shorter than the expected complete coding sequence frag-
ment and consequently many reads must have lacked a
complete PCR primer and barcode at one or both ends.
Reads longer than the targeted insert can also indicate
other problems, for example a missed split at the SMRT
adapter that may have led to absent or non-detectable
barcodes.

Coincidental similarities in the Atp1a1 genome
Figure 3(A) shows the distribution of minimal distances
between the unbarcoded transcript of Atp1a1 and the
experimental [7,3] reference barcode set. Correspond-
ingly, Figure 3(C) depicts the distribution of frequen-
cies between the unbarcoded transcript of Atp1a1 and
the set of complete barcoded 27-nt-long reference PCR
primers.
As in the previous examples of coincidental barcode

similarities, using the [7,3] barcode set and an arbitrary
threshold distance of δt = 1 would have led to detecting
barcodes incorrectly in approximately 6% of the subse-
quences (see Figure 3(A)). With the complete barcoded
27-nt-long reference PCR primer, similarities to subse-
quences of the Atp1a1 transcript were much smaller and
more seldom, with no subsequence having had a minimal
distance of 3 or smaller to the set of barcoded PCR primers
(Figure 3(C)).
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Figure 3 Frequencies of minimal distances. Frequencies of minimal distances from members of the [7,3] experimental reference barcode set or
members of the 27 nt primer sequence set to randomly chosen subsequences of the unbarcoded gene Atp1a1 (A and C, respectively), or minimal
distances to experimentally observed reads of Atp1a1 (B and D, providing f emp(δ)).

Coincidental and real similarities in experimental
Atp1a1 reads In the experimentally obtained Atp1a1
sequence reads, at least a certain percentage of reads
must have actually started with a barcode. We expect the
reads to be a complex mix of correctly barcoded unal-
tered inserts, inserts with present but corrupted barcodes,
and accidentally similar sequences. We repeated the pre-
vious similarity analysis with all experimental reads and
their reverse complements, depicted as a histogram in
Figure 3(B); and the minimal distance to each of the 40
27-nt-long barcoded PCR primers is shown in Figure 3(D).
As Figure 3(B) shows, there was no obvious visible

separation value to distinguish barcoded from orphaned
reads when using solely the [7,3] barcode set. Notably, the
relative frequency of barcodes with no distance or a dis-
tance of 1 to the read was substantially higher than in
Figure 3(A), yet it is unclear how many of the actual bar-
coded reads we could accurately detect by using a simple
threshold value of δt = 0 or δt = 1.
In previous work, we have shown that in some situations

it was possible to correct altered barcodes with a higher
distance than the designated fault tolerance of the code
(i.e., a distance higher than 1 in this particular [7,3] bar-
code set), because the average distance between reference

barcodes was higher than 3 [7]. However, judging from
the distribution depicted in Figure 3(A), a threshold of
δt = 2 would have included too many orphaned reads:
at least 49% of the reads would not have started with an
actual (correct or altered) barcode and these reads would
have been assigned to random clones, putting the variant
calling step at risk.
In Figure 3(D), we depict the frequencies of minimal

distances between the set of 27-nt-long barcoded refer-
ence PCR primers and the reads. A bi-modal distribu-
tion stands out, with one peak at a minimal Sequence
Levenshtein distance δ = 2 and another peak at a min-
imal Sequence Levenshtein distance of δ = 13. The left
peak is at approximately half the mean Sequence Leven-
shtein distance between every barcoded reference PCR
primer of the used set (including PCR primer, dmean ≈
4.26, �dmean/2� = 2) and the right peak is at approx-
imately half the length of the barcoded reference PCR
primer (n = 27, �n/2� = 13). The right peak is visibly con-
sistent with the distribution in Figure 3(C), so we assumed
this to be the distribution of the orphaned reads. The left
distribution was accordingly assumed to be the distribu-
tion of correct and altered barcoded reads (i.e., barcoded
reads). To summarize, a search for 7-nt-long reference
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barcodes in experimental sequencing data is problematic
as no obvious separation could be found to distinguish
barcoded and orphaned reads, even though such separa-
tion was clearly visible following a search for the barcode
reference sequence with the attached PCR primer refer-
ence sequence. Defining a strategy to separate these two
distributions for both the reference barcode set and the
barcoded reference PCR primer set, and quantifying the
quality of this separation was therefore the next important
step.

Detection of barcoded reads by Fdr
Figures 3(C) and (D) suggest that there is an extremely low
likelihood to find orphaned reads that have a minimal dis-
tance of only 1 to one of the 27-nt-long barcoded reference
PCR primers. We therefore used these particular reads
to determine the ratio between insertions, deletions, and
substitutions in this particular set of experimental data.
We found that 55% of sequencing errors were insertions,
36.2% were deletions, and 8.8% were substitutions.
Figure 4 depicts the distribution f sim(δ) of the simula-

tion sequences Ssim fitted to distribution f emp(δ) of the
empirical sequences Semp. The left distribution with a
peak at δ = 2 turned out to be the distribution of barcoded
reads (f simbarcoded(δ)), while the right distribution with a peak
at δ = 13 turned out to be the distribution of orphaned
reads (f simorphaned). The obtained results were not noticeably
different when using default ratios of insertions, deletions,
and substitutions of 1/3, 1/3, 1/3 as opposed to using the
empirically detected ratios. Nonetheless, to be as specific
as possible we continued the remaining analysis with the
empirically discovered ratios of errors.
We report that for this fit of simulated distributions

to the empirical distribution the percentage of barcoded
reads (π1) was approximately 34%. On average, μerror ≈
12.2% of the bases were altered by either an insertion, a
deletion, or a substitution. This particular base sequenc-
ing error rate varied with a standard deviation of σerror ≈
4.8% between reads. The parameter solution was found
reliably in every repetition of the simulation after a suffi-
cient number of (usually 30-50) iterations to within a very
small tolerance (< 2 decimal digits). A common pitfall
of evolutionary algorithms is the existence of “local solu-
tions” (i.e., solutions with a monotonic score better than
the immediate surrounding that is not the global solu-
tion). No such local solution was found in our simulations.
The most resistant and reliable parameter found was the
proportion of barcoded reads, as the form of the right
distribution (peak at about δ = 13) only depended on
the proportion of barcoded reads (with the exception of
extreme cases). Thus, the behaviour of the algorithm was
very robust when applied on our data set.
For this method, any read with a minimal Sequence-

Levenshtein below or equal to a specific value (the

Figure 4 Frequency distribution of similarities of experimental
reads and simulated reads to the [7,3] barcode set and to the
27-nt-long barcoded PCR primer set. The orange bars depict the
frequency distribution of the minimal distances of the barcode or
barcoded PCR primer set to the experimentally established reads
f emp(equal to Figure 3(B) resp. (D)). The slate blue and lime green bars
depict the frequency distribution derived from a simulation, with the
slate blue bar depicting the distribution of barcoded reads f simbarcoded
and the lime green bar the distribution of orphaned reads f simorphaned .
Bars of simulated frequencies were stacked.

threshold δt) was considered to be barcoded (see
Methods “Tail area-based false discovery rate” for details).
The simulation distribution allowed us to estimate the
precision (1 - Fdr) and sensitivity of detecting barcoded
reads in the experimental sequencing data (Figure 5)
for every possible threshold value. This simulation was
repeated using both the [7,3] reference barcode set
and the set of 27-nt-long barcoded reference PCR
primers.



Buschmann et al. BMC Bioinformatics 2014, 15:264 Page 11 of 16
http://www.biomedcentral.com/1471-2105/15/264

Figure 5 Precision (1 − Fdr) and sensitivity of detection of barcodes in reads and their reverse complements. Tests were conducted with
the [7,3] reference barcode set (solid points) and the barcoded 27-nt-long reference PCR primers (empty triangles) (A) Precision of detection of
barcoded reads for different thresholds (B) Sensitivity of detection of barcoded reads for different thresholds (C) Precision and sensitivity plotted
against each other.

For thresholding based on the [7,3] barcode set, the pre-
cision of detecting barcoded reads was very high (> 99%)
at the threshold of δt = 0 (exact match), while sensitiv-
ity of detection of barcoded reads stood at 46%. The use
of such a threshold would have been ill-advised, as the
purpose of using the error-correcting barcode was to cor-
rect at least one insertion, deletion, or substitution. At a
threshold of δt = 2 detection precision fell below 53%.
The compromise threshold of δt = 1 put the sensitivity of
detection at approximately 82%, with a precision of 89%.
Using the complete barcoded 27-nt-long PCR primer

reference sequence instead of the barcode reference
sequence increased the quality of barcode detection sub-
stantially. The usage of the 27-nt-long barcoded PCR
primer allowed a higher precision at equal sensitivity and
reached a higher sensitivity at equal precision compared
to using the [7,3] barcode set. The distance threshold δt =
9 was the highest to have a precision of more than 95%. At
this threshold, detection sensitivity surpassed 99%.

Influence of attached reference PCR primer sequence on
detection of barcoded reads
Knowing that using the complete barcoded PCR primer
reference sequence increased the quality of barcode
retrieval, we tested detection of barcodes using con-
catenations of barcode reference sequences plus adjacent
primer reference sequence fragments of different lengths,
pictured in Figure 6. Sensitivity of assignment to exper-
iments increased considerably with the use of the 17-
nt-long barcoded reference PCR primer fragment (i.e.,
attaching 10 nt of the primer reference sequence to the
reference barcodes) rather than only the 7-nt-long refer-
ence barcode set. Using longer barcoded reference PCR

primer fragments increased the detection rate marginally,
and it plateaued at approximately 20-nt-long barcoded
reference PCR primers. As the computational cost did
not prohibitively increase with increased lengths of the
barcoded reference PCR primer sequence (computational
complexity of calculating precision and sensitivity grows
approximately quadratically over the length of the bar-
coded primer sequence), the full known barcoded primer
sequence could be used. Although some implementation
adaptions to the sequence simulation of Method 5 may
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Figure 6 Sensitivity of detecting reads with barcodes depending
on length of barcoded reference primer. Sensitivity was calculated
for two different precision levels over barcoded reference primer
lengths from 7 nt (just the reference barcode) to 27 nt (7 nt reference
barcode plus 20 nt of reference primer appended). The staircase effect
occurs due to discrete threshold steps and fixed precision levels.
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be necessary for very long PCR primer sequences. In our
particular case, a 20-nt-long barcoded PCR primer would
have been sufficient.

Assigning barcoded reads to their original samples
Detecting barcoded reads is only the first step in the
demultiplexing protocol. In the next step, barcodes are
decoded (i.e., error-corrected to find the reference bar-
code from which the corrupted barcode originates) and
reads are assigned to the correct original sample.
Figure 7 depicts the precision and sensitivity of this

procedure. The highest sensitivity reached 53% when no
thresholds were applied. Without a threshold, approxi-
mately 21.4% of the sequences were assigned to the wrong
sample (Figure 7(C)). At a threshold of δt = 0 and when
using the [7,3] barcode set, only 28% of reads could be
assigned to their samples at a precision higher than 99%.
For a threshold of δt = 1, sensitivity increased to 47% at
a precision of 90%. The next higher threshold of δt = 2
saw precision drop to 74.6% with an increase in sensitiv-
ity to 49.5%. As in the previous analysis, the usage of the
set of 27-nt-long barcoded reference PCR primers allowed
a higher precision at equal sensitivity or reached a higher
sensitivity at equal precision compared to using the [7,3]
barcode set for assigning reads to samples (Figure 7(C)).
For the variant analysis of the experimental data, we

decided on a threshold based on the set of barcoded 27-
nt-long PCR primers that balanced high sensitivity with
a high precision. We took into consideration that insuffi-
cient precision could have led to false variant calling, and
insufficient sensitivity could have led to no variant call-
ing at all. In the case of this experiment, sensitivity barely
increased at a threshold higher than 7, and precision was

very high (≥ 0.98). At that threshold, we could correctly
assign 91% of reads that actually contained at least one
barcode.
Of the 101,878 reads, we assigned 55,496 (≈ 54.5%)

to their respective samples. An unambiguous assignment
was not possible for 4,209 (≈ 4.1%) of the remaining
reads which had different barcodes with the same mini-
mal Sequence Levenshtein distance attached to the 5’ and
3’ end. The remaining 42,173 (≈ 41.4%) reads were clas-
sified as having no barcode at either end. Importantly, the
median length of reads without any barcode was 1,248 nt,
compared to a median length of 2,000 nt for those reads
with at least one barcode at either end (see Figure S1 in
Additional file 3). This supports the hypothesis that the
former had genuinely no barcode at either end of the read.
The median number of reads assigned per sample was
2,501.5 (mean 2,774.8, min 669, max 5,026).

Variant calling
A search for Atp1a1 sequence variants in the experimen-
tal data helped us to examine if our method was actually
applicable to the real experimental design and how well
it performed at avoiding cross-contaminating samples or
reducing the number of usable sequence reads per sam-
ple. Detection of variants revealed five distinct Single
Nucleotide Variants (SNV ) in the gene Atp1a1 in 18 of the
20 original samples and two further SNV in the remain-
ing two samples (summarized in supplement Table S1
of Additional file 2). The former detected variants were
consistent with the hypothesis of a single mutation in
50% of the mRNA material per sample. The SNV having
two base changes one nucleotide apart, observed in two
clones, is consistent with non-tandem double mutations

Figure 7 Precision and sensitivity of assigning reads to samples. Tests were conducted with the [7,3] barcode set (solid points) and the set of
barcoded 27-nt-long PCR primers (empty triangles) (A) Precision of assigning reads to samples for different thresholds (B) Sensitivity of assigning
reads to samples for different thresholds (C) Precision and sensitivity plotted against each other.
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occasionally caused by polymerase errors at and near a
single DNA damage site after ultraviolet light.
Each variant call was supported by a large number of

high-quality aligned reads, with coverage ranging from
184 to 195 (median 751.5 copies, mean 813.4 copies).
The quality of variant calls was consistently high, with all
Phred quality scores reaching 225. (Variant call files for
δt = 9 are provided as Additional file 4 to this article.)
No changes in called variants were found when slightly

lower or higher thresholds were tested (δ ∈ {7, 8, 10, 11}).
As Figure 7(A) shows, the 27-nt-long barcoded PCR
primer is very resilient to small changes in the threshold.
Still, a close examination of aligned reads assigned with
different thresholds (using genome viewer IGV) showed
signs of cross-contamination with reads that had a differ-
ing SNV. A screenshot is available in Additional file 5.

Discussion
Multiplexed deep sequencing technologies are popular
among researchers due to high information output and
steadily decreasing processing time and costs. In mul-
tiplexing experiments, proper design of the barcodes is
highly important. Careful consideration must be given to
their physico-chemical and biological properties as well
as to their error-correction capabilities. Here we demon-
strated that using short barcode sequences exclusively is
inefficient at assigning sequence reads to their respec-
tive DNA/RNA samples at high precision and sensitivity.
Instead, additional information is needed such as the posi-
tion of the barcode or adjacent primer sequences. Avail-
able deep sequencing platforms differ in their approaches
to this problem. In Illumina HiSeq, for example, the
genomic insert and barcode sequence are placed on dif-
ferent ends of an “index read primer” so that the sequence
and the barcode are read separately [10,11,34]. However,
this approach is not completely error-free. In addition,
using positional information is not always possible either,
since that technique is restricted to specific platforms and
applications. If that technique is not available, a barcode
is likely attached to the amplification/sequencing primer
so that the primer sequence information can be used for
barcode detection. Although this approach looks intu-
itively obvious, it is not clear what can be taken as the
optimal solution for the choice of barcodes, primers, and
detection algorithms. Additionally, sequencing errors add
more noise to the data, which in turn requires proper
thresholding for correct sequence assignment.
Our presented solution is built on the idea of control-

ling the tail area-based false discovery rate Fdr, and offers
researchers a versatile tool to find an optimal threshold
for detecting barcoded sequences. Additionally, it gives
researchers a reliable impression of the quality of their
threshold decision and the trade-off between precision
and sensitivity, as well as facilitating further conclusions

on the validity of the demultiplexing processing step. The
method is generally usable for this particular problem, yet
it needs to be modified to the specific technology and
circumstances. The part of the method that needs to be
adapted is the simulation of reads. Read simulation algo-
rithms and analyses of read properties of common Next
Generation Sequencing technologies can be found in the
literature [35-37].
The approach of controlling the False discovery rate

for a discrete test is new and still in an experimental
stage. Nonetheless, recent development in the field of Fdr
controlling procedures give the impression that exploit-
ing the discreteness of the data increases reliability and
sensitivity [38].
In this work, we focused on the specific advan-

tages and issues of the PacBio SMRT platform, a next
generation technology specialized in sequencing single
large molecules [13]. Our protocol preferred sequencing
primers attached to both ends of the DNA target. In this
setup, barcodes can be easily added to the 5’-end of the
PCR primers (DNA can be amplified before sequencing)
so that a complete read has two identical barcodes from
each sequencing end. In reality, for several reasons actual
reads are quite infrequent in the expected form. One out
of two barcodes is frequently missing. Technologically,
with PacBio SMRT, the extension of the sequence by the
immobilized polymerase and the reading may not be well
synchronized. If the polymerase has been too fast or the
deliberate time delay too long, the start of the insert could
have been missed together with the barcode and the PCR
primer. In some cases, the polymerase does not continue
the reaction all the way to the end of the sequence. This
means that the reverse complemented barcode at the end
of the sequence may be missing as well [14,15]. Finally,
occasionally irrelevant mRNA/DNA fragments can be
amplified during the PCR which allows further irrelevant
reads without any barcodes to occur.
Having calculated similarities between barcodes or bar-

coded primers to the Mus musculus reference genome
database, we see that longer barcode sequences generally
show less randomly occurring similarities. This advan-
tage is derogated by the number of barcodes used in
the experiment: More barcodes increase the likelihood of
coincidental similarities. The solution to this problem is
to use longer barcodes or to concatenate barcodes with
adjacent primer sequences.
Here we demonstrate the major dilemma of the opti-

mality of the barcode design and identification. On the
one hand, barcode sequences should be short and dis-
tinct to minimize different kinds of sequencing errors. On
the other hand, a short barcode sequence is not unique
in a genomic context and requires additional informa-
tion for correct identification. For example, the barcode
sequence itself can be extended by adding an adjacent
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primer sequence. This minimizes the false discovery rate
due to decreased risk of coincidental similarities.
In this work, we found that using additional information

from the PCR primer sequence improved barcode recov-
ery tremendously. In future work, the experiment should
be designed to handle the case where no such information
is available. Firstly, adding an identical artificial sequence
(a so called stop-word) to each barcode sequence solves
the problem presented by redundancy of the words in big
genomes. The best choice of stop-words is based on its
dissimilarity to the targeted genome or insert. Further-
more, it is conceivable to generate Sequence-Levenshtein
distance-based barcodes that, in combination with a
known stop-word, creates an increased mean distance,
which further increases the barcode set’s error-resilience.
Secondly, sets of longer barcodes with error-correction
capabilities beyond one error can be generated, which
are beneficial to the overall statistics of the true barcode
recovery.
The Fdr has to be calculated once per experimental

data set, which includes the the simulation of reads and
matching them to the experimental data. Computational
complexity of the method grows quadratically over the
length of the used barcode or barcoded primers.We found
that longer barcoded primers increase sensitivity com-
pared to shorter barcoded primers, while computational
time was moderate in all cases. Additionally, we found
that the increase in sensitivity plateaued for very long
barcoded primers. Therefore, we believe that using amod-
erately long barcoded primer (≈ 20nt at 20 barcodes)
offers the best reachable sensitivity performance and will
still be computational feasible.
The statistical approach described here provides a solid

method for finding an optimal threshold to separate bar-
coded and orphaned reads in real sequencing data sets. In
addition to our main theme, the sample assignment of the
genetic material was sufficiently precise and sensitive to
generate a large number of high-quality and well-aligned
reads. Consequently, exactly one SNV in the majority of
samples and two SNVs in the remaining samples were
found. The structure of the results indicated very low
cross-contamination of insert read assignments caused
by incorrect barcode calls and high-quality calls due to
the large number of aligned reads at the respective SNV
position.
PacBio offers their ownmethod for the detection of bar-

codes in circular consensus reads (CCS) as part of their
Quiver analysis software [39]. It is based on scores gen-
erated by a Hidden Markov Model (HMM). Our method
can be considered as an alternative approach to the same
problem. In addition it offers additional benefits, such as
a statistical insight in the reliablity of the decision in the
context of hundreds of thousands of reads as well as the
systematic discovery of an eligible threshold.

Conclusion
We presented a method for enhancing the detection of
barcoded reads that can be adapted to different sequenc-
ing technologies and protocols. The method is based on
false discovery rate statistics that were designed to assess
the likelihood of true positives in an ocean of coinciden-
tal positives. Based on the precision-sensitivity estimates
derived with our method, individual users can decide on
a proper cutoff (or threshold) to detect sequence reads
as being barcoded. Users can quantify the quality of the
assignment of reads to samples. Additionally, they can
select their particular trade-off between precision and
sensitivity, thereby increasing the confidence in the results
even in highly error-prone situations. Depending on the
outcome, performance of the method can be further
improved by the use of longer barcodes with higher error-
correcting properties, or elongating the barcode by uti-
lizing adjacent adapter or PCR primer sequences during
computational detection to increase sensitivity.

Additional files

Additional file 1: Dynamic algorithm of sequence-Levenshtein
distance. A fast algorithm to calculate the Sequence-Levenshtein distance
between sequences A and B.

Additional file 2: Supplement. The supplement contains an exact
definition of the Sequence Levenshtein distance, the list of experimental
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