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Abstract

Background: Obtaining an accurate sequence alignment is fundamental for consistently analyzing biological data.
Although this problem may be efficiently solved when only two sequences are considered, the exact inference of
the optimal alignment easily gets computationally intractable for the multiple sequence alignment case. To cope
with the high computational expenses, approximate heuristic methods have been proposed that address the
problem indirectly by progressively aligning the sequences in pairs according to their relatedness. These methods
however are not flexible to change the alignment of an already aligned group of sequences in the view of new
data, resulting thus in compromises on the quality of the deriving alignment. In this paper we present ReformAlign,
a novel meta-alignment approach that may significantly improve on the quality of the deriving alignments from
popular aligners. We call ReformAlign a meta-aligner as it requires an initial alignment, for which a variety of alignment
programs can be used. The main idea behind ReformAlign is quite straightforward: at first, an existing alignment is used
to construct a standard profile which summarizes the initial alignment and then all sequences are individually re-aligned
against the formed profile. From each sequence-profile comparison, the alignment of each sequence against the profile
is recorded and the final alignment is indirectly inferred by merging all the individual sub-alignments into a unified set.
The employment of ReformAlign may often result in alignments which are significantly more accurate than the starting
alignments.

Results: We evaluated the effect of ReformAlign on the generated alignments from ten leading alignment methods
using real data of variable size and sequence identity. The experimental results suggest that the proposed meta-aligner
approach may often lead to statistically significant more accurate alignments. Furthermore, we show that ReformAlign
results in more substantial improvement in cases where the starting alignment is of relatively inferior quality or when the
input sequences are harder to align.

Conclusions: The proposed profile-based meta-alignment approach seems to be a promising and computationally
efficient method that can be combined with practically all popular alignment methods and may lead to significant
improvements in the generated alignments.
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Background

The alignment of multiple DNA, RNA or Protein se-
quences is of major importance for a variety of biological
modelling methods, including the estimation of the
phylogenetic tree of the sequences and the prediction of
their structural, functional and/or evolutionary relation-
ships [1]. In addition, the recent advances in rapid, low-cost
sequencing methods, have resulted in the accumulation of
large amounts of molecular data to be processed, making
thus the need for fast and accurate multiple sequence
aligners even more imperative [2].

A widely used approach to cope with the Multiple Se-
quence Alignment (MSA) problem, is the employment
of a computational formulation comprised of two major
components, namely an objective function [3] able to
quantify the degree of similarity of a given alignment
and an optimization procedure that targets at identifying
the optimal alignment based on the underlying objective
function [4]. Concerning the former component, the
Sum-of-Pairs scoring model (SP) [4,5] remains amongst
the most popular choices [6-8].

The maximization of the SP score is usually performed
using dynamic programming. For the pairwise alignment
case, an optimal (numerically but not necessarily biologic-
ally) solution can be found within reasonable time. How-
ever this does not hold for the multiple sequence alignment
case, where it has already been shown [9-12] that obtaining
the optimal alignment using the SP score is NP-hard. To
overcome the computational intractability of the MSA
problem, a large number of efficient heuristic algorithms
have been proposed with the most popular being the pro-
gressive alignment approach [13-16].

In progressive alignment the sequences are initially
placed on a bifurcating tree according to their degree of
similarity. Then, they are progressively aligned in pairs
following the formed guide tree in a bottom-up order
until its root is reached. At each step, two nodes of the
tree (i.e. two sequences, a sequence and an alignment or
two alignments) are aligned by a standard pairwise
alignment algorithm, and the deriving subalignment is
retained to be used at a subsequent step. One important
aspect of the progressive alignment strategy is the “once
a gap, always a gap” rule, first introduced in [13]. Based
on this policy, once a group of sequences is aligned, all
gaps in the alignment are replaced by a neutral X’
symbol ensuring that all subsequent pairwise alignments
will be consistent with the pre-existing alignment of the
group [17]. This rule by definition implies that once a
group of alignments has been built up, they will remain
fixed even in the view of new sequences that could
potentially improve the overall alignment. Consequently,
early errors in the progressive alignment steps are accumu-
lated and propagated to later alignment stages compromis-
ing thus the alignment quality.
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This problem is often tackled by using iterative refine-
ment techniques [18,19]. In iterative refinement, one
sequence (or a group of sequences) is iteratively sub-
tracted and realigned against the alignment of the
remaining sequences. Via this sequence-profile or
profile-profile realignment, a new alignment is ob-
tained which is then used for the next iteration of the
algorithm. The refinement terminates when a fixed
number of iterations is reached or when the alignment
remains unchanged between consecutive iterations
[17]. Although these methods are very efficacious at
curating early alignment errors, they only partially ad-
dress the “frozen subalignments” issue, since at each it-
eration of the algorithm only one sequence (or a group
of sequences) is realigned whereas the alignment of the
remaining sequences is kept fixed.

In this article we present a variation of the aforemen-
tioned iterative refinement strategy where all sequences
may be simultaneously and independently realigned
against a summarization profile that encapsulates all the
starting alignment information. The process begins by
constructing a standard profile that summarizes all the
initial alignment information. Then, a series of individual
(and possibly concurrent) sequence-profile pairwise
comparisons takes place, recording the way that each se-
quence is aligned against the profile. The new alignment
is then indirectly inferred by merging all the individual
subalignments into a unified group. The proposed ap-
proach is implemented as part of a newly introduced
meta-aligner under the name ReformAlign (Reformed
Alignments) and is freely available to the public from
http://evol.bio.Imu.de/_statgen/software/reformalign/ under
the GNU General Public License (version 3 or later). We
call ReformAlign a meta-aligner, in the sense described in
[20], meaning that an initial alignment is required and it
can be used with a variety of alignment programs.

As currently ReformAlign can only align DNA/RNA
sequences, for the needs of our performance evaluations
real nucleic acid datasets of variable length and average
sequence identity rates were used. Our experimental
results demonstrate that the suggested profile-based
modification of the classic progressive alignment and it-
erative refinement strategies is able to overcome the
challenges posed by the propagation of early pairwise
alignment errors and that ReformAlign is an efficient,
well suited approach that may improve on the perform-
ance of a vast variety of existing alignment software.

Implementation
Alignment strategy
ReformAlign aims at improving on the quality of an
existing alignment by providing the sequences with an
additional opportunity to be individually re-aligned
against a standard profile that efficiently summarizes
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the starting alignment information. The idea is that via
this re-alignment step, early alignment errors caused
by “frozen” subalignments may be fixed, delivering
thus better results in terms of alignment accuracy.

Towards this end, in ReformAlign the alignment of
the sequences is performed in two steps. The first step
involves the construction of a non-probabilistic profile
from an existing alignment, whereas during the second
step all the sequences are individually realigned against
the profile that derived from the first step. The new
alignment is finally indirectly reconstructed by merging
all the individual sequence-profile subalignments into a
unified group. Due to the nature of the latter step, all
pairwise sequence-profile comparison can be performed
in parallel, improving thus the aligner performance in
terms of execution time.

Upon completion of the latter step, a new (reformed)
alignment is derived which is very often different to
the starting one. Since this alignment may be also sus-
ceptible to further improvement, the whole process
can be re-initiated using the reformed alignment as
starting alignment. The algorithm terminates when
either the alignment between two successive runs re-
mains unchanged or a pre-defined maximum number
of iterations is reached. A diagrammatic overview of
the ReformAlign alignment logic flow is provided at
Figure 1.

A. Profile construction step
In the profile construction step, a popular aligner is
employed to infer a starting alignment for the examined
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group of sequences. Then, a summarization profile is
constructed upon the starting alignment, having as many
position as the columns in the alignment. Each position
in the profile is characterized by a series of < Residue,
Weight > pairs sized to fit the number of distinct resi-
dues that appear in the corresponding column of the
alignment. The “Residue” part in each pair corresponds
to the label of a particular residue in the alignment col-
umn whereas its “Weight” represents the number of
times that this particular residue appears in that column.

B. Sequence alignment step

In ReformAlign, the formation of the final alignment
is performed indirectly by aligning all the sequences
against the profile that derived from the first step. All
sequence-profile alignments are performed using a
standard pairwise alignment algorithm and for each se-
quence its alignment against the profile is recorded. By
joining all deriving pairwise alignments into a unified
group, it is possible to infer the final alignment of the
examined sequences. In contrast to traditional iterative
refinement approaches where at each refinement only
one sequence (or a group of sequences) is realigned, in
the proposed approach all the sequences have a chance
to align differently against the formed summarization
profile.

Intuitively, the majority of the pairwise alignments that
will come up from this step will have at most as many
columns as the number of positions of the formed
profile. Nevertheless this is not always the case. For
example, it might happen that a particular residue is
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Figure 1 Logic Flow diagram of the ReformAlign alignment strategy. The algorithm creates an initial profile based on a starting alignment
deriving from an established aligner. Then, all the sequences are aligned against the formed profile to obtain the reformed alignment. Notice that
in this step, in case a new insertion is detected, the algorithm automatically switches to a profile fine-tuning mode in order to modify the profile
to also account for the new insertion(s). After all sequences have been successfully aligned against the profile, the deriving alignment is indirectly
inferred by merging all the estimated subalignments into a unified set and it is then freed from uninformative void columns (i.e. columns
consisting exclusively of gaps). The process is repeated using the reformed alignment as starting alignment until the alignment between
two successive runs remains unchanged or a predefined maximum number of iterations is reached.
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aligned as a mismatch in one of the columns of the
starting alignment, but during the sequence alignment
step the score obtained by misaligning this residue
against the corresponding profile position might be
smaller than the penalty for opening a new gap in the
alignment. In cases where the profile has to be updated
in order to accommodate new insertion(s), ReformAlign
automatically switches to a profile fine-tuning mode. As
soon as the profile has been successfully updated, Refor-
mAlign restarts the sequence alignment step using the
new profile.

Another important aspect of the suggested meta-
alignment technique is that since the alignment of the
sequences may alter during the sequence alignment step,
it might happen that none of the sequences aligns
against one or more of the positions of the final profile,
leading thus to the derivation of void (all gapped) columns.
To fix for this issue, upon completion of the sequence
alignment step, the program checks for uninformative void
columns and completely removes them from the reported
alignment.

C. Iterative refinement

After the sequence alignment step has been completed,
a new alignment is produced. In case the reformed
alignment is different to the starting one, ReformAlign
may be iteratively applied to further fine-tune the pro-
duced alignment(s). The iterative refinement step termi-
nates when the pre-defined limit of iterations is reached
or when the deriving alignments between two successive
runs of the algorithm are identical.

Dynamic programming and scoring system

The dynamic programming scheme employed by ReformA-
lign for the sequence-profile alignment task is the
Gotoh’s [21] affine-gap penalties variation of the
Needleman-Wunsch global alignment algorithm [22],
as described in [17].

Regarding the scoring scheme for assessing the simi-
larity between a position in a sequence and one from the
profile, in contrast to the average function encountered
in various alignment models such as ClustalW [6], we
employed an additive variant where the observed counts
of the residues are used instead of their averaged fre-
quencies, as follows:

SSj=>_> Ca-Cy-Subg

acA beA

where A is the current alphabet (e.g. A ={A,C, G, T} for
DNA alignments), C, and C, represent the observed
counts (tallies) of residues a4 and b respectively and
Sub, _,, corresponds to the score matrix value for align-
ing residue a to b.

Page 4 of 18

The main reason for selecting aforementioned scoring
scheme is that the use of the observed counts instead of
the relative frequencies allows for a better discrimination
between well-conserved columns. For example, a profile
position exclusively comprised of a several Cytosine resi-
dues will have exactly the same score as another profile
position formed by a single Cytosine, if the averaged
sum of pairs scoring scheme was used, but the score for
the former case would be significantly higher if the addi-
tive scoring model was employed instead.

Alignment parameters

The choice of a proper values for the alignment parame-
ters is essential for the multiple sequence alignment
problem, since it has been proven [23,24] that it may
significantly affect the decision of the “optimal” align-
ment among the numerous alternatives. These parame-
ters may significantly vary among different alignment
approaches and they are usually decided by cross valid-
ation testing.

In ReformAlign, the alignment parameters that have to
be defined are the substitution scores and the gap open-
ing and extension penalties. However, it would be desir-
able in our strategy that each residue of the sequences
could inexpensively skip any low-scoring profile posi-
tions in order to align itself against another higher scor-
ing position. Furthermore, based on the fact that by
definition the profile already incorporates enough posi-
tions where every residue of the sequences could pos-
sibly be aligned, opening a new gap in the profile should
be more costly than opening a gap to the sequence.
Consequently, in ReformAlign four distinct types of gap
penalties are considered: a penalty for opening a gap in
the profile (HGOP), a penalty for extending a gap in the
profile (HGEP), a penalty for opening a gap in the se-
quence (VGOP) and a penalty for extending a gap in the
sequence (VGEP). As in ClustalW, terminal gaps (TGOP
and TGEP) are not penalized in our approach either.

An additional parameter constraint deriving from the
inherent properties of our model is that the substitution
scores should be substantially higher than the gap penal-
ties. In case this restriction is not met, it might happen
that many sequences require a profile update during the
sequence alignment phase, resulting thus in very large
profiles containing a lot of poorly supported positions.
To avoid such cases it is recommended that substitution
scores are always set to (relatively high) positive values
whereas gap opening and extension penalties are set to
negative values.

Regarding the substitution weights, ReformAlign cur-
rently uses a modified version of the HOXD substitution
matrix [25] where all scores are increased by a positive
“bonus” value, so that the aforementioned condition is
met and to further reward (mis)matches compared to
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Figure 2 (See legend on next page.)




Lyras and Metzler BMC Bioinformatics 2014, 15:265
http://www.biomedcentral.com/1471-2105/15/265

Page 6 of 18

(See figure on previous page.)

Figure 2 Scatterplots of the Cline scores per alignment pair for the 2,218 benchmark tests of the BRAliBase dataset. A scatterplot is
constructed per alignment pair for each one of the 2,218 benchmark tests. The diagonal line represents the expected plot if the initial and the
reformed alignments were identical. Consequently, an accumulation of points above the diagonal line represents improved reformed alignments
whereas points below the diagonal correspond to cases where ReformAlign worsened the initial alignment.

gaps. Nevertheless, increasing all substitution scores by
the same “bonus” value results in understating the differ-
ences between matches and mismatches. For this reason,
each score value is then increased by a re-adjustment
coefficient (Coeff).

The default bonus value and re-adjustment coeffi-
cient applied to the score matrix as well as the default
gap opening and extension penalties were decided
based on a greedy parameters search that was per-
formed using MUSCLE [8,26] as the starting aligner
and a separate training set with alignments from the
data-set 1 of a previous version of BRAliBase (i.e. BRA-
liBase II) [27]. For each test in the training set, the per-
cent APSI value of the initial alignment was calculated
and then more than 300,000 parameter combinations
were greedily assessed by comparing each time the
deriving (reformed) alignment to the expected one
(reference alignment) in terms of alignment accuracy.
The results of this cross-validation analysis suggested
that the score matrix bonus value and the gap penalties
should be re-adjusted according to the APSI value
of the initial alignment based on the subsequent
formulas:

Bonus = 0.334 - APSI, + 317.206
Coeff = 0.224
HGOP = (0.002 -APSIp) -435.566

HGEP = (0.026 - APSI,) -217.305

VGOP = (0.1 - APSI,) -301.969

VGEP = (-0.14 - APSI,) -139.698

where APSI, is the percent Average Pairwise Sequence
Identity calculated over the initial alignment.

The aforementioned scheme for defining the starting
parameter values was used for all the experiments out-
lined in the present study and is automatically employed
by default in ReformAlign, unless more appropriate
starting values are defined to the program by the user.

Finally, ReformAlign follows ClustalW’s paradigm [6]
by heuristically updating the gap opening and extension
penalties during runtime, in an attempt to deliver superior
alignment results. In particular, the penalties are modified
based on the following criteria:

Dependency on the lengths of the sequences

Both the gap opening and gap extension penalties are
modified depending on the ratio between the length
(number of residues) of the sequence to be aligned and
the largest sequence in the set. Intuitively, gaps should
be penalized harder for shorter sequences in order to
avoid having alignments with too many and/or sparse
gaps. The calculation of the starting gap penalties is per-
formed according to the following formula:

GP—GP-(M/N)

where GP represents all types of gap penalties (HGOP,
HGEP, VGOP and VGEP), M is the length of the largest
sequence in the set and N is the length of the sequence
to be aligned.

Position-specific penalties based on the profile
conservation rate

During the computation of the dynamic programming
matrix, the gap opening penalties (HGOP and VGOP)
are modified in a position-specific way depending on the
conservation rate of the profile. If a position in the pro-
file is well conserved (the weights for one or more of its
pairs are set to relatively high values), then this implies
that the specific position is strongly supported by many
sequences (probably even by the examined sequence it-
self — based on the starting alignment) and thus the pen-
alty for opening a new gap against this profile position
should be higher compared to weakly supported posi-
tions. Consequently, the gap opening penalties per pos-
ition are calculated as follows:

GOP—GOP-(PCR;-SS;)

where GOP represents the gap opening penalties
(HGOP, and VGOP), PCR; is the Profile Conservation
Rate for the i position of the profile calculated as a
fraction of the maximum weight value among all < Resi-
due, Weight > pairs contained in the i position of the
profile divided by the sum of all weights of the pairs in
the i position and SS; is the substitution score for
aligning the i/ position of the profile against the ;™
position of the sequence.

The idea behind the multiplication of the profile
conservation rate by the substitution score is to linearly
increase the gap opening penalties for conserved col-
umns, so that gaps would be favored only if subsequent
matches of the sequence against ensuing positions of the
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profile would score high enough to sufficiently compen-
sate for the very costly gap that was opened.

Methods

In order to assess the efficiency of ReformAlign in im-
proving the quality of existing alignments, testsets from
the BRAliBase 2.1 RNA alignment database [27,28] and
the DNA SMART database [29] were used.

BRAliBase 2.1

BRAliBase (Benchmark RNA Alignment database) is a
collection of RNA alignments taken from the Rfam data-
base. It was initially introduced in [30], but since then it
has been further enriched with additional alignments
[27,28], leading to its current version v2.1 which con-
tains in total 18,990 aligned sets of sequences (packed in
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sets of 2, 3, 5, 7, 10 and 15 sequences) with an Average
Pairwise Sequence Identity (APSI) rate ranging between
20% and 95% [28]. For the needs of the present study we
limited our analysis to the BRAliBase alignments com-
posed of 7, 10 and 15 sequences per alignment.

DNA SMART

The DNA Reference Alignment Benchmarks database
[29] was proposed in 2007 as a collection of DNA refer-
ence alignments for the assessment of MSA applications.
It is comprised of multiple DNA sequence alignments
(MDSAs) corresponding to protein alignments of the
BAIiBASe [31], OXBench [32], PREFAB [8] and SMART
[33] benchmarking datasets. For our experiments, we
considered all alignments corresponding to the SMART
database containing between 20 and 300 sequences per
alignment. Since however ReformAlign does not currently
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Table 1 BRAliBase Cline scores

APSI [25%-100%] (N = 2,218)

Aligner Initial (I) Reformed (R) Avg. Dif. (R-I) p-value R>1 R=1 R<lI
ClustalW 84.97% 86.09% 1.12% p <0.001*** 40.22% 46.71% 13.07%
ClustalO 85.41% 87.71% 2.30% p < 0.007*** 44.00% 40.76% 15.24%
Kalign 89.30% 89.61% 0.30% p < 0.0071*** 36.29% 46.93% 16.77%
Mafft (FFTnsi) 89.16% 89.94% 0.78% p <0.001*** 27.23% 57.35% 1542%
Mafft (Linsi) 88.63% 89.33% 0.70% p < 0.0071*** 27.46% 5591% 16.64%
Muscle 89.68% 89.89% 0.21% p <0.001*** 21.51% 63.53% 14.97%
DialignTX 81.17% 84.82% 3.65% p <0.0071*** 54.78% 3521% 10.01%
GramAlign 80.47% 84.90% 4.43% p < 0.0071*** 54.64% 37.29% 8.07%
ProbCons 91.35% 91.34% -0.01% p=0.127 2741% 42.34% 30.25%
PicXAA 91.51% 91.46% —0.06% p <0.0071*** 26.28% 41.88% 31.83%
R-Coffee 91.34% 91.42% 0.08% p < 0.007*** 39.18% 32.33% 28.49%
APSI [25%-55%)] (N = 869)
Aligner Initial (I) Reformed (R) Avg. Dif. (R-I) p-value R>1 R=1 R<I
Clustalw 69.03% 71.57% 2.54% p < 0.007*** 71.00% 14.04% 14.96%
ClustalO 69.19% 74.82% 5.63% p < 0.0071*** 79.29% 3.68% 17.03%
Kalign 79.32% 79.95% 0.63% p <0.0071*** 53.28% 22.09% 24.63%
Mafft (FFTnsi) 78.46% 80.35% 1.89% p < 0.007*** 53.51% 23.82% 22.67%
Mafft (Linsi) 77.79% 79.38% 1.59% p < 0.0071*** 48.10% 26.12% 25.78%
Muscle 79.79% 80.33% 0.54% p <0.0071*** 42.58% 34.52% 22.90%
DialignTX 59.75% 68.31% 8.56% p < 0.007*** 90.33% 0.69% 8.98%
GramAlign 66.63% 70.10% 347% p < 0.0071*** 78.02% 11.85% 10.13%
ProbCons 83.39% 83.39% 0.00% p=0.581 42.58% 10.01% 4741%
PicXAA 83.77% 83.67% —-0.10% p =0.007*** 40.05% 9.21% 50.75%
R-Coffee 83.67% 83.57% —-0.10% p=0429 46.49% 4.83% 48.68%
APSI [55%-75%] (N = 284)
Aligner Initial (1) Reformed (R) Avg. Dif. (R-) p-value R>1 R=I R<I
Clustalw 84.78% 85.40% 0.62% p < 0.0071*** 48.94% 25.35% 25.70%
Clustalo 87.53% 87.91% 0.38% p =0.001*** 49.30% 11.62% 39.08%
Kalign 86.37% 86.76% 0.39% p <0.0071*** 55.28% 25.35% 19.37%
Mafft (FFTnsi) 87.46% 87.76% 0.30% p = 0.004** 3451% 37.32% 28.17%
Mafft (Linsi) 86.65% 86.80% 0.15% p=0875 28.87% 39.08% 32.04%
Muscle 87.80% 87.80% 0.00% p=0.905 25.35% 46.48% 28.17%
DialignTX 83.49% 85.25% 1.76% p < 0.0071*** 73.59% 5.63% 20.77%
GramAlign 81.75% 83.78% 2.03% p <0.0071*** 73.94% 17.25% 8.80%
ProbCons 89.23% 89.26% 0.03% p=0.686 41.20% 19.72% 39.08%
PicXAA 89.34% 89.33% -0.01% p=0.609 39.08% 21.83% 39.08%
R-Coffee 89.49% 89.59% 0.10% p=0.014* 48.94% 11.27% 39.79%
APSI [75%-90%] (N = 840)
Aligner Initial (1) Reformed (R) Avg. Dif. (R-) p-value R>1 R=I R<lI
ClustalW 98.16% 98.26% 0.10% p <0.0071*** 12.02% 81.79% 6.19%
ClustalO 98.20% 98.30% 0.10% p < 0.007*** 13.69% 80.36% 5.95%
Kalign 98.40% 98.41% 0.01% p=0074 13.21% 77.62% 9.17%

Mafft (FFTnsi) 98.52% 98.51% -0.01% p=0.178 3.93% 90.95% 5.12%
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Mafft (Linsi) 98.08% 98.23% 0.15% p < 0.007*** 10.83% 85.60% 3.57%
Muscle 98.41% 98.41% 0.00% p=0489 3.57% 92.38% 4.05%
DialignTX 98.15% 98.30% 0.15% p <0.0071*** 20.24% 72.86% 6.90%
GramAlign 92.78% 97.35% 4.57% p < 0.007*** 27.14% 66.07% 6.79%
ProbCons 98.61% 98.57% —0.04% p < 0.0071*** 8.33% 78.81% 12.86%
PicXAA 98.61% 98.58% —0.03% p <0.0071*** 8.93% 77.62% 1345%
R-Coffee 98.27% 98.48% 0.21% p < 0.007*** 27.74% 64.52% 7.74%

APSI [95%-100%)] (N = 225)

Aligner Initial (1) Reformed (R) Avg. Dif. (R-) p-value R>1 R=1 R<I
Clustalw 97.53% 97.59% 0.06% p =0.030* 15.56% 68.89% 15.56%
ClustalO 97.62% 97.66% 0.04% p = 0245 14.22% 72.89% 12.89%
Kalign 97.57% 97.63% 0.06% p <0.001*** 32.89% 55.56% 11.56%
Mafft (FFTnsi) 97.72% 97.70% -0.02% p = 0.009** 3.56% 86.67% 9.78%
Mafft (Linsi) 97.67% 97.73% 0.06% p=0.642 8.00% 81.33% 10.67%
Muscle 97.68% 97.67% -0.01% p=0.011* 222% 89.33% 844%
DialignTX 97.58% 97.69% 0.11% p < 0.007*** 22.67% 65.33% 12.00%
GramAlign 86.28% 96.95% 10.67% p <0.001*** 42.67% 53.33% 4.00%
ProbCons 97.66% 97.67% 0.01% p=0.299 2267% 59.56% 17.78%
PicXAA 97.67% 97.68% 0.01% p=0.526 21.78% 60.00% 18.22%
R-Coffee 97.41% 97.68% 0.27% p < 0.007*** 41.33% 44.89% 13.78%

Cline scores corresponding to the 2,218 alignments of the BRAIiBase dataset. *significant at p<0.05, **significant at p<0.005, ***significant at p<0.001. The first
sub-table summarizes the performance of each alignment pair averaged over all test cases whereas the remaining sub-tables report the results organized according to the
average pairwise sequence identity of the sequences. For every sub-table, the APSI value and the number of alignments (N) corresponding to each group are reported in the
first row. Columns 2 and 3 correspond to the average Cline scores of the initial (I) and the reformed (R) alignments respectively. The average differences (R-) per alignment
pair are given in the fourth column and the corresponding p-values of these differences are given at the fifth column (statistically significant values at the .05 significance
level are highlighted in bold). Finally, columns 6-8 indicate the percentage of cases where the reformed alignments were superior, equal or inferior (in terms of Cline score)

to the initial alignment.

support ambiguous characters, we limited our analysis to a
total of 264 alignments containing exclusively unambiguous
DNA letters.

Accuracy measures

To assess the agreement between the reconstructed and
the reference alignments, the following measures of
accuracy were considered.

The sum of pairs (SP) score (aka developer’s score - fp
[34]) was initially proposed by Thompson et al. [35] and
is defined as a fraction of the number of the correctly
aligned residue pairs in the reconstructed alignment over
the number of aligned residue-pairs of the reference
alignment. If the denominator of the fraction is replaced by
the number of residue-pairs in the test alignment, then the
reverse sum of pairs score (aka modeler’s score - fy) is
obtained. Finally, the total columns (TC) score is computed
by dividing the number of correctly identified columns
in the reconstructed alignment over the total number of
columns in the reference alignment.

Although these metrics can provide an overview of the
quality of the deriving alignments, each one has its own
drawbacks. The developer’s score fails to penalize over-

alignments and could give a great score to an alignment
that erroneously aligns non-homologous regions, whereas
the modeler’s score is not sensitive to detecting under-
alignments and thus could possibly give high scores to
alignments that systematically fail to align homologous re-
gions (refer to [36] for further details regarding these types
of alignment errors). Finally, the TC score is very sensitive
to the misalignment of even a single sequence yielding a
zero-valued TC Score even if all the remaining sequences
in the examined group are properly aligned.

For this reason, two additional metrics were consid-
ered: a) the Cline’s score (CS) [36], which efficiently ad-
dresses the issues of the developer’s and modeler’s
scores by penalizing over- and under- alignments while
taking into account minor shifts in the reconstructed
alignment compared to the reference and b) the D-POS
metric proposed by Blackburne and Whelan [37] which
satisfies the conditions of symmetry and triangular in-
equality that are not met by the SP and TC scores,
where at the same time it incorporates information from
indels by recording the position where gaps occur. All
accuracy measures take their values in the [0,1] range,
with the exception of Cline’s Score which may also take
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Figure 4 Average Cline score differences for the benchmark tests of the BRAliBase dataset. Effect of ReformAlign to testsets of increasing
APSI (A) and increasing number of sequences per alignment (B). The alignment pairs (from top to bottom, as appearing in the legends) correspond to
[Ref. ClustalO - ClustalQ], [Ref. ClustalW — ClustalW], [Ref. DialignTX — DialignTX], [Ref. GramAlign — GramAlign], [Ref. Kalign — Kalign], [Ref. Mafft (FFTnsi) —
Mafft (FFTnsi)], [Ref. Mafft (Linsi) — Mafft (Linsi)], [Ref. Muscle — Muscle], [Ref. ProbConsRNA — ProbConsRNA], [Ref. PicXAA — PicXAA], and [Ref. RCoffee —
RCoffee]. For each value of the horizontal axis, the difference is calculated by subtracting the average Cline score of the reformed alignments to the
respective score of the initial alignments that belong to each group. Statistically significant differences at the .05 significance level are denoted by an
asterisk (*) at the top-left corner of the respective points. The number of test cases (N) per group is given at the bottom of each value in the x-axis.

negative values in case there exist many large shifts.
Moreover, in contrast to the remaining metrics, D-POS
reports the distance between the generated and the ref-
erence alignment and thus lower D-POS values corres-
pond to better alignments.

Since D-POS and Cline’s Score can efficiently summarize
the quality of the deriving alignments while at the same
time being the most immune to deficiencies, the discussion
will be mostly based on the experimental results of these
two metrics.

Alignment programs

We assessed the effect ReformAlign on the deriving
alignments of ten leading methods: ClustalW [38], ClustalO
[39], MUSCLE [8,26], MAFFT [40], Kalign [7], GramAlign
[41], ProbConsRNA [42], R-Coffee [43,44], PicXAA [45]
and Dialign-TX [46]. These aligners implement a variety
of alignment techniques, such as progressive alignment
[7,38,41], iterative refinement [26,39,40], segment-
based alignment [46], probabilistic/consistency-based
alignment [42,44] and maximum expected accuracy
alignment [45]. Moreover, R-Coffee specializes in the
alignment of RNA sequences and could thus provide
us with an overview of the way that the proposed
sequence-based method may affect initial alignments
that use secondary structure information.

Since our main intention was to examine the effect of
ReformAlign on existing alignments rather than to ana-
lytically assess the efficiency of each aligner on the
benchmark databases, we used the default settings for all
aligners except for MAFFT which was executed using
both the —FFT-NS-i and the —L-INS-i options. Finally,
the default value for the maximum number of refine-
ment iterations in ReformAlign was set to 5 for all ex-
periments (an analytical listing of the command-line
options used for each aligner is provided at Additional
file 1: Table S1).

Results and discussion

Each benchmark test was given as input to all the con-
sidered aligners in order to obtain an initial alignment
which was compared against the reference. Then, this
alignment was provided as input to ReformAlign and
the newly generated alignment was also compared
against the reference using all considered accuracy

metrics. Via this procedure, we came up with eleven
distinct alignment pairs for each benchmark test (Mafft
was separately assessed for the FFT-NS-i and L-INS-i op-
tions). Furthermore, in order to determine the statistical
significance of the differences between the initial and the
reformed alignments, Wilcoxon signed rank tests were
also performed for each alignment-pair. However, since
multiple test cases in the benchmark data may contain se-
quences of the same families, the samples independency
assumption of the statistical test might not be fully met
and for this reason the reported results should be inter-
preted with caution.

BRAliBase 2.1

The results for the 2,218 BRAliBase benchmark tests are
visualized in Figures 2 and 3. Moreover, in order to ex-
plore the effect of ReformAlign to testsets of increasing
APSI, we grouped the benchmarks in four clusters ac-
cording to the percent identity of the sequences. The
average scores for each group are shown in Table 1 and
Additional file 2: Table S2 and are graphically depicted
at Figure 4.

Despite the simplicity of the ReformAlign logic, the
experimental results suggest that the proposed approach
may significantly improve on the performance of almost
all examined aligners. In general, the improvement due
to ReformAlign seems to be substantially higher for diffi-
cult examples (i.e. alignments with relatively low APSI)
or for lower-scoring aligners (e.g. DialignTX or GramAlign)
and becomes less noticeable when the starting alignments
are already nearly optimal leaving thus less room for
improvement (Table 1, Additional file 2: Table S2 and
Figure 4). The only cases where ReformAlign seems to
degrade on average the initial alignments are for
PicXAA and ProbConsRNA. Nonetheless, even for
these aligners it was found that in a considerable
amount of cases the reformed alignments were super-
ior to the initial ones (Table 1 and Figure 3) whereas it
may also be observed that the average decrease for both
aligners is relatively small and not always statistically signifi-
cant (Table 1). In addition, although the Cline (Table 1), SP
and TC scores (Additional file 2: Table S2) seem to indicate
a marginal degradation of the initial alignments due to
ReformAlign, according to the D-POS similarity metric the
reformed alignments were superior to the starting ones for
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Figure 5 Scatterplots of the Cline scores per alignment pair for the 264 benchmark tests of the DNA SMART dataset. For each
alignment pair a scatterplot is constructed. Each point corresponds to an alignment test case of the DNA SMART dataset and depicts the Cline
score of the initial alignment versus the respective score of the reformed alignment. The diagonal line represents the expected plot if the initial

and the reformed alignments were identical.

all aligners participating in our experiments (Additional file
2: Table S2).

Another important observation is that ReformAlign
very often delivers alignments which are different to the
starting ones (Figure 3 and Table 1), and in the majority
of these cases the reformed alignments are superior to
the corresponding starting ones. This trend is much
more apparent for testsets with relatively low APSI
values and becomes less evident for highly similar align-
ment cases (Table 1 and Additional file 2: Table S2).

The experimental results also demonstrate that the ap-
plication of ReformAlign to existing alignments does not
affect all aligners in the same way and may result in
changes in their overall ranking. For example, as it may
be seen at Table 1, although initially GramAlign and R-
Coffee score on average lower than DialignTX and Prob-
ConsRNA respectively, the situation is reversed after
ReformAlign has been applied to fine-tune the respective
alignments. The same holds true for the MUSCLE,
Kalign and Mafft (with the FFT-NS-i setting) aligners
with the latter scoring higher than the other two after
the respective alignments have been reformed.

Finally, as it may be seen at Figure 4A, the effect of
ReformAlign for the majority of aligners seems to be
more substantial for harder test cases (APSI <75%) and
becomes less noticeable as the average pairwise sequence
identity increases. This does not seem to be the case for
the highest scoring aligners (ProbConsRNA, PicXAA
and R-Coffee) which deliver quite accurate alignments
(Table 1 and Additional file 2: Table S2) even for rela-
tively hard test cases leaving thus less room for improve-
ment, and for GramAlign where several test cases from
the higher APSI groups seem to violate its grammar-
based assumptions resulting thus in lower-scoring initial
alignments that are then refined by ReformAlign (Figures 3
and 4, Table 1 and Additional file 2: Table S2).

The analysis of the Cline score differences versus the
number of sequences per alignment (Figure 4B) revealed
similar results. Probabilistic and consistency-based aligners,
which appear to deliver more accurate starting alignments,
seem to benefit less (or are even marginally worsened) from
the application of ReformAlign compared to optimization-
driven or iterative refinement based approaches. The main
reason for this might be in the underlying assumptions of
these models. In particular, these high-scoring aligners
employ sophisticated albeit computationally expensive
probabilistic assumptions resulting thus quite often in very

accurate alignments. ReformAlign however is based on
the ad hoc SP scoring scheme and it may thus happen that
accurate starting alignments that meet the probabilistic/
consistency based assumptions are slightly degraded by
the more arbitrary optimization scheme of ReformAlign,
especially in alignments composed of multiple sequences.
However, as the experimental results demonstrate, there is
a considerable amount of cases where the initial align-
ments of the Probabilistic Consistency Transformation
(PCT) approaches are improved by the proposed post-
processing step (Table 1, Figures 2 and 3), suggesting thus
that ReformAlign could appear to be useful even for fine-
tuning the starting alignments of such sophisticated align-
ment methods.

DNA SMART

A similar analysis was carried out for the benchmark tests
of the DNA SMART database. For these experiments
R-Coffee (which is specialized for RNA alignments)
was removed from the analysis. Since the majority of
the test cases (257 out of 264 alignments) were sharing
an average sequence identity equal or lower to 55%,
the differences between the reformed and the initial
alignments for the higher APSI groups were not found
to be statistically significant at the .05 level (data not
shown). The performance averaged over all 264 test
cases per alignment pair is graphically depicted at
Figures 5 and 6 whereas the analytic results for the
considered accuracy metrics are reported at Table 2
and Additional file 3: Table S3.

The experimental results suggest that ReformAlign
was able to improve on the starting alignments for the
majority of the considered aligners. For ProbConsRNA
the effect of ReformAlign is dubious: although on aver-
age the reformed alignments appear to be marginally su-
perior to the initial ones (Table 2 and Additional file 3:
Table S3), they demonstrate a greater variability com-
pared to the starting alignments (Figure 6) and the re-
ported differences are not always found to be statistically
significant. Regarding the remaining aligners of our
benchmark study, only Mafft (with the L-NS-i setting)
and PicXAA are shown to be negatively affected by the
application of ReformAlign whereas a noticeable im-
provement is observed for the rest. The reported degrad-
ation of the PCT-based aligners could be due to the
sophisticated assumptions of these high performance
methods compared to the ad hoc optimization scheme
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Figure 6 Boxplots of the averaged Cline scores for the 264 alignments of the DNA SMART dataset. The boxplots corresponding to the
Cline scores for the DNA SMART dataset are given in this figure. The figures, correspond, from left to right, to the averaged performance of
[ClustalW — Ref. ClustalW], [ClustalO - Ref. ClustalQ], [Kalign — Ref. Kalign], [Mafft (FFTnsi) — Ref. Mafft (FFTnsi)], [Mafft (Linsi) — Ref.Mafft (Linsi)],
[Muscle — Ref. Muscle], [DialignTX- Ref. DialignTX], [GramAlign — Ref. GramAlign], [ProbConsRNA — Ref. ProbConsRNA] and [PicXAA — Ref. PicXAA]
The bars at the bottom of each pair represent the percentage of times where the reformed alignments were superior (blue bars), equal (green
bars) or inferior (red bars) in terms of Cline score compared to the initial alignments.

Table 2 DNA SMART Cline scores

APSI [25%-90%] (N = 264)

Aligner Initial (1) Reformed (R) Avg. Dif. (R-I) p-value R>1 R=1 R<I
ClustalWw 59.55% 67.06% 7.51% p < 0.0071*** 95.08% 0.76% 4.17%
ClustalO 70.94% 74.25% 331% p < 0.007*** 74.24% 3.79% 21.97%
Kalign 68.37% 72.37% 4.00% p < 0.007*** 87.50% 341% 9.09%
Mafft (FFTnsi) 71.93% 74.81% 2.88% p < 0.0071*** 60.98% 3.79% 35.23%
Mafft (Linsi) 79.70% 78.26% —1.44% p < 0.007*** 33.71% 7.20% 59.09%
Muscle 69.51% 72.52% 3.01% p <0.0071*** 70.08% 3.79% 26.14%
DialignTX 60.82% 70.13% 931% p < 0.0071*** 87.50% 1.52% 10.98%
GramAlign 66.96% 70.11% 3.15% p < 0.007%*** 74.62% 4.17% 21.21%
ProbCons 73.68% 73.90% 0.22% p=0.099 54.55% 341% 42.05%
PicXAA 75.64% 73.85% -1.79% p < 0.0071*** 28.03% 3.03% 68.94%

Cline scores corresponding to the 264 alignments of the DNA SMART dataset. *significant at p<0.05, **significant at p<0.005, ***significant at p<0.001. The
average Cline scores corresponding to the initial () and the reformed (R) alignments are given at columns 2 and 3 respectively. Column 4 represents the
differences of the Cline Scores (R-I) per alignment pair and the statistical significance of these differences is given at column 5 (statistically significant values at the
.05 significance level are highlighted in bold). The last three columns correspond to the percentage of cases where the reformed alignments were superior, equal
or inferior (in terms of Cline score) to the initial alignment.
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(*) at the top-left corner of the respective points.

Figure 7 Average Cline score differences for the benchmark tests of the DNA SMART dataset. Effect of ReformAlign to testsets of
increasing APSI (A) and increasing number of sequences per alignment (B). The alignment pairs (from top to bottom, as appearing in the
legends) correspond to [Ref. ClustalO — ClustalO, [Ref. ClustalW — ClustalW], [Ref. DialignTX — DialignTX], [Ref. GramAlign — GramAlign], [Ref. Kalign — Kalign],
[Ref. Mafft (FFTnsi) — Mafft (FFTnsi)], [Ref. Mafft (Linsi) — Mafft (Linsi)l, [Ref. Muscle — Muscle], [Ref. ProbConsRNA — ProbConsRNA] and [Ref. PicXAA — PicXAALL
For each value of the horizontal axis, the difference is calculated by subtracting the average Cline score of the reformed alignments to the respective score
of the initial alignments that belong to each group. Statistically significant differences at the .05 significance level are denoted by an asterisk

of ReformAlign. Specifically, since the DNA SMART data-
base is composed of alignments which are based on bio-
logical features such as the tertiary structure of encoded
proteins, the simplicity of the ReformAlign scheme could
result more often in degradation of alignments deriving
from the more accurate PCT-based methods, compared to
alignments generated from progressive and iterative refine-
ment aligners.

In agreement to the results of the BRAliBase experi-
ments, the DNA SMART analysis supports the conclu-
sions that ReformAlign generates alignments that are
frequently different (and often superior) to the starting
ones (Figure 6 and Table 2) and that the suggested ap-
proach does not affect all aligners the same way, result-
ing thus in changes in their overall ranking (Table 2 and
Additional file 3: Table S3).

Finally, the assessment of the effect of ReformAlign to
testsets of increasing APSI (Figure 7A) and increasing
number of sequences per alignment (Figure 7B) did not
provide us with conclusive results, mainly due to the fact
that there were only a limited number of test cases be-
longing to the higher order groups, often resulting in
statistically insignificant differences for the considered
alignment pairs. Nevertheless, the results of Figure 7A
indicate a trend that further supports the idea that the
effect of ReformAlign is weaker for closely related se-
quences compared to alignments with lower APSI
values, whereas there does not seem to be a clear pattern
describing the way ReformAlign affects the examined
aligners with an increasing number of sequences per
alignment (Figure 7B).

Conclusion

In this paper we presented ReformAlign, a novel
profile-based meta-alignment approach that aims at cor-
recting early alignment errors by giving the sequences a
second opportunity to re-align themselves against a stand-
ard profile that efficiently summarizes the initial alignment
information. ReformAlign is based on the Gotoh’s affine-
gap penalties variation of the classic Needleman-Wunsch
algorithm and uses a refinement scheme according to
which the reformed alignment is indirectly inferred by a
series of individual and independent sequence-profile pair-
wise comparisons.

ReformAlign was extensively assessed on the way it af-
fects the alignments of ten leading aligners using bench-
mark testsets from the BRAliBase and DNA SMART
datasets. The results suggest that the majority of aligners
showed a notable improvement on the accuracy of the
delivered alignments when ReformAlign was employed
as a post-processing step. This improvement was more
substantial for harder alignment cases with low APSI or
when there was still adequate room for improvement on
the starting alignments, and became less evident when
the initial alignment was already quite accurate or for
easier alignment cases with high identity rates.

Finally, it is important to mention that the proposed
method does not come to replace other popular align-
ment techniques. Instead, users may continue to use
their aligner(s) of preference (even programs that were
not examined in the present study) and then comple-
mentarily employ ReformAlign as a post-processing step
to examine if the delivered alignment is more appropri-
ate for their analyses.

Availability and requirements

ReformAlign is freely available to the public under the
GNU General Public License (version 3 or later). Both
the source code and precompiled binaries for Linux and
Windows may be downloaded from http://evol.bio.lmu.
de/_statgen/software/reformalign/. Currently ReformA-
lign can only align DNA and RNA sequences and it is
provided as a command line program. Its source code is
in C++ and it makes use of the Open Multi-Processing
(OpenMP) parallelization API.

For the benchmark tests, the BRAliBase 2.1 RNA align-
ment database [28] and the alignments from the DNA
Reference Alignment Benchmarks database [29] were
employed. The evaluation of the alignments accuracy was
performed using Robert Edgar’s QScore, (v.2.1) multiple
alignment scoring software and Blackburne and Whelan’s
MetAl (v.1.1) [37] command-line utility for calculating
metric distances between alternative alignments.

Finally, the alighment programs that were used in our
benchmark analysis are as follows: ClustalW2 [38] (v.2.1),
ClustalO [39] (v.1.2), MUSCLE [8,26] (v.3.8.31), MAFFT
[40] (v.7.149), Kalign [7] (v.2.04), GramAlign [41] (v.3),
ProbConsRNA [42] (v.1.1), R-Coffee [43,44] (T-Coffee
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v.10.00.r1613), PicXAA [45] (v.1.03) and Dialign-TX [46]
(v.1.0.2).

Additional files

Additional file 1: Table S1. Command-line options per alignment
method.

Additional file 2: Table S2. BRAIliBase Results. Averaged D-POS, SP and
TC scores for the 2,218 benchmark tests of the BRAlBase dataset. The results
are presented averaged over all benchmark tests as well as organized in four
groups according to the average pairwise sequence identity of the sequences.
For each accuracy metric three figures are provided corresponding to the
average scores of the initial alignments (1), the reformed alignments (R) and
their respective differences (R-l). Differences that are found to be statistically
significant at the .05 significance level are highlighted in bold. For the SP and
TC scores, positive average differences indicate that the reformed alignments
were superior to the initial ones whereas negative values indicate that
ReformAlign (on average) worsened the starting alignments. For the
D-POS scores the situation is reversed: negative values indicate an
improvement due to ReformAlign, whereas positive values represent
a degradation of the starting alignments.

Additional file 3: Table S3. DNA SMART Results. Averaged D-POS, SP
and TC scores for the 264 benchmark tests of the DNA SMART dataset.
For each accuracy metric three figures are provided corresponding to the
average scores of the initial alignments (I), the reformed alignments (R)
and their respective differences (R-l). Statistically significant differences at
the .05 significance level are highlighted in bold.
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