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Abstract

Background: In cell differentiation, a cell of a less specialized type becomes one of a more specialized type, even
though all cells have the same genome. Transcription factors and epigenetic marks like histone modifications can play
a significant role in the differentiation process.

Results: In this paper, we present a simple analysis of cell types and differentiation paths using phylogenetic inference
based on ChIP-Seq histone modification data. We precisely defined the notion of cell-type trees and provided a
procedure of building such trees. We propose new data representation techniques and distance measures for
ChIP-Seq data and use these together with standard phylogenetic inference methods to build biologically meaningful
cell-type trees that indicate how diverse types of cells are related. We demonstrate our approach on various kinds of
histone modifications for various cell types, also using the datasets to explore various issues surrounding replicate
data, variability between cells of the same type, and robustness. We use the results to get some interesting biological
findings like important patterns of histone modification changes during cell differentiation process.

Conclusions: We introduced and studied the novel problem of inferring cell type trees from histone modification
data. The promising results we obtain point the way to a new approach to the study of cell differentiation. We also
discuss how cell-type trees can be used to study the evolution of cell types.

Keywords: Cell differentiation, Development, Cell-type trees, Epigenomics, Histone modifications, Phylogenetics,
Evolution of cell types

Background
In developmental biology, the process by which a less
specialized cell becomes a more specialized cell type is
called cell differentiation. Since all cells in one individ-
ual organism have the same genome, epigenetic factors
and transcriptional factors play an important role in cell
differentiation [1-3]. Thus a study of epigenetic changes
among different cell types is necessary to understand cell
development.
Histone modifications form one important class of epi-

genetic marks; such modifications have been found to
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vary across various cell types and to play a role in gene reg-
ulation [4]. Histones are proteins that package DNA into
structural units called nucleosomes [5]. These histones
are subject to various types of modifications (methyla-
tion, acetylation, phosphorylation, and ubiquitination),
modifications that alter their interaction with DNA and
nuclear proteins. In turn, changes in these interactions
influence gene transcription and genomic function. In the
last several years a high-throughput, low-cost, sequencing
technology called ChIP-Seq has been used in capturing
these histone marks on a genome-wide scale [6,7]. A
study of how histone marks change across various cell
types could play an important role in our understand-
ing of developmental biology and how cell differentiation
occurs, particularly as the epigenetic state of chromatin is
inheritable across cell generations [8].
In this paper, we provide a definition for a cell-type tree.

Cell-type trees are trees which represent the relationships
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between various cell-types. The nodes of this tree repre-
sent cell-types while the edges between two nodes tell us
that one cell-type is differentiated from some cells of the
other cell-type. It is not necessary that these various cell-
types come from one individual, and therefore cell-type
trees are different from cell-lineage trees. Cell-lineage
trees, reconstructed from genomic variability caused by
somatic mutations, represent the history of cell division in
one individual organism from the very first cell, the zygote
[9]. However we know that almost the entire genome
(within one individual) is the same across cell-types; and
it is also highly similar between individuals of the same
species. However we know that epigenomic states are dif-
ferent across various cell types. So it is possible that in the
cell differentiation process, a complex interplay between
histone modifications, DNA methylation, transcription
factors etc. plays an important role in how cells of vari-
ous cell-types in one organism behave differently although
the genome is almost same. Therefore in this study we
attempt to build cell-type trees by looking at histonemod-
ification data. Currently we look at only some histone
modifications for the sake of simplicity. We do this to see
if there is a link between histone modifications and cell
differentiation. We note that in literature certain cluster-
ing techniques like hierarchical clustering have been used
to cluster cell types using various kinds of data. For exam-
ple, in [10] unsupervised hierarchical clustering of whole
genome expression data was done for some cell-types.
Since cell differentiation transforms less specialized cell

types into more specialized ones and since most special-
ized cells of one organ cannot be converted into special-
ized cells of some other organ, the paths of differentiation
together form a tree, in many ways similar to the phy-
logenetic trees used to represent evolutionary histories.
In evolution, present-day species have evolved from some
ancestral species, while in cell development the more
specialized cells have evolved from less specialized cells.
Moreover, observed changes in the epigenetic state are
inheritable, again much as mutations in the genome are
(although, of course, through very different mechanisms
and at very different scales); and in further similarity, epi-
genetic traits are subject to stochastic changes, much as in
genetic mutations. (It should be noted that we are inter-
ested here in populations of cells of a certain type, not all
coming from the same individual, rather than in develop-
mental lineages of cells within one individual). Finally, one
may object that derived and more basic cell types coex-
ist within the body, while phylogenetic analysis places all
modern data at the leaves of the tree and typically qual-
ifies internal nodes as “ancestral”. However, species in a
phylogenetic tree correspond to paths, not to nodes. In
particular, a species that has survived millions of years
until today and yet has given rise to daughter species,
much like a basic cell type that is observed within the

organism, but from which derived cell types have also
been produced and observed, is simply a path to a leaf in
the tree, a path along which changes are slight enough not
to cause a change in identification. (The time scale makes
such occurrences unlikely in the case of species phylo-
genies, but the framework is general enough to include
them).
Therefore it may be possible to use or adapt some of

the techniques used in building phylogenetic trees for
building cell-type trees. We defined the concept of cell-
type trees in a previous work [11]. The major difference
between phylogenetic trees and cell-type trees is that
functional changes in cell differentiation are primarily
driven by programmed mutational events rather than by
selection. An immediate consequence is that the design of
an “evolutionary” model has hardly begun in sharp con-
trast to sequence evolution. However, note that the pro-
gram of mutational events is itself the result of evolution,
so that, as observed by Arendt [12], the cell differentia-
tion tree often recapitulates the phylogeny of cell types.
Thus we felt justified to apply phylogenetic methods to the
analysis of cell types.
In this paper, we provide evidence that such a scenario is

possible.We do this by proposing new data representation
techniques, distance measures, then by applying standard
phylogenetic methods to produce biologically meaningful
results. We used data on a few histone modifications (but
mostly on H3K4me3) for many cell types, including repli-
cate data, to construct cell-type trees—to our knowledge,
these are the first such trees produced by computational
methods. We show that preprocessing the data is very
important: not only are ChIP-Seq data fairly noisy, but
the ENCODE data are based on several individuals and
this adds an independent source of noise. We show how
various patterns of histone modification change during
the cell-differentiation process and the biological signif-
icance of it. We also outline some of the computational
challenges in the analysis of cell differentiation, opening
new perspectives that may prove of interest to computer
scientists, biologists, and bioinformaticians. We also dis-
cuss how these cell-type trees can be used to study the
evolution of cell types.

Results and discussion
Model of differentiation for histonemarks
We assume that histone marks can be independently
gained or lost in regions of the genome as cells differenti-
ate from a less specialized type to a more specialized one.
Histones marks are known to disappear from less special-
ized cell types or to appear in more specialized ones and
are often correlated with gene expression, so our assump-
tion is reasonable. The independence assumption simply
reflects our lack of knowledge, but it also enormously
simplifies computations.
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Data representation techniques
The analysis of ChIP-Seq data typically starts with a peak-
finding step that defines a set of chromosomal regions
enriched in the target molecule. We therefore use peak
lists as the raw data for our study. We use both pub-
lically available peak lists (give in ENCODE database)
and also define our own ‘peak-finder’ which basically
identifies regions of the genome which have significant
amounts of histone modification signal (see sub-section
“Peak-finding” described later). We can decide on the
presence or absence of peaks at any given position and
treat this as a binary character, matching our model of
gain or loss of histone marks. Since all of the cell types
have the same genome (subject only to individual SNPs or
varying copy numbers), we can compare specific regions
across cell types. Therefore we code the data into a matrix
in which each row is associated with a different ChIP-
Seq library (a different cell type or replicate), while each
column is associated with a specific genomic region.
We use two different data representations for the peak

data for each cell type. Our first method is a simple win-
dowing (or binning) method. We divide the genome into
bins of certain sizes; if the bin contains at least one peak,
we code it 1, otherwise we code it 0. The coding of each
library is thus independent of that of any other library.
Our second method uses overlap and takes into account

all libraries at once. We first find interesting regions in the
genome, based on peaks. Denote the ith peak in library
n as Pni = [

PniL, P
n
iR

]
, where PniL and PniR are the left and

right endpoints (as basepair indices). Consider each peak
as an interval on the genome (or on the real line) and
build the interval graph defined by all peaks in all libraries.
An interval graph has one vertex for each interval and an
edge between two vertices whenever the two correspond-
ing intervals overlap [13]. We simply want the connected
components of the interval graph.

Definition 1. An interval in the genome is an interesting
region iff it corresponds to a connected component of the
interval graph.

A straight forward algorithm to identify these interest-
ing regions in linear time is shown in theMethods section.
For a given collection of libraries, these interesting regions
have a unique representation.We assume that it is in these
interesting regions that histone marks are lost or gained
and we consider that the sizes of the peak regions (which
depends at least in part on the experimental procedures
and is typically noisy) does not matter. Our major reason
for this choice of representation is noise elimination: since
the positioning of peaks and the signal strength both vary
from cell to cell as well as from test to test, we gain signif-
icant robustness (at the expense of detail) by merging all
overlapping peaks into one signal, which we use to decide

on the value of a single bit. The loss of information may be
illusory (because of the noise), but in any case we do not
need a lot of information to build a phylogeny on a few
dozen cell types.

Phylogenetic analysis
Phylogenetic analysis attempts to infer the evolutionary
relationships of modern species or taxa—they could also
be proteins, binding sites, regulatory networks, etc. The
best tools for phylogenetic inference, based on maximum
parsimony (MP) or maximum likelihood (ML), use estab-
lished models of sequence evolution, something for which
we have no equivalent in the context of cell differentiation.
However, one class of phylogenetic inference methods,
so-called distance-based methods, are founded on hierar-
chical clustering under some suitable measure of pairwise
distance for similarity. This type of method is directly
applicable to our problem, provided we can define a rea-
sonable measure of distance, or similarity between cell
types in terms of our data representations. (We are not
implying that models of differentiation do not exist nor
that they could not be derived, but simply stating that
none exist at present that could plausibly be used for
maximum-likelihood phylogenetic inference). Finally note
that, with 0/1 data, we can also use an MP method, in
effect assuming that all changes are equally likely.
In a cell type tree, most cell types coexist in the present;

thus at least some of them can be found both at leaves
and at internal nodes. (We may not have data for all inter-
nal nodes, as we cannot claim to have observed all cell
types). Fortunately, phylogenetic inference still works in
such cases: as mentioned earlier, when the same taxon
should be associated with both a leaf and an internal node,
we should simply observe that each edge on the path from
that internal node to that leaf is extremely short, since that
distance between the two nodes should be zero (within
noise limits). The tree inferred will have the correct shape;
however, should we desire to reconstruct the basic cell
types, then we would have to lift some of the leaf data by
copying them to some internal nodes.
Of the many distance-based methods, we chose the

most commonly used one, Neighbor-Joining (NJ) [14].
While faster and possibly better distance-based methods
exist, such as FastME [15], it was not clear that their
advantages would still obtain in this new domain; and,
while very simple, the NJ method has the advantage of
not assuming a constant rate of evolution across lineages.
In each of the two data representation approaches, we
compute pairwise distance between two libraries as the
Hamming distance of their representations. (The Ham-
ming distance between two strings of equal length is
the number of positions at which corresponding sym-
bols differ). We thus obtain a distance matrix between all
pairs of histone modification libraries; running NJ on this
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matrix yields an unrooted tree. For MP, we used the TNT
software [16].

On the inference of ancestral nodes
Wementioned that lifting some of the leaf data into inter-
nal nodes is the natural next step after tree inference.
However, in general, not all internal nodes can be labelled
in this way, due mostly to sampling issues: we may not
have observed the type that should be associated with a
particular internal node, or we may be missing enough
fully differentiated types that some internal tree nodes do
not correspond to any real cell type. Thus we are faced
with a problem of ancestral reconstruction and, more
specifically, with three distinct questions:

• For a given internal node, is there a natural lifting
from a leaf?

• If there is no suitable lifting, is the node nevertheless
a natural ancestor—i.e., does it correspond to a valid
(real) cell type?

• If the node has no suitable lifting and does
correspond to a valid cell type, can we infer its data
representation?

These are hard questions, in terms of both modelling
and computational complexity; they are further compli-
cated by the noisy nature of the data. Such questions
remain poorly solved in standard phylogenetic analysis;
in the case of cell-type trees, we judged it best not to
address these problems until the tree inference part is
better understood and more data are analyzed.

Peak-finding
Since our algorithms work on peak data, one needs to
use some peak finder to convert the ChIP-Seq histone
modification libraries into peaks. One can use any peak
finder. We used the publically available peaks given by the
ENCODE project for our analysis.
Since we found the peaks to be noisy, we also used the

MACS2 peak finder (version number 2.0.10.20131216),
which is a newer version of the popularMACS peak finder
[17]. MACS2 was run using the input control data with its
default parameters.

Experimental design
The histone modification ChIP-Seq data were taken from
the ENCODE project database (UW ENCODE group)
for human (hg19) data [18]. We carried out experiments
on H3K4me3 and H3K27me3 histone mark data from
University of Washington (UW) ENCODE group and on
H3K4me1, H3K9me3, H3K27ac histone mark data from
Broad ENCODE group [18]. H3K4me3 is a well stud-
ied histone mark usually associated with gene activation,
while the less well studiedH3K27me3 is usually associated

with gene repression [19]. We used data for cell types
classified as “normal” and for embryonic stem cells—we
did not retain cancerous or EBV cells as their differenti-
ation processes might be completely distinct from those
of normal cells. The ENCODE project provides peaks of
ChIP-Seq data for each replicate of each cell type. We
therefore used their peaks as the raw input data for our
work. For the windowing representation, we used bins of
200 bp: this is a good size for histone marks, because 147
bp of DNA wrap around the histone and linker DNA of
about 80 bp connect two histones, so that each bin rep-
resents approximately the absence or presence of just one
histone modification. We programmed our procedures in
R and used the NJ implementation from the ape library
in R.
Table 1 shows the list of the 37 cell types (72 libraries

including all replicates) used for H3K4me3 data and
13 cell types (23 libraries including all replicates) for
H3K27me3 data, giving for each an abbreviation and a
short description. The table also shows the 10, 11, and 12
cell types used for H3K4me1, H3K9me3, H3K27ac respec-
tively. In addition, the cells are classified into various
groups whose names are based on their cell type. Ker-
atinocytes (NHEK) is included in the Epithelial group.We
have two replicates for most cell types, but only one repli-
cate for types HCFaa, HFF, and CD14, and three replicates
for CD20. (CD20(1) is a B-cell from an African-American
individual while CD20(2) and CD20(3) are from a Cau-
casian individual). The replicates are biological replicates,
i.e., the data come from two independent samples. For
human Embryonic Stem Cells (hESC) we have data for
different days of the cell culture (day 0, 2, 5, 9, 14) for
H3K4me3 and H3K27me3 data, so we shall use hESC D2
(or hESC T2) to mean data for hESC cells on day 2. For
each cell type, we shall mention the replicate number in
brackets, unless the cell type has only one replicate. All our
experiments are done using the neighbor-joining distance
based approach unless otherwise mentioned. More infor-
mation about where we collected ENCODE peak data
from is given in the Additional file 1.

H3K4me3 data on individual replicates
We report on our analyses using peak data from the
ENCODE database for H3K4me3 histone modifications.
We carried out the same analyses using H3K27me3 data,
but results were very similar and so are not detailed here—
we simply give one tree for comparison purposes. The
similarity of results between the two datasets reinforces
our contention that phylogenetic analyses yield biologi-
cally meaningful results on such data. We color-code trees
to reflect the major groupings listed in Table 1.
Figure 1 shows the trees constructed using only one

replicate for each cell type using both windowing and
overlap representations. The color-coding shows that
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Table 1 Cell types, short description, and general group for H3K4me3, H3K27me3, H3K4me1, H3K9me3, H3K27ac data

Cell name Short description Group H3K4me3 H3K27me3 H3K4me1 H3K9me3 H3K27ac

AG04449 Fetal buttock/thigh fibroblast Fibroblast �
AG04450 Fetal lung fibroblast Fibroblast � �
AG09319 Gum tissue fibroblasts Fibroblast �
AoAF Aortic adventitial fibroblast cells Fibroblast �
BJ Skin fibroblast Fibroblast � �
CD14 Monocytes-CD14+ from human

leukapheresis production
Blood � � � � �

CD20(1) B cells replicate, African American Blood � �
CD20(2) and CD20(3) B cells replicates, Caucasian Blood �
hESC Undifferentiated embryonic stem

cells
hESC � � � � �

HAc Astrocytes-cerebellar Astrocytes �
HAsp Astrocytes spinal cord Astrocytes �
HBMEC Brain microvascular endothelial cells Endothelial �
HCFaa Cardiac fibroblasts- adult atrial Fibroblast �
HCF Cardiac fibroblasts Fibroblast �
HCM Cardiac myocytes Myocytes �
HCPEpiC Choroid plexus epithelial cells Epithelial �
HEEpiC Esophageal epithelial cells Epithelial �
HFF Foreskin fibroblast Fibroblast �
HFF MyC Foreskin fibroblast cells expressing

canine cMyc
Fibroblast �

HMEC Mammary epithelial cells Epithelial � � � � �
HPAF Pulmonary artery fibroblasts Fibroblast �
HPF Pulmonary fibroblasts isolated from

lung tissue
Fibroblast �

HRE Renal epithelial cells Epithelial � �
HRPEpiC Retinal pigment epithelial cells Epithelial �
HSMM Skeletal muscle myoblasts Skeletal Muscle � � �
HSMMtube Skeletal muscle myotubes

differentiated from the HSMM cell
line

Skeletal Muscle � � �

HUVEC Umbilical vein endothelial cells Endothelial � � � � �
HVMF Villous mesenchymal fibroblast cells Fibroblast �
NHA Astrocytes (also called Astrocy) Astrocytes � � �
NHDFAD Adult dermal fibroblasts Fibroblast � �
NHDF Neo Neonatal dermal fibroblasts Fibroblast �
NHEK Epidermal keratinocytes Epithelial � � � � �
NHLF Lung fibroblasts Fibroblast � � � �
Osteobl Osteoblasts (NHOst) Osteoblasts � � �
RPTEC Renal proximal tubule epithelial cells Epithelial �
SAEC Small airway epithelial cells Epithelial � �
SKMC Skeletal muscle cells Skeletal Muscle �
WI 38 Embryonic lung fibroblast cells Fibroblast �
For details see the ENCODE website [20]. The mark�shows the usage of that cell type for that particular histone mark.
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(a) (b)

Figure 1 Cell-type tree on H3K4me3 data (ENCODE peaks) using only one replicate: (a) windowing representation, (b) overlap
representation.

embryonic stem cells and blood cells are in well sepa-
rated clades of their own, while fibroblasts and epithelial
cells fall in just two clades each. Even within the hESC
group we see that day 0 is far off from day 14 compared
to its distance from day 2. Thus epigenetic data such as
histone marks do contain a lot of information about cell
differentiation history.
In order to quantify the quality of the groupings, we

compute the total number of cells in a subtree that belong
to one group. Since our groups are based on cell type only,
there could be many subdivisions possible within each
group. Therefore we choose the two largest such subtrees
available for each group such that each subtree contains
only the leaf nodes of that group. The results are shown
in Table 2: most of the cell types in each group do cluster
together in the tree.
Figure 1 shows long edges between (most) leaf nodes

and their parents—a disquieting feature, as it casts doubt
as to the robustness of the tree, parts of which could be
assimilated to star-shaped trees (a tree with only one inter-
nal node and the remaining nodes being leaves). To quan-
tify this observation, we measured the SR ratio, defined as
SR =

∑
e∈I l(e)∑
e∈E l(e)

, where I is the set of all edges connecting
leaf nodes to their parents, E is the set of all edges in the
tree, and l(e) is the length of edge e. If this ratio SR is close
to 1, then the tree looks star-shaped with long branches to
the leaves. This ratio was 0.93 using the windowing repre-
sentation; using the overlap representation reduced it very
slightly to 0.92. These long branches are due in part to
the very high level of noise in the data, explaining why the
overlap representation provided a slight improvement.
As a final entry in the table, we added another measure

on the tree and the data. The NJ algorithm is known to
return the “correct” tree when the distance matrix is ultra-
metric; the technical definition does not matter so much

here as the consequence: if the matrix is ultrametric, then
the sum of the length of the edges on the path between two
leaves always equals the pairwise distance between those
two leaves in the matrix. Thus one way to estimate how
far the distance matrix deviates from this ideal is to com-
pare its distances to the length of the leaf-to-leaf paths in
the tree:

PD =
∑

i,j |NJ(i, j) − M(i, j)|
∑

i,j NJ(i, j)

where i and j are leaf nodes, NJ(i, j) is the tree distance
between i and j, andM(i, j) is the matrix distance between
i and j. A high value of PD indicates that the data repre-
sentations and measures do not fit well to any tree. We
get very low values (of less than 4% for both windowing
and overlap representations), suggesting that the distances
we compute are in fact representative of a tree and thus
offering confirmation of the validity of the inference.
Finally, the trees obtained using TNT software (MP

basedmethod) are very similar but we got a better SR ratio
as shown in Table 2. The results using TNT software for
overlap representation when using only one replicate of
H3K4me3 data is shown in Figure 2.

H3K4me3 data with all replicates
By bringing replicates into the analysis, we can expect to
see a stronger phylogenetic signal as each replicate adds
to the characterization of its cell type. In particular, wher-
ever we have two or more replicates, they should form a
tight subtree of their own.We thus used our replicate data
(two replicates for 33 of the 37 cell types, and three for
one type, for a total of 72 libraries) in the same analysis
pipeline. Figure 3 shows the differentiation trees obtained
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Table 2 Statistics for cell-type trees on H3K4me3 data

hESC Epithelial Fibroblast Blood Astrocytes Myocytes Endothelial Skeletal muscle SR PD
(5) (8) (16) (2) (2) (1) (2) (1) (%)

WM (one replicate)-ENCODE 5,0 6,1 8,4 2,0 1,1 1,0 1,1 1,0 0.93 3.20

OM (one replicate)-ENCODE 5,0 4,1 6,3 2,0 2,0 1,0 1,1 1,0 0.92 3.94

OM (one replicate)-ENCODE-MP 5,0 4,2 6,4 2,0 1,1 1,0 1,1 1,0 0.63 -

WM (one replicate)-MACS2 5,0 4,2 14,1 2,0 2,0 1,0 1,1 1,0 0.88 5.51

OM (one replicate)-MACS2 5,0 4,2 13,3 2,0 2,0 1,0 1,1 1,0 0.89 4.84

WM (all replicates)-ENCODE 5,0 6,1 11,2 2,0 1,1 1,0 1,1 1,0 0.84 3.30

OM (all replicates)-ENCODE 5,0 4,2 9,4 2,0 2,0 1,0 1,1 1,0 0.78 3.88

WM (all replicates)-MACS2 5,0 4,2 14,1 2,0 2,0 1,0 1,1 1,0 0.63 5.31

OM (all replicates)-MACS2 5,0 4,2 15,1 2,0 2,0 1,0 1,1 1,0 0.65 5.18

WM (all replicates)-TP-ENCODE 5,0 6,1 7,4 2,0 1,1 1,0 1,1 1,0 0.81 3.73

OM (all replicates)-TP-ENCODE 5,0 4,3 8,5 2,0 2,0 1,0 1,1 1,0 0.74 3.98

OM (profile)-ENCODE 5,0 4,3 12,2 2,0 2,0 1,0 1,1 1,0 0.90 4.05

2nd to 9th columns show the number of cells (of the same type) belonging to the largest and second-largest clades; the total number of cells of that type is in the top
row. Rows correspond to various methods (WM: windowing; OM: overlap; TP: top peaks with threshold of 10). The second last column shows the SR ratio. The last
column contains the percent deviation (PD) of the distances between the leaves found using the NJ tree from the Hamming distance between the leaves. ENCODE
means peaks from ENCODE data is used while MACS2means peaks fromMACS2 program is used. (one replicate) means only one replicate for each cell type is used,
(all replicates) means all available replicates (1, 2, or 3) for each cell type is used, (profile) means a profile representation created using all replicates for each cell type is
used. MP - maximum parsimony using TNT software.

using windowing and overlap representations. We also
include the same study (in overlap representation only) on
H3K27me3 data in Figure 4. As expected, almost all repli-
cates are grouped; since we usually have two replicates,
we get a collection of “cherries” (pairs of leaves) where
we had a single leaf before. In most cases, it is now the
distance from each leaf in a cherry to their common par-
ent that is large, indicating that the distance between the
two replicates is quite large—as we can also verify from
the distance matrix. This suggests much noise in the data.
This noise could be at the level of raw ChIP-Seq data,

but also due to the bias of peak-finding methods used—
one expects a general-purpose peak finder to be biased
against false negatives and more tolerant of false positives,
but for our application we would be better served by the
inverse bias. Another reason for the large distance is the
nature of the data: these are biological replicates, grown
in separate cultures, so that many random losses or gains
of histone marks could happen once the cell is differenti-
ated. Thus it may be that only a few of the variations in
the data are correlated with cell differentiation. Identify-
ing these few variations would be of high interest, but with

hESC
Epithelial
Fibroblast
Blood
Astrocytes
Myocytes
Endothelial
Skeletal Muscle

Figure 2Using maximumparsimony (TNT software) on H3K4me3 data (ENCODE peaks) using only one replicate (overlap representation).
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(b)(a)

Figure 3 Cell-type tree on H3K4me3 data (ENCODE peaks, using all replicates): (a) windowing representation, (b) overlap representation.

just two replicates we are unlikely to pinpoint them with
any accuracy.
Looking again at Table 2, we see that, using the win-

dowing representation, the value of SR for the full set of
replicates is 0.84 and that here the overlap representation,
which is more effective at noise filtering, yields an SR value
of 0.78. This is a substantial reduction and indicates that
the long edges are indeed due to noise. The PD percent-
age values remain very low for both representations, so
the trees we obtained do represent the data well. Note that
the groupings appear (in the color-coding in the figure)
somewhat better than when we used only one replicate,

and the values in columns 2 through 9 of Table 2 confirm
this impression.
We also include results using windowing representation

on H3K4me1 data, H3K9me3 data, and H3K27ac data in
Figures S8, S9, S10 respectively (see Additional file 1).
We got good results on these datasets as seen from these
figures as well.

Using top peaks, masking regions, IDR analysis
In order to study the nature of the noise, we removed
some of the less robust peaks. The ENCODE dataset gives
a p-value for each peak listed; we kept only peaks with

hESC
Epithelial
Fibrob
Blood
Endothelial

Figure 4 Cell-type tree on H3K27me3 data (ENCODE peaks), using all replicates and overlap representation.
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(negative) log p-values greater than or equal to a thresh-
old of 10. We kept all replicates and ran the analysis again,
with the results depicted in Additional file 1: Figure S1.
The PD percentage values are again very low, so the trees
once again fit the data well. The improvement looks super-
ficially minor, but we obtained some more biologically
meaningful clusters with this approach. For example, in
the fibroblast group when we used only top peaks in the
overlap representation, one cell type HFF moved to sub-
tree containing HFF-Myc (which makes more sense as
both are foreskin fibroblast cells). Such a change could
be due to particularly noisy data for the HFF cells hav-
ing obscured the relationship before we removed noisy
peaks. Overall, removing noisy peaks further reduced the
SR ratio from 0.78 to 0.74 for the overlap representation
and from 0.84 to 0.81 for the windowing representation.
To test for robustness of the method, we also ran the over-
lap representation on ENCODE peak data with (negative)
log p-values greater than or equal to various thresholds.
The results are shown in the Additional file 1: Table S1.
The table shows the method works quite well in most of
these thresholds.
Another typical noise-reduction procedure, much used

in sequence analysis, is to remove regions that appear
to carry little information or to produce confounding
indications—a procedure known as masking. We devised
a very simplified version of masking for our problem,
for use only with replicate data, by removing any region
within which at most one library gave a different result
(1 instead of 0 or vice versa) from the others. In such
regions, the presence of absence of peaks is perfectly
conserved across all but one replicate. It is possible that
replicate data differs from each other because of the noisy
nature of the data or because the differences are actually
present in the cells due to biological reasons. In the lat-
ter case, the differences between the two replicates are not
cell type specific (as they differ among replicates), hence
they are not important for our analysis. After removing
such regions, we have somewhat shorter representations,
but follow the same procedure. The trees returned have
exactly the same topology and so are not shown; the length
of edges changed very slightly, as the SR value decreased
from 0.74 down to 0.70 using top peaks in the overlap
representation.
IDR (irreproducible discovery rate) analysis [21]

was carried out with a R script downloaded from:
https://sites.google.com/site/anshulkundaje/projects/idr.
We used data containing exactly 2 replicates on H3K4me3
ENCODE peak data. That is we removed CD14, CD20(1),
HFF, HCFaa since they have only one replicate from the
earlier used dataset. Therefore we have 34 cell types and
68 libraries (2 replicates per cell type). The IDR analysis
was carried out for overlap representation at various IDR
thresholds of 0.01, 0.1, 0.25 for the overlapping peaks

between the two replicates for each cell type. The results
are shown in Additional file 1: Table S2 and Figure S12.
As shown in the table, we see a slight improvement of
the clustering in epithelial cell types when using an IDR
analysis. Since the IDR analysis was done on overlapping
peaks, we got an SR ratio of 0 between two replicates due
to the nature of the overlap representation.

A better looking tree
Barring the addition of many replicates, the SR ratio of
0.70 appears difficult to reduce and yet remains high.
However, the cherries of replicate pairs by themselves give
an indication of the amount of “noise” (variation among
individual cells as well as real noise) present in the data.
We can take that noise out directly by replacing each
cherry in the tree with its parent, which is a better rep-
resentative of the population of this particular cell type
than either of the two leaves. We carried out this removal
on the tree of Additional file 1: Figure S1(b) and obtained
the tree shown in Figure 5. Since hESC cells do not form
clear pairs, we replaced the entire clade of hESC cells by
their last common ancestor. The leaves with remaining
long edges are those for which we did not have a replicate
(CD14, HCFaa, and HFF).

UsingMACS2 peaks
We look at the cell-type trees obtained using MACS2
peaks. The results are shown in Figure 6 (using only one
replicate for each cell type), Additional file 1: Figure S2
(using all replicates), and Table 2. We see from the
results that we get better results using MACS2 peak data
than when using ENCODE peaks. This also indicates the
importance of data preprocessing.

Creating a profile using replicate data
We also show a method of creating profile of a cell
type using the data representation of individual replicates.
For each cell type, the profile in each bin or interesting
region is represented as sum of all 1/0 (data represen-
tation value) of each replicate of that cell type in that
bin or interesting region divided by the number of repli-
cates. For example, if there are 2 replicates for one cell
type, the profile at interesting region i would be 1 if both
replicates have 1, 0 if both replicates are 0, 0.5 if one
replicate is 1 and the other is 0. Using this new data
representation using the profile data representation, we
build trees using the neighbor-joining method. The dis-
tance between two profile representation (one for each
cell type) is sum of all the absolute value of the difference
between the profile values at each bin/interesting region.
The results are shown in Figure 7 and Table 2. We see
an improvement of results using the profile representa-
tion when compared to using all replicates or one replicate
data.

https://sites.google.com/site/anshulkundaje/projects/idr
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Figure 5 H3K4me3 data (ENCODE peaks), overlap representation on peaks with negative log p-value≥ 10. Replicate leaves are removed
and replaced by their parent.

Looking at changes along specific branches of the tree
Phylogenetic analysis allows to reconstruct ancestral
nodes and thus to study important branches of a tree. We
are interested in the changes that happen early in devel-
opment when ES cells start to differentiate into lineage-
specific cell types. To this end, we selected genomic
regions which are all 1s in the ES samples and 0s else-
where allowing for one error in each group. We also
selected genomic regions showing the opposite behavior.
The results we show are all based on ENCODE peak lists
(including replicates) using the overlap representation.
We then looked at the enrichment of gene ontology (GO)
and other gene annotation terms for genes adjacent to

the identified genomic regions, using the GREAT website
[22]. This type of analysis was carried for both H3K4me3
data and H3K27me3. The detailed results are shown in the
Additional file 1.
We found 322 and 126 regions that were specifically

marked by H3K4me3 in ES or non-ES cells, respectively.
In the ES positive group, we found significant associa-
tions with expression in neural tissues (Additional file 1:
Figure S3). This could be explained by the fact that
both brain and ES cells have unusually broad expression
patterns compared to other tissues. H3K4me3-depleted
regions are often flanked by transcription factor genes
with zing-finger domains (Additional file 1: Figure S4).

hESC
Epithelial
Fibroblast
Blood
Astrocytes
Myocytes
Endothelial
Skeletal Muscle

(a) (b)

Figure 6 Cell-type tree on H3K4me3 data (using one replicate) using (a) windowing representation (b) overlap representation. Peaks
generated by MACS2 method.
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Figure 7 Cell-type tree on H3K4me3 data (using profile data representation) using Overlap representation (ENCODE peaks used).

The majority of these genes are probably repressed in
undifferentiated ES cells.
Carrying out the same type of analysis with H3K27me3

data, we found 4036 regions that were specifically marked
in ES cells, but only seven regions showing the oppo-
site histone modification pattern. We find the ES-specific
regions to be enriched near genes involved inmorphogen-
esis, consistent with the assumption that such genes have
to be repressed in undifferentiated ES cells (Additional
file 1: Figure S5). By looking at the numbers of the indi-
vidual classes, it appears that loss of a histone mark is a
more frequent event during development than a gain of a
histonemark. The imbalance is stronger for the repressive
mark H3K27me3 than for the activating mark H3K4me3.
We explored the distribution of H3K4me3 and

H3K27me3 modifications along various pathways of
cell differentiation. As before, the analysis was done on
ENCODE peak lists (including replicates) using the over-
lap representation. We considered only regions which do
not show ambiguity between replicates. Table 3 shows the
distribution of histone modification patterns over days 0,
2, 5, 9 and 14 of the ES cell differentiation time course.
(Note that the all-zero pattern is not included since the
overlap representation requires that a peak be found in
at least one sample). We see from this table that the “all
one” pattern (‘11111’) is the most dominant. We also see
that patterns with one change over time such as ‘00001’,

‘00011’, ‘00111’, ‘01111’, ‘11110’, ‘11100’, ‘11000’, ‘10000’
are relatively frequent, whereas patterns involving mul-
tiple losses or gains such as ‘10101’, ‘01010’, ‘11011’ are
rarely found. Patterns with a single gain followed by a loss
immediately thereafter (like ‘00100’) are not so rare. How-
ever, the opposite class of patterns (like ‘11011’) is very
rare. We did gene enrichment analysis on regions show-
ing pattern ‘01000’. While analyzing H3K4me3 data, we
found a great diversity of gene annotation terms, with a
preponderance of terms related to proliferation and devel-
opment (Additional file 1: Figure S6). While analyzing
H3K27me3 data, many gene annotation terms associated
with development were found—like heart development,
palate development, nerve development etc. (Additional
file 1: Figure S7). The gene annotation terms associated
with specific histone modifications appearing on day two
are compatible with a sudden response to an external
stimulus activating a developmental pathway.
Table 4 shows results from a similar kind of analy-

sis along another developmental pathway comprising ES
(day 0), HUVEC, and HBMEC. (These three cell types
should occur one after the other during development).
Table 5 shows results for yet another such developmen-
tal pathway consisting of ES (day 0), WI38, AG04550,
and HPF. Again we see that the “all one” pattern is
quite frequent for H3K4me3 data compared to other pat-
terns. However such was not the case for H3K27me3.
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Table 3 Analysis on paths for various days of ES cells

Row no. D0 D2 D5 D9 D14 H3K4me3 H3K27me3
(total) (total)

1 0 0 0 0 1 1075 3496

2 0 0 0 1 0 342 743

3 0 0 0 1 1 387 599

4 0 0 1 0 0 331 1459

5 0 0 1 0 1 15 97

6 0 0 1 1 0 40 112

7 0 0 1 1 1 247 461

8 0 1 0 0 0 1278 1919

9 0 1 0 0 1 14 22

10 0 1 0 1 0 9 57

11 0 1 0 1 1 30 82

12 0 1 1 0 0 60 74

13 0 1 1 0 1 5 11

14 0 1 1 1 0 9 34

15 0 1 1 1 1 147 253

16 1 0 0 0 0 450 641

17 1 0 0 0 1 11 9

18 1 0 0 1 0 11 5

19 1 0 0 1 1 14 3

20 1 0 1 0 0 24 40

21 1 0 1 0 1 6 5

22 1 0 1 1 0 10 5

23 1 0 1 1 1 101 81

24 1 1 0 0 0 630 1140

25 1 1 0 0 1 17 21

26 1 1 0 1 0 11 26

27 1 1 0 1 1 47 71

28 1 1 1 0 0 309 548

29 1 1 1 0 1 54 52

30 1 1 1 1 0 263 335

31 1 1 1 1 1 25112 10926

Table shows the number of different types of changes across various days of ES
cells. Dx means day x of ES cell type. 1 and 0 represents the presence or absence
of a peak as defined by the overlap representation in one region of the genome.
The number of such 1-0 patterns are counted and presented in the last column.

The contrasting behavior may be due to the fact that
H3K4me3 is often associated with constitutive (house-
keeping) genes whereas H3K27me3 primarily regulates
developmental genes. From this perspective, it would be
unlikely to find invariantly H3K27me3 marked regions
along a complete differentiation pathway starting fromES.
The bed files containing regions of the genome for

which gene enrichment analysis was done are given as
Additional files 2, 3, 4, 5, 6 and 7.

Table 4 Analysis on paths for ES, HUVEC, and HBMEC cell
types

H3K4me3 (row no.) ES (D0) HUVEC HBMEC Total

1 0 0 1 3407

2 0 1 0 1769

3 0 1 1 1805

4 1 0 0 5224

5 1 0 1 1415

6 1 1 0 417

7 1 1 1 23824

H3K27me3 (row no.) ES (D0) HUVEC HBMEC Total

1 0 1 NA 12468

2 1 0 NA 14684

3 1 1 NA 8403

Table shows the number of different types of changes for ES (day 0), HUVEC, and
HBMEC cell types. 1 and 0 represents the presence or absence of a peak as
defined by the overlap representation in one region of the genome. The number
of such 1-0 patterns are counted and presented in the last column. NA - not
applicable (because data for the cell-type is not available).

Table 5 Analysis on paths for ES, WI38, AG04550, and HPF
cell types

H3K4me3 (row no.) ES (D0) WI38 AG04550 HPF Total

1 0 0 0 1 2946

2 0 0 1 0 1050

3 0 0 1 1 1106

4 0 1 0 0 1670

5 0 1 0 1 382

6 0 1 1 0 879

7 0 1 1 1 4644

8 1 0 0 0 5465

9 1 0 0 1 354

10 1 0 1 0 353

11 1 0 1 1 989

12 1 1 0 0 62

13 1 1 0 1 35

14 1 1 1 0 506

15 1 1 1 1 21806

H3K27me3 (row no.) ES (D0) WI38 AG04550 HPF Total

1 0 NA 1 NA 14734

2 1 NA 0 NA 20108

3 1 NA 1 NA 6342

Table shows the number of different types of changes for ES (day 0), WI38,
AG04550, HPF cell types. 1 and 0 represents the presence or absence of a peak
as defined by the overlap representation in one region of the genome. The
number of such 1-0 patterns are counted and presented in the last column.
NA - not applicable (because data for the cell-type is not available).
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Discussion on the evolutionary interpretation of cell-type
trees
In this paper, we have used cell-type trees for studying
cell differentiation. We used phylogenetic methods such
as neighbor-joining for our work because of the similari-
ties between cell-differentiation process and evolution (as
we outlined earlier). Now we discuss how cell-type trees
can be used to study the evolution of cell-types among
different species.
Arendt [12] outlines the interrelationship between the

evolution of cell types and the cell development process,
mentioning that, in some cases, cell type development
seems to recapitulate cell type evolution. Cell-type trees
can be used to study the evolution of cell types. These
trees are somewhat similar to phylogenetic trees based on
gene duplication-loss models or trees build on morphol-
ogy based characters. We explain the concept through an
example. Figure 8 shows an constructed example of a par-
ticular current species S2 (bottom cell-type tree T2) to a
particular ancestral species S1 (top cell-type tree T1). The
leaf nodes in tree T2: C1 − 1, C1 − 2, C2, C3, C4 repre-
sent blood cells of the current species S2. The leaf nodes
of tree T1: C1, C2, C3 represent blood cells of ancestral

species S1. The internal nodes of each tree represent cell
types of some ancestral species. We can see that leaf node
C1 of tree T1 is the parent of leaf nodes C1−1 and C1−2
of tree T2. Similarly some other nodes are from one tree
to another are marked by red arrows. The leaf nodes of
each tree represent various blood cell types present in that
species. The figure shows how the ancestral nodes in S2
could be leaf nodes in ancestor S1. Other possibilities are
also shown. One possibility is that current species have
more blood cell types than an ancestral species and this
is captured by a cell-type tree. Thus the cell-type trees
we generate using histone modification data could also be
used to study the evolution of cell types.

Code
The code for finding cell-type trees is made available in
http://lcbb.epfl.ch/software.html.

Conclusions
We studied the novel problem of inferring cell-type trees
from histone modification data. We defined methods for
representing the peaks as 0/1 vectors and used these
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Figure 8 Cell-type trees to study evolution of cell types — a constructed example is shown in this figure. Tree T2 — current species S2. Tree
T1 — ancestral species S1. ST — sub-tree.

http://lcbb.epfl.ch/software.html
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vectors to infer trees. We obtained meaningful trees, con-
forming closely to expectations and biologically plausible,
in spite of the high level of noise in the data and the very
limited number of samples per cell type. Our results con-
firm that histone modification data contain much infor-
mation about the history of cell differentiation.We carried
out a number of experiments to understand the source
of the noise, using replicate data where available, but also
devising various noise filters. Our results show that larger
replicate populations are needed to infer ancestral nodes,
an important step in understanding the process of differ-
entiation. We also discussed how cell-type trees can be
used to study the evolution of cell types.
Much work remains to be done on methods for build-

ing good cell-type trees. In particular, the noisy nature of
the data remains an issue. We are exploring various other
data preprocessing and representation techniques which
can be used for this purpose. Refining the model of gain or
loss of marks may enable the use of maximum likelihood
methods, which deal better with large ranges of pairwise
dissimilarities and also yield more accurate inferences for
internal nodes.
Since many histone marks appear independent of cell

differentiation, identifying which marks are most strongly
correlated with the differentiation process is of significant
interest. Once such marks have been identified, recon-
structing their state in ancestral nodes will enable us to
identify which regions of the genome play an active role in
which steps of cell differentiation.

Methods
Algorithm to identify interesting regions in Overlap
representation
As seen before, we denote the ith peak in library n as Pni =[
PniL, P

n
iR

]
, where PniL and PniR are the left and right end-

points (as basepair indices). We assume that we have a set
of sorted peaks given to us with respect to their positions
in each chromosome, otherwise we first sort the peaks.
Choose a chromosome, let PS be its set of peaks, set

AS = {∅} and z = 0, and enter the following loop:

1. P∗
i∗ = argminPni ∈PS PniL. Set a = P∗

i∗L and
AS = AS ∪ {

P∗
i∗
}

2. Set S = {
P | P ∩ P∗

i∗ �= ∅and P ∈ PS
}
and

AS = AS ∪ S.
3. If S is not empty, then find P∗

i∗ = argmaxPni ∈S PniR and
go to step 2.

4. Let b = P∗
i∗R and set PS = PS − AS.

5. The interesting region lies between a and b, IR[ a, b].
Let Dn

IR[ z] be the data representation for IR[ a, b] in
library n. Set z = z + 1. Set Dn

IR[ z]= 1 if there is a
peak in library n that lies in IR[ a, b]; otherwise set
Dn
IR[ z]= 0 (1 ≤ n ≤ N).

Repeat this procedure for all chromosomes in the genome.
The above algorithm can implemented by sweeping from
left to right (two ends of each chromosome) and we
visit each peak only once. Therefore the algorithm takes
time linear in the size of the number of all peaks in
order to identify all the interesting regions. Figure S11 in
Additional file 1 shows an example of interesting region as
defined by overlap representation.

Additional files

Additional file 1: Supplementary material. Contains some text, Figures
S1–S12, Table S1, S2.

Additional file 2: H3K4me3 data: Regions of the genome (identified
by Overlap representation) where ES cells (10 replicates) are all 1 and
rest of the cell types (62 replicates) have all 0 (one error allowed at
most on both sides). Bed file format.

Additional file 3: H3K4me3 data: Regions of the genome (identified
by Overlap representation) where ES cells (10 replicates) are all 0 and
rest of the cell types (62 replicates) have all 1 (one error allowed at
most on both sides). Bed file format.

Additional file 4: H3K27me3 data: Regions of the genome (identified
by Overlap representation) where ES cells (10 replicates) are all 1 and
rest of the cell types (13 replicates) have all 0 (one error allowed at
most on both sides). Bed file format.

Additional file 5: H3K27me3 data: Regions of the genome (identified
by Overlap representation) where ES cells (10 replicates) are all 0 and
rest of the cell types (13 replicates) have all 1 (one error allowed at
most on both sides). Bed file format.

Additional file 6: H3K4me3 data: Regions of the genome (identified
by Overlap representation) where ES cells for day 0, 2, 5, 9, 14 have a
pattern 01000. Bed file format.

Additional file 7: H3K27me3 data: Regions of the genome (identified
by Overlap representation) where ES cells for day 0, 2, 5, 9, 14 have a
pattern 01000. Bed file format.
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