
Wang et al. BMC Bioinformatics 2014, 15:270
http://www.biomedcentral.com/1471-2105/15/270
SOFTWARE Open Access
GVCBLUP: a computer package for genomic
prediction and variance component estimation of
additive and dominance effects
Chunkao Wang1, Dzianis Prakapenka2, Shengwen Wang1, Sujata Pulugurta1, Hakizumwami Birali Runesha2

and Yang Da1*
Abstract

Background: Dominance effect may play an important role in genetic variation of complex traits. Full featured and
easy-to-use computing tools for genomic prediction and variance component estimation of additive and dominance
effects using genome-wide single nucleotide polymorphism (SNP) markers are necessary to understand dominance
contribution to a complex trait and to utilize dominance for selecting individuals with favorable genetic potential.

Results: The GVCBLUP package is a shared memory parallel computing tool for genomic prediction and variance
component estimation of additive and dominance effects using genome-wide SNP markers. This package currently has
three main programs (GREML_CE, GREML_QM, and GCORRMX) and a graphical user interface (GUI) that integrates the
three main programs with an existing program for the graphical viewing of SNP additive and dominance effects
(GVCeasy). The GREML_CE and GREML_QM programs offer complementary computing advantages with identical
results for genomic prediction of breeding values, dominance deviations and genotypic values, and for genomic
estimation of additive and dominance variances and heritabilities using a combination of expectation-maximization
(EM) algorithm and average information restricted maximum likelihood (AI-REML) algorithm. GREML_CE is designed for
large numbers of SNP markers and GREML_QM for large numbers of individuals. Test results showed that GREML_CE
could analyze 50,000 individuals with 400 K SNP markers and GREML_QM could analyze 100,000 individuals with 50K
SNP markers. GCORRMX calculates genomic additive and dominance relationship matrices using SNP markers. GVCeasy
is the GUI for GVCBLUP integrated with an existing software tool for the graphical viewing of SNP effects and a function
for editing the parameter files for the three main programs.

Conclusion: The GVCBLUP package is a powerful and versatile computing tool for assessing the type and magnitude
of genetic effects affecting a phenotype by estimating whole-genome additive and dominance heritabilities, for
genomic prediction of breeding values, dominance deviations and genotypic values, for calculating genomic
relationships, and for research and education in genomic prediction and estimation.
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Background
Genomic prediction using genome-wide single nucleotide
polymorphism (SNP) has become a powerful approach to
capture genetic effects dispersed over the genome for pre-
dicting an individual’s genetic potential of a phenotype
[1-3]. Genomic estimation of variance components using
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genome-wide SNP markers is a powerful tool for estimat-
ing the genetic contribution of the whole-genome to a
phenotype and for addressing the missing heritability
problem where a large number of causal variants ex-
plained only a small fraction of the phenotypic variation.
Dominance effects of quantitative traits are measured as
the deviation of the mean value of the heterozygote geno-
type of individuals from the averages of the two alternative
homozygous genotypes [4,5]. The inclusion of dominance
in the prediction model may improve the accuracy of
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genomic prediction when dominance effects are present
[6-9]. However, currently available software packages for
genomic prediction and variance component estimation
either are designed for additive effects only (GCTA [10]),
or require users to prepare a dominance-specific file to es-
timate dominance effects (BLR or BGLR [11], GenSel [12],
DMU [13], BLUPF90 [14]). User-friendliness of the com-
puting tool affects the efficiency of data analysis for gen-
omic prediction and estimation. In order to fill these gaps,
we implement two computationally complementary com-
puting strategies with identical results and various defini-
tions of genomic relationships in the GVCBLUP package
that has a wide-range of flexibility and functionality for
broad applicability of genomic prediction and estimation
of additive and dominance effects.

Implementation
GVCBLUP currently has three main programs and a
graphical user interface (GUI) named GVCeasy that in-
tegrates the three main programs with an existing pro-
gram for graphical viewing of SNP effects. The three
main programs are GREML_CE, GREML_QM, and
GCORRMX, which are developed using shared memory
parallel computing technology. GVCeasy supplies users
a user-friendly platform to run GVCBLUP.

Two complementary computing strategies
Two sets of formulations with complementary comput-
ing advantages and identical results based on two
equivalent mixed models are implemented: the CE set
for large numbers of SNP markers and the QM set for
large numbers of individuals [5,15]. Using notations in
[5], the mixed model and its variance-covariance matrix
for the CE set of formulations are:

y ¼ Xb þ ZTαα þ ZTδδ þ e ¼ Xbþ Zaþ Zdþ e

ð1Þ

Var yð Þ ¼ V ¼ ZAgZ
0 σ2α þ ZDgZ

0 σ2δ þ INσ
2
e ð2Þ

where X = N × c model matrix for fixed non-genetic ef-
fects, b = c × 1 column vector of fixed effects, Z = N × q
model matrix allocating phenotypic observations to SNP
marker genotypes of individuals, Tα = q ×m normalized
model matrix for gene substitution effects of SNP
markers, α = m × 1 column vector of gene substitution
effects of SNP markers, Tδ = q × m normalized model
matrix for dominance effects of SNP markers, δ = m ×
1 column vector of dominance effects of SNP markers,
a = Tαα = q × 1 genomic breeding values, d = Tδδ =
q × 1 genomic dominance deviations, Ag = q × q gen-
omic additive relationship matrix = TαTα ', Dg = q × q
genomic dominance relationship matrix = TδTδ ', and
σ2α , σ2δ and σ2e are additive, dominance and residual
variances, respectively. The mixed model and its
variance-covariance matrix for the QM set of formula-
tions are:

y ¼ Xb þ Z1α þ Z2δ þ e ð3Þ
Var yð Þ ¼ V ¼ Z1Z1

0 σ2α þ Z2Z2
0 σ2δ þ INσ

2
e ð4Þ

where Z1 = ZTα and Z2 = ZTδ. Computing difficulty is
the V−1 and P =V−1 −V−1X(X’V−1X)−X’V−1 for the CE
set of Equations 1–2 and is the inverse of the coefficient
matrix of the mixed model equations after absorbing
fixed non-genetic effects (to be denoted by C−1) for the
QM set of Equations 3–4. The CE set has the best po-
tential for using large numbers of SNP markers because
the size of the V−1 and P matrices is determined by the
number of individuals (assuming one observation per in-
dividual) and does not change for different numbers of
SNPs. Similarly, the QM set has the best potential for
using large numbers of individuals because the size of
the C−1 matrix is determined by the number of SNP
markers and does not change for different numbers of
individuals.

EM-REML and AI-REML
Two algorithms for restricted maximum likelihood
(REML) estimation of variance components are imple-
mented in both GREML_CE and GREML_QM: EM type
algorithm (EM-REML) and AI-REML algorithm [5]. AI-
REML generally is much faster than EM-REML but is
not as robust as EM-REML and may be sensitive to ini-
tial values of variance components in the iterations. We
require at least two iterations of EM-REML and the user
may specify a larger number of EM-REML iterations to
produce better initial values of variance components
than the user provided initial values before switching to
AI-REML. When AI-REML yields a negative estimate
for any of the variance component estimates, the program
automatically returns to EM-REML, which yields non-
negative estimates of variance components. This strategy
is designed to guarantee GREML_CE and GREML_QM
estimates of variance components to be positive.

Shared memory parallel computing
GVCBLUP is programmed in C++ language using Eigen
[16] and Intel Math Kernel libraries (MKL) [17]. Eigen is
a C++ template library for linear algebra, supports large
dense and sparse matrices and supplies easy-to-use cod-
ing expression for linear algebra. Intel MKL provides
BLAS and LAPACK linear algebra routines and is opti-
mized for Intel processors with multiple cores by using
shared memory parallel computing technology, which is
used for dense matrix inversion including V−1 and C−1

as well as dense matrix multiplications involving those
two matrices in GVCBLUP.
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Calculation and graphical viewing of SNP effects and
heritabilities
Both GREML_CE or GREML_QM can output additive
and dominance marker effects as well as additive and
dominance marker heritabilities for every SNP. SNP
additive and dominance effects for GREML_CE are cal-
culated at the last GREML iteration using the following
formulations:

α̂ ¼ σ2αTαZ
0Py ð5Þ

δ̂ ¼ σ2δTδZ 0Py ð6Þ
where α̂ = GBLUP of SNP average effects of gene sub-

stitution, δ̂ = GBLUP of SNP dominance effects, P =
V−1 −V−1X(X’V−1X)−X’V−1, and where V is defined by
Equation 2. SNP effects for GREML_QM are obtained
directly from the mixed model equations for the QM
model (Equation 19 in [5]). According to the EM-REML
formulation of additive or dominance variance compo-
nent [5], we calculate the variance of each SNP marker
as the marker contribution to the whole-genome SNP
variance defined by its EM-REML formula. Let σ2αi =
additive variance of the ith SNP, and σ2δi = dominance
variance of the ith SNP. Then, for GREML_CE, additive
and dominance variances of the ith SNP are calculated
as:

σ2αi ¼ α̂2
i =tr P ið ÞZAgZ

0
� �

; σ2δi ¼ δ̂2i =tr P ið ÞZDgZ
0

� �
;

and for GREML_QM,

σ2αi ¼ α̂2
i = m−tr Cααð Þλα½ �; σ2δi ¼ δ̂2i = m−tr Cδδ

� �
λδ

� �
;

where α̂ i = additive GBLUP of the ith SNP, δ̂i = dominance
GBLUP of the ith SNP, r = rank of the coefficient matrix of
the mixed model equations, λα ¼ σ2e=σ

2
α , λδ ¼ σ2e=σ

2
δ ,

ê ¼ y−Xb̂−Z1α̂−Z2δ̂ , and Cαα and Cδδ are defined by
Equation 22 in [5]. For the ith SNP marker, additive herit-
ability or heritability in the narrow sense (h2αi ), dominance

heritability (h2δi ) and the total heritability or heritability in
the broad sense (H2

i ) are:

h2αi ¼ σ2αi=σ
2
y ¼ α̂2

i =
Xm

i¼1
α̂2
i

� �
h2α ð7Þ

h2δi ¼ σ2δi=σ
2
y ¼ δ̂2

i =
Xm

i¼1
δ̂2
i

� �
h2δ ð8Þ

H2
i ¼ h2αi þ h2δi ð9Þ

where σ2y ¼ σ2α þ σ2δ þ σ2e = phenotypic variance, h2α =

total additive heritability of all SNP markers, and h2δ =
total dominance heritability of all SNP markers. The out-
put file for the SNP effects and heritabilities of Equations
5-9 is designed such that the SNP effects and heritability
estimates can be directly used as the input file for graph-
ing and graphical viewing by SNPEVG2 [18].

Simulated test data
Two simulated datasets are supplied in GVCBLUP pack-
age for testing purpose. One data set (dataset_1) has 1000
genotyped individuals with 3000 SNP markers and the
other (dataset_2) has 3000 genotyped individuals with
1000 SNP markers. The parameter files to run GVCBLUP
programs for the simulated datasets are also included in
the package. These simulated data are designed for
GVCBLUP exercises and for showing the complemen-
tary advantages of the CE and QM sets of formulations.
Users interested in GVCBLUP exercises using large
datasets could use a publically available swine dataset
with over 45,000 SNP markers on 3534 individuals [19]
that was used for comparing GREML estimates by
GVCBLUP with the corresponding REML estimates using
pedigree relations [5].

Results and discussion
The structure of the GVCBLUP package with three main
programs of GREML_CE, GREML_QM and GCORRMX
is shown in Figure 1, and details of each program are de-
scribed below.

GREML_CE and GREML_QM programs
The GREML_CE and GREML_QM programs calculate
GREML estimates of additive, dominance and residual
variances, additive and dominance heritabilities, as well
as heritability in the broad sense as the summation of
the additive and dominance heritabilities. GBLUP and
reliability of breeding value, dominance deviation and
genotypic value (summation of breeding value and
dominance deviation) of each individual in the training
or validation population are calculated at the end of
variance component estimation. GREML_CE and
GREML_QM offer complementary computing advan-
tages with identical GREML and GBLUP results:
GREML_CE for large numbers of SNP markers and
GREML_QM for large numbers of individuals. Assuming
one observation per individuals, GREML_CE is more effi-
cient than GREML_QM if 2 m > q and is less efficient than
GREML_QM if q > 2 m, where q = number of individuals
and m= number of SNP markers. The example in Table 1
shows the complementary computing advantages of
GREML_CE and GREML_QM. Both programs produced
identical results (Additional file 1: Supplementary output
file) and required the same numbers of iterations (Table 1).
For 1000 individuals and 3000 SNP markers, GREML_CE
required 5 seconds and GREML_QM required 69 seconds,
whereas for 3000 individuals and 1000 SNP markers,
GREML_CE required 32 seconds and GREML_QM re-
quired 6 seconds (Table 1). Given q = 2 m, the required



Figure 1 Structure of the GVCBLUP package. (m = number of SNP markers, q = number of individuals).
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memory storage of GREML_QM is approximately 1.5
times larger than GREML_CE, but GREML_QM is faster
than GREML_CE due to the fact that GREML_CE re-
quires twice as many matrix multiplication between large
dense matrices. The shared memory parallel computing of
GREML_CE and GREML_QM achieved excellent scal-
ability on ItascaSB cluster with two eight-core Sandy
bridge E5-2670 processor chips (2.6 GHz) per node, 256
Gb memory, and Linux operating system (Figure 2).
Scalability refers to the stability of average perform-
ance of a parallel program as the number of processors
increases. Ideal scalability is achieved when the
Table 1 Computing time (seconds) using GREML_CE and GRE

q = 1000, m = 3000 (Dat

GREML_CE G

Time for SNP input, Ag and Dg 1

Time per iteration ~0.2

Number of iteration 10

Total time 5
1The two programs were run on a personal computer (PC) with Intel Core i7-2600 (
efficiency of k processor-cores (Ek) is Ek = Sk/k = 1,
where Sk = the ratio of the execution time with one
processor-core to the execution time of the parallel algo-
rithm with k processor-cores [20].
GREML_CE and GREML_QM each has three output

files for results of GREML, GBLUP, and SNP effects and
heritabilities, in addition to screen displays (Additional
file 1: Supplementary output files). The GREML output
files contain estimates and standard errors of variance
components at each iteration, and the final estimates
of variance components, heritabilities and their stand-
ard errors. The GBLUP output file contains GBLUP
ML_QM for simulated datasets1

aset_1) q = 3000, m = 1000 (Dataset_2)

REML_QM GREML_CE GREML_QM

1 1 1

6 3 ~0.6

10 7 7

69 32 6

4 cores) of 3.40 GHz and memory of 8 Gb.



Figure 2 Excellent scalability of shared memory parallel computing of GREML_CE (left) and GREML_QM (right).

Figure 3 Graphical viewing of SNP additive and dominance effects and heritabilities. A: Manhattan plot of the original GBLUP values of
SNP additive effects. B: Chromosome 14 graph of the original GBLUP values of SNP additive and dominance effects. C: Manhattan plot of the
absolute GBLUP values of SNP additive effects. D: Chromosome 14 graph of the absolute GBLUP values of SNP additive and dominance effects.
E: Manhattan plot of SNP additive heritabilities in percentage scale. F: Chromosome 14 graph of SNP additive and dominance heritabilities in
percentage scale. G: Manhattan plot of SNP additive heritabilities in log10 scale. H: Chromosome 14 graph of SNP additive and dominance
heritabilities in log10 scale. Dominance GBLUP values were all virtually zero, consistent with the fact that the phenotypic values for fat percentage
were PTA values of additive effects. The highly significant chromosome 14 region is the DGAT1 region, and the graphs of C-F are similar to those
using stratification corrections reported in Ma et al. [21]. The total additive heritability of SNP markers in the 1675278–4606904 Mb region of
chromosome 14 that includes DGAT1 was 0.0248. Although additive heritabilities of other SNPs were much smaller than those in and near the
DGAT1 region, those additive heritabilities were still considerably larger than dominance heritabilities, which were all virtually zero for all SNPs.
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Figure 4 Procedure of using SNPEVG2 to generate graphs and interactive graphical views. This procedure can be summarized as: 1) Open
SNPEVG2, 2) Load the ‘mark_effect.snpe’ file using ‘Browse’ tab on the GUI of SNPEVG2, 3) click ‘Setting’ and check ‘original value’ for Y1 axis, 4)
change ‘original value’ to user defined title for Y1 axis, 5) Click the button pointed by the green arrow to define pixel size and to select color
template for the graphs, 6) Click ‘run’, 7) View the graph by scrolling up and down in the top right window, 8) Save ‘All graphs’ or ‘Current graph’.
SNPEVG2 is included in the SNPEVG package that is freely available at: http://animalgene.umn.edu/.
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of breeding values, dominance deviations, genotypic
values, and the corresponding reliabilities for both
training and validation populations. These GBLUP re-
sults are calculated using the GREML estimates at
the last iteration. Both GREML_CE and GREML_QM
have a user option to output SNP additive and dom-
inance marker effects and heritbilities for every SNP.
Table 2 Capacity and speed of GVCBLUP for genomic estimat
(tolerance = 10−8) and ItascaSB supercomputer

GREML_CE

Number of individuals (q) 20,000

Number of SNP markers (m) 1 million

Time for SNP input, Ag and Dg 3.7 hrs

Time per iteration 3.1 min

Total time 4.8 hrs

Number of iteration 12
1Computing time for calculating GBLUP reliabilities is not included.
The SNP effects and heritabilities can be readily
graphed and displayed by SNPEVEG2 [18] including
Manhattan plots and graphs by chromosome using
the original SNP GBLUP values (Figure 3: A and B),
or the absolute SNP GBLUP values (Figure 3: C and
D), or SNP additive and dominance heritabilities in
the scale of percentages (Figure 3: E and F), or SNP
ion of additive, dominance and residual variances

GREML_CE GREML_QM GREML_QM1

50,000 200,000 100,000

400,000 10,000 50,000

6.0 hrs 14.9 min 0.33 hrs

0.77 hrs 1.5 min 2.25 hrs

23.2 hrs 2 hrs ~45.83 hrs

13 20 20

http://animalgene.umn.edu/


Table 3 Comparison of iteration numbers of EM-REML
and AI-REML (tolerance = 10−8) using simulated data with
different heritability levels

Replication hα
2 = 0.0, hδ

2 = 0.0 hα
2 = 0.3, hδ

2 = 0.3

EM-REML AI-REML EM-REML AI-REML

1 173 −1 322 9

2 231 - 386 12

3 348 - 348 9

4 359 - 354 8

5 481 18 458 10

6 138 - 295 10

7 871 - 416 8

8 134 - 353 9

9 291 16 336 12

10 1000 10001 431 11
1AI-REML failed.

Figure 5 GVCeasy graphical user interface (GUI) for GVCBLUP. A: The m
from here and the same program may be opened multiple times. B: The GUI for
dominance effects. C: The GUI for GREML_QM with a tab to lunch SNPEVG2 to gr
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additive and dominance heritabilities in the log10 scale
(Figure 3: G and H). The procedure to generate the
Manhattan plots and chromosome figures is shown in
Figure 4.
Numerical evaluations showed that the AI-REML al-

gorithm for both GREML_CE and GREML_QM had fast
convergence rate, requiring between 12–20 iterations to
converge with a strict tolerance level of 10−8, compared
to 295–458 iterations using EM-REML (Table 2). The
SNP input and the calculation of genomic relationships
matrices (Ag and Dg) required more computing time
than per-iteration of the estimation step. GREML_CE
was able to use 50,000 individuals with 400 K SNP markers
with total computing time about 23 hours for 13 iterations.
For 20,000 individuals and one million SNP markers,
GREML_CE only required 4.8 hours. GREML_QM was
highly efficient for using low-density SNP markers, requir-
ing only 2 hours for 200,000 individuals with 10 K SNP
ain control of GVCeasy. Any of the three main programs may be launched
GREML_CE with a tab to lunch SNPEVG2 to graph and view SNP additive and
aph and view SNP additive and dominance effects. D: The GUI for GCORRMX.
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markers. For 100,000 individuals with 50 K SNP markers,
GREML_QM required about 46 hours for 20 iterations
(Table 2). Although AI-REML was fast, extreme heritability
levels (0 or 1) generally would cause failure of AI-REML.
For eight of ten replications with null heritability, AI-REML
failed, but the variance components still could be estimated
with EM-REML (Table 3). AI-REML was successful for all
ten replications with heritability of 0.3.
In addition to the tests in Table 1 using the simulation

datasets we provide with the GVCBLUP package,
GREML_CE and GREML_QM programs were exten-
sively evaluated using simulation data under various as-
sumptions, and the GREML estimates were compared to
the REML estimates of additive heritabilities of five traits
using pedigree relationships in a publically available
swine dataset of 3534 pigs with the 60 K SNP data [5].
GREML and GBLUP generally were able to capture small
additive and dominance effects that each accounted for
0.00005-0.0003 of the phenotypic variance and GREML
was able to differentiate true additive and dominance her-
itability levels [5]. The inclusion of dominance in the pre-
diction model resulted in improved accuracy of genomic
prediction [8], and the genomic models with additive and
dominance effects were more accurate for the estimation
of variance components than their pedigree-based coun-
terparts [7]. In a study of trout propensity to migrate,
genomic-predicted additive effects completely separated
migratory and nonmigratory fish in the wild population
with 95.5% additive heritability and 4.5% dominance
heritability, whereas genomic-predicted dominance ef-
fects achieved such complete separation in the dam-
blocked population with 0% additive heritability and
39.3% dominance heritability [22], showing the import-
ance to account for the exact effect type in the predic-
tion model.

GCORRMX program
The GCORRMX program is designed to calculate mea-
sures of genomic similarities among individuals. This pro-
gram currently calculates the Ag and Dg matrices for six
definitions [23]. An example of the GCORRMX output files
is given in Additional file 1: Supplementary output files.

GVCeasy: Graphical user interface (GUI) for GVCBLUP
The three main programs of GVCBLUP are command
line programs. GVCeasy is a Java program developed as
a user-friendly GUI with a capability to run GVCBLUP
by mouse clicks, providing considerable convenience for
users not familiar with command line operations.
GVCeasy can lunch any of the three main programs of
GVCBLUP and provides a capability of editing the para-
meter file for each main program (Figure 5). In addition,
SNPEVG2 can be launched from the GREML_CE or
GREML_QM window of GVCeasy for graphical viewing of
SNP additive and dominance effects. To run GVCeasy,
the programs of GVCeasy, GREML_CE, GREML_QM,
GCORRMX and the SNPEVG package that includes
SNPEVG2 need to be placed in the same directory.
GVCeasy is applicable to Windows, Linux and Mac OS X
versions of GVCBLUP.
Conclusions
The GVCBLUP package is a powerful and user friendly
computing tool for assessing the type and magnitude of
genetic effects affecting a phenotype by estimating whole-
genome additive and dominance heritabilities of a pheno-
type using genome-wide SNP markers, is a full featured
computing tool for genomic prediction of breeding values,
dominance deviations and genotypic values for both train-
ing and validation data sets, and provides an important
computing utility for research and education in the area of
genomic prediction and estimation.
Availability and requirements
Project name: GVCBLUP
Project home page: http://animalgene.umn.edu/
Operating system(s): Windows, Linux and Mac OS X
Programming language: C++, Java
License: None
Additional file

Additional file 1: Supplementary output files.
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