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Abstract

Background: Understanding the relationship between diseases based on the underlying biological mechanisms is
one of the greatest challenges in modern biology and medicine. Exploring disease-disease associations by using
system-level biological data is expected to improve our current knowledge of disease relationships, which may lead to
further improvements in disease diagnosis, prognosis and treatment.

Results: We took advantage of diverse biological data including disease-gene associations and a large-scale
molecular network to gain novel insights into disease relationships. We analysed and compared four publicly available
disease-gene association datasets, then applied three disease similarity measures, namely annotation-based measure,
function-based measure and topology-based measure, to estimate the similarity scores between diseases. We
systematically evaluated disease associations obtained by these measures against a statistical measure of comorbidity
which was derived from a large number of medical patient records. Our results show that the correlation between our
similarity measures and comorbidity scores is substantially higher than expected at random, confirming that our
similarity measures are able to recover comorbidity associations. We also demonstrated that our predicted disease
associations correlated with disease associations generated from genome-wide association studies significantly
higher than expected at random. Furthermore, we evaluated our predicted disease associations via mining the
literature on PubMed, and presented case studies to demonstrate how these novel disease associations can be used
to enhance our current knowledge of disease relationships.

Conclusions: We present three similarity measures for predicting disease associations. The strong correlation
between our predictions and known disease associations demonstrates the ability of our measures to provide novel
insights into disease relationships.
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Background
Correct diagnosis is critical for effective treatment and
prevention of disease. As a result, disease classification
has become a key cornerstone of modern medicine. Dis-
ease may be classified by any one of a number of criteria:
topographic, anatomic, pathological, physiological, etio-
logical, juristic, epidemiological or statistical approaches.
However, without considering the molecular mechanisms
driving diseases, such knowledge is limited and can even
be misleading. For example, a common phenotype can
be caused by different underlying mechanisms, such as
breast cancer, which can be divided into several subgroups
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that are characterized by distinct patterns of pathway acti-
vation [1]. However, a common mechanism may lead to
different phenotypes. For example, a mutation at the β-
globin locus may lead to sickle-cell anemia with different
phenotypes such as bony infarcts, acute chest syndrome
and stroke [2].
During the past decade, a wealth of biological data has

been generated from various large-scale genomic studies,
prompting the scientific community to gain deeper insight
into disease relationships based on their underlying bio-
logical mechanisms. Various types of biological data have
been used to infer associations between diseases. One of
the most commonly used biological data is disease-gene
association. In a broad definition, a disease-gene asso-
ciation is a connection reported in the literature, which
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can be a genetic association (i.e., mutations in that gene
may lead to that disease), or a connection inferred from
other aspects. Disease-gene associations can be obtained
from large-scale knowledge-bases such as the Online
Mendelian Inheritance in Man (OMIM) [3]. Early studies
used text mining to infer similarities between phenotypes
contained in OMIM, and found those similarities were
positively correlated with a number of measures of gene
functions [4] and could be used to predict disease-causing
genes [5]. Also by using OMIM, Goh et al. [6] constructed
the human diseasome by connecting diseases that share
a disease-causing gene. Other types of biological data
such as biological pathways [7], gene expression data [8,9],
biomedical ontologies [10,11], and genome-wide associ-
ation study (GWAS) data [12-14], have also been used
to improve the current understanding of disease relation-
ships from different aspects. Recently, networks have been
used to model large-scale biological data, and network
topology is beginning to provide insights into diseases
and their associations [6,15-17]. By considering the inter-
connectivity of biomolecules in the cell, the topology of
biological networks is expected to have various biological
and clinical applications [18,19].
Despite these advances, early studies have several lim-

itations when inferring disease associations from bio-
logical data. First, some studies only considered several
specific diseases, rather than giving a global comparison
among all diseases (e.g., [9,12-14]). This is the case for
GWAS-based studies, since a small number of GWAS
studies have been completed to date in a relatively small
proportion of the total disease population. Furthermore,
most studies solely used OMIM as the source of disease-
gene association data. OMIM is a catalogue of mendelian
disorders and as a result, most diseases are annotated with
few genes in OMIM [20]. Limitations of using OMIM
have also been discussed previously [21,22]. Finally, most
computationally predicted disease associations were not
systematically evaluated due to the difficulty in identify-
ing a suitable benchmark of known disease associations.
In particular, most studies were only able to validate part
of their results by comparing them with phenotypic sim-
ilarities (e.g., [12]) or mining the literature manually (e.g.,
[13]). A comparison of previous studies can be found in
Table 1.
In our study, we used diverse biological data from a

number of repositories to gain novel insights into the
relationship of over 500 known human diseases by con-
sidering their underlying biological mechanisms. We used
disease-gene associations obtained from four different
sources to avoid the bias introduced by a single dataset.
Moreover, we took advantage of the topology of a large-
scale molecular network to examine its use for inferring
disease associations. We applied three different disease
similarity measures, namely annotation-based measure,

function-based measure and topology-based measure, to
estimate similarity scores between diseases. The disease
associations obtained by the three measures were sys-
tematically evaluated against the standard disease clas-
sification system, namely the International Classification
of Diseases, 9th revision (ICD-9) [23], and a statistical
measure of comorbidity derived from a large number of
medical patient records. In addition, we evaluated our
predicted disease associations by using disease associ-
ations generated from GWAS studies, which represent
one of the most robust routes for identifying causal rela-
tionships between genes and diseases. To our knowledge,
this is the first time comorbidity and GWAS data have
been used to evaluate computationally predicted disease
associations.
In the rest of this paper, we will start with a descrip-

tion of the biological data we analysed, followed by details
of our methodology of measuring disease associations.
Then we will show and discuss the evaluation of dis-
ease associations predicted by our similarity measures
against known disease associations derived from ICD-9,
comorbidity data and GWAS data. Finally, we will present
case studies to demonstrate the ability of our similarity
measures to predict novel disease associations.

Methods
Biological data
Three types of biological data were used in this study:
protein-protein interactions (PPIs), Gene Ontology (GO)
annotations and disease-gene associations.

PPI network
We modelled PPI data as a network. A network or graph
G(V ,E) consists of two types of elements, a set V of
nodes and a set E ⊆ V × V of edges connecting them.
A PPI network models the physical interaction among
proteins in the cell, in which a node represents a pro-
tein, and an undirected edge exists between a pair of
nodes if their corresponding proteins can physically bind
to each other. Currently available PPIs are mostly yielded
from various high throughput proteomics experiments,
such as yeast two-hybrid screening (e.g., [24]) and affin-
ity capture mass spectrometry (e.g., [25]). We constructed
a human PPI network using data obtained from BioGRID
[26] version 3.1.93 (released in October 2012). All self-
loops, duplicate interactions were removed since we con-
sidered only simple, undirected graphs. We also removed
the cross-species interactions (i.e., interactions between
human proteins and proteins of other species) because
we focused on the physical interactions between human
proteins in our study. The PPI network we constructed
contained 11,375 nodes and 66,317 edges, while its largest
connected component contained 11,261 nodes and 66,253
edges. Note that the second largest connected component
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Table 1 Comparison of studies on inferring disease-disease associations

Data Size Evaluation

van Driel et al. (2006) [4] OMIM 5132 phenotypes in OMIM Comparing results with genotypic
similarities

Lage et al. (2007) [5] OMIM 7000 OMIM record pairs Evaluating results against the overlap
of the OMIM record pairs

Goh et al. (2007) [6] OMIM 1284 OMIM diseases Analysing network topological
properties

Huang et al. (2009) [12] GWAS 7 diseases Comparing results with phenotypic
similarities

Li and Agarwal (2009) [7] Pubmed abstracts,
biological pathways

1028 diseases in MeSH Comparing results with MeSH
classification

Kim et al. (2009) [13] GWAS 53 clinical traits related to
severe asthma

Mining the literature manually

Hu and Agarwal (2009) [8] Expression data 645 diseases in MeSH Comparing results with MeSH
classification

Suthram et al. (2010) [9] Expression data, PPI 54 diseases Evaluating results against genetic
similarities

Lewis et al. (2011) [14] GWAS 61 diseases Comparing results with Huang et al.
(2009) results

Mathur and Dinakarpandian et al.
(2007) [10]

DO annotation, GO
annotation

36 diseases (for evaluation) Evaluating results using 68 curated
disease associations

Our study Disease-gene
associations, GO
annotation, PPI

543 ICD-9 diseases Evaluating results against ICD-9
classification, comorbidity, and
genetic similarities derived from
GWAS data

The comparison is based on the data used to derive associations (denoted by ‘Data’), number of diseases evaluated (denoted by ‘Size’) and benchmarks used for
evaluation (denoted by ‘Evaluation’). The number of diseases evaluated in our study is computed as the union of diseases annotated in the four disease-gene
association datasets we analysed, given in Figure 1.

only contained 5 nodes and 5 edges. There were also 7 iso-
lated triangles and 43 isolated edges in the PPI network.
The presentence of these small components may be due to
the incompleteness of the PPI data. In addition, the topol-
ogy of these small components is not as informative as that
of the largest connected component. For these reasons,
we only used the largest connected component of the PPI
network in our analysis.

GO annotations
Genes are annotated with GO terms to represent their
biological properties [27]. All GO terms are organised in
three domains: cellular component, molecular function
and biological process. We downloaded the ontology file
and annotations of Homo sapiens from the Gene Ontol-
ogy database (http://www.geneontology.org) inNovember
2012. We removed annotations with evidence code
‘Inferred from Electronic Annotation’ (IEAs), since IEAs
are computationally inferred annotations which have not
been reviewed by curators. In total, we collected 171,888
annotations between 13,166 genes and 10,787 GO terms.

Disease-gene associations
Disease-gene associations can bemodelled as a graph con-
taining both known human diseases and disease-related

genes in the human genome. The degree of a disease is
the number of genes associated with that disease, while
the degree of a gene is the number of diseases annotated
with that gene. We used four disease-gene association
datasets obtained from different sources: OMIM, Com-
parative Toxicogenomics Database (CTD) [28], Functional
Disease Ontology annotations (FunDO) [29] and Human
Genome Epidemiology Network (HuGENet) [30]. Among
these datasets, OMIM, CTD, and FunDO contain curated
associations, while HuGENet contains computationally
inferred associations. Details of these disease-gene associ-
ation datasets are described below.

• OMIM is considered to be the best-curated resource
of known phenotype-genotype relationships, and it
has been used in various disease-related studies
(discussed in the Background section). We
downloaded the OMIM database in November 2012.
In total, it contains 3,537 diseases (annotated by
OMIM IDs), 2,862 genes and 4,337 disease-gene
associations.

• CTD provides scientific data describing relationships
between chemicals, genes, and human diseases, with
the goal of improving the understanding of
environmental chemicals’ effects on human health. It

http://www.geneontology.org
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contains both curated and inferred disease-gene
associations, but we only used curated associations as
they have higher confidence than inferred
associations. Disease-gene associations directly
derived from OMIM were excluded to reduce the
dependency between datasets. We downloaded the
data from CTD in November 2012 and obtained
17,754 associations between 2,761 diseases
(annotated by Medical Subject Heading (MeSH)
terms [31]) and 5,828 genes.

• FunDO contains disease-gene associations extracted
from the NCBI Gene Reference Into Function
(GeneRIF) database. A GeneRIF is a brief statement
about the function of a gene, along with information
of its association with diseases. We downloaded the
latest stable version of FunDO (released in October
2008) and obtained 1,854 diseases (annotated by
Disease Ontology (DO) terms), 4,781 genes and
28,442 disease-gene associations.

• HuGENet is known as an integrated knowledge-base
on human genome epidemiology. The Phenopedia
collection [30] of HuGENet contains disease-gene
associations obtained by text-mining of abstracts on
PubMed using machine learning techniques. Disease-
gene association data were downloaded via HuGE
Navigator in September 2012. We obtained 353,883
associations between 2,387 diseases (annotated by
Unified Medical Language System (UMLS) [32]
Concept Unique Identifiers (CUIs)) and 11,915
genes.

Since disease names or IDs used in these datasets are
based on different labelling schemes, we mapped all dis-
ease names or IDs to ICD-9 codes, for the purpose of
comparing these datasets and further evaluation (also see
the Results and discussion section for details). We used
the mapping manually constructed by [6] and [33] to
convert OMIM IDs to ICD-9 codes, and used the corre-
sponding mapping provided in Disease Ontology version
3 (the latest stable version of DO, released in May 2007)
to map DO IDs, MeSH terms and UMLS CUIs to ICD-
9 codes. In total, 1,467 OMIM IDs in OMIM, 423 MeSH
terms in CTD, 806 DO IDs in FunDO and 693 UMLS
CUIs in HuGENet were mapped to ICD-9 codes.

Disease similarity measures
We applied three similarity measures to estimate simi-
larity scores between diseases. These measures include
standard methods (i.e., Jaccard index) and novel mea-
sures proposed in this study (i.e., graphlet-based mea-
sure). Considering the information used in calculation,
the similarity score of a pair of diseases was measured
in three different ways: annotation-based, function-based
and topology-based.

Annotation-basedmeasure
The annotation-based measure solely used the informa-
tion obtained from disease-gene association data. We
applied the Jaccard index, which is known as a standard
method for comparing the similarity between two sets,
to estimate the similarity score between diseases as fol-
lows. Let GDi be the set of genes associated with a disease
Di. We computed the annotation-based similarity score of
two diseases Di and Dj as the Jaccard index (or Jaccard
similarity coefficient) of GDi and GDj :

Simannotation(Di,Dj) = |GDi ∩ GDj |
|GDi ∪ GDj |

. (1)

Function-basedmeasure
The function-based similarity measure used both GO
term annotations and disease-gene associations to esti-
mate the similarity score between a pair of diseases. We
first propagated the GO annotations upwards through the
GO hierarchy, i.e., when a gene was annotated with a GO
term, we assumed associations between the gene and the
term’s parents. For each disease Di annotated in a spe-
cific disease-gene association dataset, we then identified
the set of GO terms that were overrepresented withinGDi ,
denoted by GODi . The statistical significance (p-value) of
the enrichment of a GO term was computed according
to the hypergeometric distribution for sampling without
replacement, and was corrected for multiple testing using
the Benjamini-Hochberg test. Only overrepresented GO
terms from the ‘biological process’ domain of GO and hav-
ing a p-value less than 0.05 were considered to be inGODi .
For a pair of diseases Di and Dj, we computed the Jaccard
index ofGODi andGODj as their function-based similarity
score, defined as:

Simfunction(Di,Dj) = |GODi ∩ GODj |
|GODi ∪ GODj |

. (2)

Topology-basedmeasure
Many studies have shown the relationship between topo-
logical properties of proteins in the PPI network and the
involvement of proteins in diseases [6,34,35]. Topological
similarities of proteins in a PPI network are considered
as a complementary information to sequence similarities
[36]. Thus in this study, we took advantage of the topol-
ogy of the human PPI network along with disease-gene
association data to examine the use of network topology
for uncovering novel disease associations. In particular,
we proposed a measure to estimate the similarity score
between a pair of diseases based on the topological simi-
larity of their annotated genes.
We applied a graphlet-based method to assess the topo-

logical similarity of genes in the human PPI network. A
graphlet is defined as a small, connected and induced sub-
graph of a larger network [37].Within each graphlet, some
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nodes are topologically identical to each other, and such
identical nodes are said to belong to the same automor-
phism orbit [38]. The graphlet signature of a node u is a
73-dimensional vector, whose ith element ui counts the
number of times the node u is touched by the particular
automorphism orbit i [39]. According to [39], the signa-
ture similarity of a pair of nodes u and v is defined as:

SigSim(u, v) = 1 − 1∑72
i=0 wi

×
( 72∑

i=0

(
wi× | log(ui + 1) − log(vi + 1)|

log(max{ui, vi} + 2)

))

(3)

where wi is a weight assigned to orbit i defined as 1 −
log(oi)/log(73) (oi is the dependency count of orbit i,
see [39] for details). SigSim(u, v) ranges between 0 and 1,
where the value of 1 means that the two nodes, u and v,
are considered to be topologically identical. This measure
is a highly constraining measure of local topological simi-
larity between two nodes in a network as it compares the
nodes based on local structures of their neighbourhoods,
which describe their interconnectivities out to a distance
of four [39]. Signature similarities have been applied to
measure the topological similarities between proteins in a
PPI network [34,36,39-43]. It has been shown that topo-
logically similar proteins are likely to belong to the same
protein complexes, perform the same biological functions,
be localised in the same subcellular compartments and
have the same tissue expressions [39]. Signature similar-
ities have also been used to relate the network structure
around a protein in a PPI network to homology [36]
and its involvement in diseases [34]. For these reasons,
we hypothesize that the topology around disease genes
in the PPI network can reflect the underlying biological
mechanisms of diseases.
We calculated the signature similarity of each pair of

genes in the human PPI network. Note that the network
has an edge density (the proportion of the number of
edges to themaximum possible number of edges) of 0.001,
which for its size (11,261 nodes and 66,253 edges) is dense
enough to avoid low edge density regions in which the
topology of networks is unstable (see [44] for details).
Here we extended the use of graphlet-based method to
measure disease similarities. We introduced two terms to
quantify the topology-based similarity score between dis-
eases Di and Dj. The first term, denoted by AllSig, is the
maximum of the signature similarity between a gene in
GDi and a gene in GDj :

AllSig(Di,Dj) = max
gm∈GDi
gn∈GDj

SigSim(gm, gn). (4)

The second term, denoted by ShareSig, focuses on the
topological similarity between genes shared with both
diseases:

ShareSig(Di,Dj) = max
gm �=gn

gm∈GDi∩GDj
gn∈GDi∩GDj

SigSim(gm, gn). (5)

Finally we defined the topology-based similarity score
between Di and Dj as the average of these two terms:

Simtopology(Di,Dj) = 1
2

× (ShareSig(Di,Dj)

+ AllSig(Di,Dj)).
(6)

Evaluation
Comorbidity associations of diseases
The availability of electronic patient records facilitates
studies into disease comorbidity, which indicates the
potential for co-occurrence of two given diseases in the
same individual. Comorbidity can be considered as a type
of disease association derived from electronic medical
record, but the underlying driver for comorbidity may
be very different from one another. Comorbidity and its
correlation with other types of disease associations such
as genetic associations [45] and evolutionary associations
[46] have previously been studied. Unlike these studies,
we used comorbidity data to evaluate disease associa-
tions predicted by our similarity measures. Comorbidity
associations were downloaded from the Human Disease
Network (HuDiNe, [47]), which were obtained from the
disease history of 32 million American patients. Diseases
were annotated using ICD-9 codes in HuDiNe, and as
many diseases in patient records were not specific enough
to map to 4-digit or 5-digit codes, we used the comorbid-
ity data annotated using 3-digit level ICD-9 codes for our
analysis. The strength of comorbidity association between
a pair of diseases can be measured by the Relative Risk
and φ-correlation [47]. Because comorbidity associations
quantified by φ-correlation were reported to containmore
connections across different ICD-9 categories [47], we
chose φ-correlation as the measure of comoridity. The φ-
correlation score between Di and Dj was defined as the
Pearson’s correlation for binary variables, given by:

φ(Di,Dj) = CijN − PiPj√
PiPj(N − Pi)(N − Pj)

(7)

where Cij is the number of individuals affected by both
Di and Dj, N is the total number of individuals in the
population, Pi and Pj are the prevalences of Di and
Dj respectively. A φ-correlation higher than 0 indicates
the co-occurrence of Di and Dj is more frequently than
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expected by random. The statistical significance of φ-
correlation was determined by using a t-test,

t = φ
√
n − 2√

1 − φ2
(8)

where n = max(Pi,Pj) is the number of observations used
to calculate φ. We used significant associations at 5% level
(t ≥ 1.96) for our analyses.

GWAS data
GWAS is a powerful method to identify genetic variations
associated with diseases and is one of the most robust
routes for identifying causal relationships between genes
and diseases [48,49]. GWAS studies examine the genome
for single-nucleotide polymorphisms (SNPs) that occur
more frequently in people with a particular disease than in
people without it. GWAS studies have enabled exploration
of gene association in complex diseases in a systematic
way on a genome scale. Whilst individual studies are
extremely powerful, only a small number of diseases have
been studied thus far using GWAS. Hence the GWAS
database as a whole is only able to contribute a relatively
small component to the overall knowledge base of gen-
eral disease-gene associations. For this reason, we did not
use GWAS data as a source of disease-gene association to
measure disease similarity scores, but used them to eval-
uate our predicted disease associations. We downloaded
GWAS data from the National Human Genome Research
Institute (NHGRI) GWAS catalog [50] in May 2013. This
resource collects significant associations between traits
(or diseases) and SNPs from the literature. Similar to
[51], we only considered highly confident associations
with p-value lower than 10−7. We also eliminated not
replicated associations to minimise false-positives. For
all disease-SNP associations in our analysis, we used the
corresponding disease-gene associations reported by the
authors in the original publications as recorded in the
GWAS Catalog. After mapping diseases to ICD-9 codes,
we obtained 1,756 genetic associations (from 478 publica-
tions) between 126 diseases and 1,298 genes.

Results and discussion
Comparison of disease-gene association datasets
We analysed four different disease-gene association
datasets: three curated datasets, namely OMIM, CTD
and FunDO, and one computationally predicted dataset,
HuGENet (details of these datasets can be found in the
Methods section). Although these datasets focus on dif-
ferent aspects of the connections between diseases and
genes, they are not fully independent since information
contained in these datasets is extracted from the litera-
ture. For example, disease-gene associations contained in
CTD and FunDO were extracted from 9,269 and 48,436
publications respectively, and they have 799 publications

in common. We mapped all disease names or IDs anno-
tated in these datasets to ICD-9 codes for a correct com-
parison (see the Methods section for more details). If
several diseases were mapped to a common ICD-9 code,
we assigned the union of genes associated with those
diseases to that ICD-9 code. In order to evaluate our
measures using comorbidity data, we further limited the
ICD-9 codes to 3-digit level. We are aware that noise may
be introduced when merging diseases into 3-digit level.
Generally speaking, a 3-digit level ICD-9 code is always
associated with more than one disease, thus the average
degree of diseases increased after mapping. Note that it
is possible that two diseases may share clinical traits but
have different 3-digit level ICD-9 codes, e.g., acute bron-
chitis (ICD-9: 466) and chronic bronchitis (ICD-9: 491).
However, in most cases if two diseases have different ICD-
9 codes at 3-digit level, they always have different clinical
phenotypes and they are unlikely to share similarity traits.
Interestingly, the overlap among the four disease-gene

association datasets is unexpectedly small, as shown in
Figure 1. While a considerable number of diseases (120
diseases in total, that is, 50.21%, 47.43%, 26.20% and
33.33% of diseases annotated in OMIM, CTD, FunDO
and HuGENet, respectively) have gene annotations in all
four datasets, few disease-gene associations (159 associ-
ations in total, that is, 7.05%, 1.99%, 0.92% and 0.11%
of associations in OMIM, CTD, FunDO and HuGENet,
respectively) can be found in all datasets. Additional file 1:
Figure S1 further demonstrates the difference between
these datasets according to the degree distribution of dis-
eases. In general, these distributions follow power law
distributions, indicating that most human diseases are
associated with only a few disease genes, while a small
number of diseases relate to many genes. However, this
scale-free topology may also be an artifact of sampling:
several diseases are better studied than others [52]. We
notice that in OMIM, most diseases are associated with
fewer genes compared with other datasets. The average
number of genes associated with a disease in OMIM is
9.43, while in the two other curated datasets CTD and
FunDO, these numbers are 31.59 and 37.80. On the other
hand, on average a disease in HuGENet is annotated with
more than 300 genes: HuGENet has a higher false posi-
tive rate compared to other datasets, since its associations
were derived from computational predictions rather than
manual curations.
The difference and inconsistency discussed above indi-

cate that currently available disease-gene association
datasets are still noisy and incomplete. The incomplete-
ness may be due to the focus of the datasets and the
nature of the curation process. For example, OMIM
mainly focuses on mendelian diseases and traits. Mean-
while, many false positives may be introduced by text-
mining the literature (e.g., HuGENet). However, there
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Figure 1 The overlap of datasets. The overlap of diseases (denoted by ‘D’), genes (denoted by ‘G’) and their associations (denoted by ‘A’) between
the four disease-gene association datasets we analysed. Boxes on the left list the sizes of the datasets. The size of the intersection of the datasets is
marked in bold.

is no single standard and systematic method to assess
the quality of these data. Therefore, to gain a more
comprehensive view of human diseases and to test the
robustness of our methods, we used all four disease-gene
association datasets along with the intersection/union of
the three curated datasets in further computation and
evaluation.

Evaluation of similarity measures
Correlation with ICD-9
The results obtained by these measures were first eval-
uated against the standard disease classification system
ICD-9. We say that two diseases are associated according
to ICD-9, if they are classified under the same ICD-9 cat-
egory. For example, diabetes mellitus (ICD-9 code: 250)
and thyroiditis (ICD-9 code: 245) are classified under
the same category ‘endocrine, nutritional and metabolic
diseases, and immunity disorders’. To investigate the cor-
relation between our similarity measures and the ICD-9
classification, we tested whether a pair of diseases from
the same ICD-9 category tends to have a higher similar-
ity score than diseases from different ICD-9 categories
(Table 2). Since similarity scores obtained by ourmeasures
are not normally distributed, we used a non-parametric
test, namely the Mann-Whitney U test, to assess the sta-
tistical significance (p-value). Our results show that for all
three similarity measures and all four disease-gene associ-
ation datasets, similarity scores of diseases from the same
ICD-9 category are significantly higher than those from
different ICD-9 categories.

Correlationwith comorbidity
As the goal of our study is to uncover novel disease associ-
ations that may reflect common underlying mechanisms,
we are more interested in the associations between dis-
eases that belong to different ICD-9 categories. For this
reason, we systematically evaluated our similarity mea-
sures against a statistical measure of comorbidity. We
say two diseases are associated according to comorbidity
if they are reported to have a significant co-occurrence
in the same individual. In particular, their φ-correlation
score should be higher than a chosen threshold and statis-
tically significant at 5% level. Additional file 1: Figure S2
shows the distribution of φ-correlation scores for all pairs
of diseases we analysed. Note that even though the comor-
bidity associations we used for evaluation contained dis-
ease associations across different ICD-9 categories, there
was overlap between associations derived from ICD-9
and comorbidity associations. For example, the associa-
tion between diabetes mellitus and obesity was supported
by both ICD-9 classification and comorbidity data. Since
ICD-9 and comorbidity describe the relationship between
diseases from different aspects, we believe the evalua-
tions against ICD-9 classification and comorbidity do not
contradict each other, but are complementary to each
other.
To assess the ability of our measures to uncover highly

confident comorbidity associations, we used Receiver
Operating Characteristic (ROC) curves, in which we plot-
ted the True Positive Rate (TPR, also known as sensitiv-
ity) versus the False Positive Rate (FPR, also known as
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Table 2 Evaluation of our measures against ICD-9 classification

Data Group Annotation-based Function-based Topology-based

OMIM Same 0.0114 ± 0.0665 0.0355 ± 0.0892 0.4349 ± 0.1101

Different 0.0010 ± 0.0139 0.0118 ± 0.0314 0.3996 ± 0.0760

P-value 1.2785 ×10−13 1.0423 ×10−52 2.1257 ×10−54

CTD Same 0.0361 ± 0.1590 0.0728 ± 0.1754 0.4863 ± 0.1770

Different 0.0050 ± 0.0274 0.0333 ± 0.0662 0.4408 ± 0.1368

P-value 1.4887 ×10−23 1.4040 ×10−9 2.0240 ×10−25

FunDO Same 0.0418 ± 0.1344 0.0991 ± 0.1611 0.5560 ± 0.2214

Different 0.0100 ± 0.0262 0.0549 ± 0.0830 0.4952 ± 0.1636

P-value 1.7609 ×10−144 9.6708 ×10−100 2.7037 ×10−90

HuGENet Same 0.0931 ± 0.1798 0.2470 ± 0.2123 0.8031 ± 0.2248

Different 0.0438 ± 0.0566 0.1881 ± 0.1522 0.7837 ± 0.2292

P-value 1.4585 ×10−74 9.9053 ×10−72 4.5910 ×10−14

Intersection Same 0.0338 ± 0.1511 0.0593 ± 0.1907 0.3826 ± 0.1131

Different 0.0024 ± 0.0329 0.0089 ± 0.0428 0.3496 ± 0.1020

P-value 2.2667 ×10−2 2.7448 ×10−4 5.4716 ×10−4

Union Same 0.0350 ± 0.1179 0.0963 ± 0.1463 0.5680 ± 0.2226

Different 0.0085 ± 0.0219 0.0583 ± 0.0818 0.5042 ± 0.1716

P-value 1.3493 ×10−211 7.1478 ×10−113 4.1709 ×10−141

Numbers in the table are similarity scores between diseases from the same ICD-9 categories, compared with those from different ICD-9 categories. P-values are
calculated by using the Mann−Whitney U test.

1−specificity) for different thresholds of similarity score.
TPR is defined as the fraction of true positives (that is, all
pairs of diseases having a similarity score higher than a
chosen threshold and having comorbidity association) out
of the positives (all pairs of diseases having comorbidity
association), while FPR is defined as the fraction of false
positives (all pairs of diseases having a similarity score
higher than a chosen threshold but having no comorbid-
ity association) out of the negatives (all pairs of diseases
excluding those having comorbidity association). Figure 2,

Additional file 1: Figure S5 and Table 3 show the ROC
curves and Area Under Curve (AUC) values obtained by
the three disease similarity measures. To illustrate that
our results cannot be obtained by chance, we assigned a
randomised score which was drawn from the same distri-
bution of the similarity scores to each pair of diseases, and
evaluated associations derived from these randomised
scores against comorbidity. We show that the correla-
tion between our similarity measures and comorbidity
scores is substantially higher than expected at random for

Figure 2 Evaluation against comorbidity. ROC curves obtained by evaluating the three disease similarity measures against comorbidity. Due to
space limitations, only ROC curves of FunDO are shown here (see Additional file 1: Figure S5 for ROC curves of other datasets). The φ-correlation
threshold was set to 0.06 (the same threshold was used in [47]). We evaluated diseases annotated with at least 1, 3, 5, 7, 10, 15 genes, shown by
curves with different colours in each plot.
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Table 3 Evaluation of our measures against comorbidity

Data Annotation-based Function-based Topology-based

OMIM 0.8009 ± 0.0277 (0.5740) 0.8694 ± 0.0073 (0.5120) 0.8495 ± 0.0011 (0.5044)

CTD 0.7849 ± 0.0164 (0.5404) 0.7316 ± 0.0046 (0.5047) 0.7949 ± 0.0042 (0.5203)

FunDO 0.7426 ± 0.0088 (0.4672) 0.7142 ± 0.0017 (0.4940) 0.7497 ± 0.0016 (0.5031)

HuGENet 0.7563 ± 0.0001 (0.5084) 0.8185 ± 0.0001 (0.4987) 0.7153 ± 0.0015 (0.4922)

Intersection 0.9925 ± 0.0001 (0.6013) 0.9802 ± 0.0001 (0.5081) 0.9958 ± 0.0041 (0.4664)

Union 0.8225 ± 0.0045 (0.4704) 0.7491 ± 0.0001 (0.4999) 0.7939 ± 0.0022 (0.5008)

Average 0.8194 ± 0.0837 (0.5270) 0.8106 ± 0.0930 (0.5029) 0.8163 ± 0.0907 (0.4979)

Numbers in the table are AUC values obtained by evaluating the three disease similarity measures against comorbidity associations. The φ-correlation threshold was
set to 0.06 (the same threshold was used in [47]), and all diseases annotated with at least 3 genes were evaluated. Average AUC values obtained by using randomised
scores are shown by numbers in brackets (standard deviations are not shown in the table due to space limitation). Each evaluation test was run 30 times to compute
the statistics reported in the table.

all disease-gene association datasets we analysed. In par-
ticular, diseases yielding a high similarity score are very
likely to have comorbidity associations, thus confirming
that our measures are able to uncover known comorbidity
relationships.
While varying the φ-correlation threshold, we obtained

higher AUC values for higher thresholds (the ROC curves
are not shown in the paper due to space limitations).
For example, when the φ-correlation threshold was set to
0.06 (49 comorbidity pairs), the AUC value was 0.7580
± 0.0024 (using the topology-based measure and FunDO
as the source of disease-gene associations). When the
φ-correlation threshold was set to 0.08 (33 comorbid-
ity pairs) and 0.10 (25 comorbidity pairs), the AUC
value increased to 0.7669 ± 0.0027 and 0.7996 ± 0.0060,
respectively. This indicates our similarity measures tend
to detect strong comorbidity associations with high φ-
correlation. Meanwhile, when we decreased the number
of false negatives in the comorbidity data by lowering the
φ-correlation threshold from 0.06 to 0.02, the AUC values
we obtained were still higher than expected at random.
For example, when the φ-correlation threshold was set
to 0.04 (93 comorbidity pairs) and 0.02 (300 comorbid-
ity pairs), the AUC values we obtained were 0.7064 ±
0.0019 and 0.6017 ± 0.0015, respectively. These results
suggest our similarity measures are robust to high false
negatives in the comorbidity data. Better ROC curves can
also be obtained by evaluating diseases annotated with
higher numbers of genes (Additional file 1: Figure S5).
From Table 3, we observed that best performances of our
similarity measures are achieved by using highly confident
curated disease-gene associations (i.e. the intersection set
of OMIM, CTD and FunDO), with AUC values higher
than 0.98.
Note that our approach is robust to the incompleteness

presented in disease-gene association datasets and PPI
networks. We downloaded the disease-gene association
data fromOMIM and the PPI data from BioGRID (version

3.2.112) in June 2014 to re-examine whether we obtained
the same results when we used the latest biological data.
In total, the OMIM data contained 4,002 diseases (anno-
tated by OMIM IDs), 3,218 genes and 4,816 disease-gene
associations. The PPI network we constructed contained
14,089 nodes and 126,891 edges. By re-computing the
similarity scores and evaluating the results against comor-
bidity on these latest biological data, we showed that we
were able to obtain results (shown in Additional file 1:
Figure S4) that agree with the ones reported in Table 3 and
Additional file 1: Figure S5. These results further validated
the robustness of our approach.

Correlationwith GWAS data
We further examined the correlation between our pre-
dicted disease associations and currently available highly
confident GWAS data (see the Methods section for
details) to see whether our findings are supported by
GWAS studies. A gene is said to be associated with a
disease according to GWAS, if the occurrence of genetic
variants (SNPs) within that gene is significantly higher in
people with that disease than in people without it. We
say that two diseases are associated according to GWAS
if they share at least one gene in GWAS data. Since
disease-gene associations collected in the four datasets
we analysed were extracted from the literature, genetic
associations reported in GWAS studies may also be col-
lected in these datasets. To avoid bias in evaluation, we
chose FunDO as the source of disease-genes associations,
as it has few overlap with GWAS data. In particular,
since most GWAS data were published after FunDO’s
last stable release (October 2008), only 42 out of 48,436
publications in FunDO were also found in GWAS data.
We removed disease-gene associations collected from
the common 42 publications before computing similarity
scores between diseases using FunDO. Similar to our eval-
uation against comorbidity, we used ROC curve analysis
to assess the ability of our similarity measures to recover
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disease associations derived from GWAS (Table 4). For
each of the three measures, we found that the correla-
tion between our similarity measures and GWAS data is
substantially higher than expected at random. This result
further confirms the validity of our methods.

Comparison of similarity measures
The three similarity measures, namely annotation-based
measure, function-based measure, and topology-based
measure, use different biological information to predict
disease associations. For a pair of diseases, the annotation-
based measure estimates their similarity score based on
the overlap of their annotated genes, while the function-
based measure estimates their similarity score based
on the overlap of their associated biological functions
derived from GO annotations. The topology-based mea-
sure makes use of the topology information derived from
the underlying PPI network, and estimates disease simi-
larity scores based on the topological similarity of their
annotated genes. Based on our evaluation, the three simi-
larity measures perform well in recovering known disease
associations. Note that since all three measures compare
diseases based on information derived from their associ-
ated genes, the three measures are not independent from
each other. Diseases that havemany shared genes are likely
to have common biological processes and have high topo-
logical similarities. In addition, a part of the GO annota-
tions is inferred from PPIs (i.e., annotations with evidence
code ‘inferred from physical interactions’). However, even
though dependency between the three measures exists,
the three measures uncover different aspects of disease-
disease associations. In fact, the predictions derived from
them can differ from each other, demonstrating that
the three measures give different insights despite being
dependent. Additional file 1: Figure S3 shows the overlap
of disease associations predicted by the three measures.
When considering the top 5% of the most associated dis-

Table 4 Evaluation of our measures against GWAS

Data Annotation- Function- Topology-
based based based

F/G 0.7224 ± 0.0010 0.6781 ± 0.0001 0.6863 ± 0.0009
(0.4945) (0.4968) (0.5005)

Common 0.7527 ± 0.0010 0.7147 ± 0.0001 0.7555 ± 0.0020
(0.4926) (0.5005) (0.4951)

Numbers in the table are AUC values obtained by evaluating the three disease
similarity measures against disease associations derived from highly confident
GWAS data. Only diseases annotated with at least 3 genes were evaluated. ‘F/G’
are diseases having associated genes in both FunDO and GWAS data (99
diseases in total). ‘Common’ are diseases having associated genes in all four
disease-gene association datasets (given in Figure 1) and GWAS data (50
diseases in total). Average AUC values obtained by using randomised scores are
shown by numbers in brackets (standard deviations are not shown in the table
due to space limitation). Each evaluation test was run 30 times to compute the
statistics reported in the table.

ease pairs as our predicted disease associations, 14% ∼
38% of the predictions are supported by all three similarity
measures.
In the topology-based measure, we used two terms,

namelyAllSig(Di,Dj) and ShareSig(Di,Dj), to measure the
topological simialrity of disease genes. Since the term
AllSig(Di,Dj) is defined as the maximum of the signature
similarity between a gene associated with disease Di and a
gene associated with disease Dj, we have AllSig(Di,Dj) =
1 if the two diseases Di and Dj have at least one com-
mon genes. The term ShareSig(Di,Dj) is defined as the
maximum of the signature similarity between genes that
are shared between diseases Di and Dj, thus we have
ShareSig(Di,Dj) = 0 if the two diseases share no genes.
Therefore, the topology-based similarity score for a pair
of diseases that share genes is always higher than a pair of
diseases that do not share genes. To assess the contribu-
tion of the two terms, AllSig and ShareSig, in predicting
disease associations, we evaluated the performance of the
topology-based similarity measure for predicting comor-
bidity associations by solely using AllSig and ShareSig as
the disease similarity score. The good performance of the
topology-based similarity measure is mainly attributed
to the term AllSig when using OMIM or CTD as the
disease-gene association dataset (Additional file 1: Table
S3). Since in these two datasets, only 2.69% (OMIM) and
16.62% (CTD) disease pairs have common genes, we have
Simtopology = AllSig for most disease pairs. On the other
hand, the good performance of the topology-based mea-
sure is mainly caused by ShareSig when using FunDO or
HuGENet, as in these two datasets 31.41% (FunDO) and
80.57% (HuGENet) of disease pairs have common genes.
Our similarity measures are sensitive to the noise

in disease-gene association data. We notice that pre-
diction performances of our similarity measures gen-
erally decrease with the increase of noise level, thus
using the intersection of curated disease-gene association
datasets results in the best performance when predicting
comorbidity associations (Table 3 and Additional file 1:
Figure S5). Both the annotation-based measure and the
topology-based measure have better performances by
using curated disease-gene associations (i.e., OMIM, CTD
and FunDO) than computationally predicted associations
(i.e., HuGENet). However, the function-based measure
obtains lower AUC values for curated datasets CTD and
FunDO than the two other similarity measures, but higher
AUC values for HuGENet. In this regard, the function-
based measure may be more appropriate for analysing
predicted datasets, while the annotation-based measure
and topology-based measure may be more appropriate for
analysing curated datasets.
The annotation-based measure is straightforward, but

has relatively good performance according to our evalu-
ation. However, as it only uses disease-gene associations
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to estimate similarity scores, for a pair of diseases shar-
ing few genes, their annotation-based similarity score
may be low, even if their annotated genes are closely
related. In particular, the annotation-based measure is
highly affected by the occurrence of pleiotropic genes
(genes that cause multiple phenotypes) in the dataset.
We obtained the list of 802 pleiotropic genes from the
OMIM Morbidmap by identifying genes that associated
with more than one disease (similar approach was used
in [53]). To examine the influence of pleiotropic genes on
our measures, we excluded these genes from OMIM and
evaluated the performances of our similarity measures
against comorbidity. Note that when pleiotropic genes
were excluded from OMIM, there were no disease pairs
that had any common genes. Therefore, the annotation-
based similarity score for a pair of diseases became 0 in
this case and no predictions could be derived from the
annotation-based measure. On the other hand, since both
the function-based measure and the topology-based mea-
sure use additional data sources (GO annotations or net-
work topology) to estimate similarity scores, they are less
affected by pleiotropic genes. AUC values obtained by the
function-based measure and the topology-based measure
dropped to 0.7816 and 0.7199 respectively, after remov-
ing pleitropic genes from OMIM. These results show the
contribution of similarities between specific genes (genes
associated with only one disease) to the prediction perfor-
mances of our similarity measures.
Since disease-gene association datasets were obtained

by different research groups and approaches, good per-
formances for all datasets confirm the robustness of our
similarity measures in predicting disease associations. In
addition, the topology-based measure is also robust to
the noise and incompleteness presented in PPI networks.
We evaluated this by using PPI data obtained from dif-
ferent releases of BioGRID database (see Additional file 1:
Table S1 for details). Generally speaking, the performance
of the topology-based measure slightly decreases when
using early PPI networks (Additional file 1: Table S2).
However, AUC values obtained by using these early PPI
networks are still substantially higher than expected at
random. These results suggest that the ability of the
topology-basedmeasure to predict disease-disease associ-
ations may increase with more accurate and complete PPI
data.

Case studies
To demonstrate how our similarity measures can be used
for uncovering novel disease associations, we present a
case study for diabetes mellitus (DM, ICD-9 code: 250).
DM is a metabolic disease that affects the body’s ability to
produce or use insulin, a hormone for regulating carbo-
hydrates. It causes hyperglycemia and may lead to severe
consequences such as brain damage, amputations and

heart disease [54]. Table 5 lists the top 10 diseases asso-
ciated with DM using the topology-based measure and
FunDO as the source of disease-gene associations. Results
obtained by other measures and data are not shown here
due to space limitations.
Among these 10 diseases, both ovarian dysfunction

(ICD-9 code: 256) and obesity (ICD-9 code: 278) are clas-
sified under the same ICD-9 catalogue ‘Endocrine, nutri-
tional and metabolic diseases, and immunity disorders’
with DM. In addition, both obesity and essential hyperten-
sion (ICD-9 code: 401) have highly confident comorbidity
associations with DM. Note that among all disease pairs
that we analysed, only 0.74% of them have a φ-correlation
score higher than 0.06. Therefore, the φ-correlation scores
reported in the case study (see Additional file 1: Table S4
and Additional file 1: Table S5 for details) are relatively
high compared with the φ-correlation scores of all disease
pairs. Moreover, 6 out of 10 associations are supported by
the GWAS data, e.g., rheumatoid arthritis shares 8 genes
with DM according to GWAS data. Apart from the above,
associations between DM and the remaining diseases
listed in the table are considered as novel associations
predicted by the topology-based measure. We evaluated
the top 14 novel associations via mining the literature
on PubMed (see Additional file 1: Table S4 for details).
We are able to confirm all of these associations, includ-
ing surprising associations such as DM and ‘other cerebral

Table 5 List of the top 10 diseases associated with DM

Rank Code Disease name Reference

1 239 Neoplasms of unspecified PMID: 23639840
nature

2 155 Malignant neoplasm of liver GWAS
and intrahepatic bile ducts

3 710 Diffuse diseases of connective GWAS
tissue

4 714 Rheumatoid arthritis and other GWAS
inflammatory polyarthropathies

5 256 Ovarian dysfunction ICD-9, GWAS

5 278 Overweight, obesity and ICD-9, comorbidity,
other hyperalimentation GWAS

7 401 Essential hypertension Comorbidity

8 295 Schizophrenic disorders PMID: 17474808

9 282 Hereditary hemolytic anemias GWAS

10 289 Other diseases of blood and PMID: 11727971
blood-forming organs

The top 10 diseases associated with DMwere inferred using the topology-based
similarity measure and FunDO as the source of disease-gene associations. Only
diseases annotated in all four disease-gene association datasets are listed in the
table. For a disease associated with DM according to ICD-9, comorbidity or
GWAS, we added the supported evidence to the reference (the last column). The
remaining disease associations were validated via mining the literature on
PubMed (http://www.ncbi.nlm.nih.gov/pubmed), and for each disease only one
reference (shown by PubMed ID) was listed in the table due to space limitation.

http://www.ncbi.nlm.nih.gov/pubmed
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degenerations’ (ICD-9 code: 331). This result highlights
the power of our approaches to identify novel associa-
tions between diseases. Further exploration of potential
underlying mechanisms shared by these diseases may
lead to improvement in disease diagnosis, prognosis and
treatment.
Another case study (Parkinson’s disease, ICD-9 code:

332) can be found in the Additional file 1.

Conclusions
In this study, we gained novel insights into the relationship
between human diseases by considering their molecu-
lar causes and underlying physical interactions. We used
information derived from latest biological data, including
disease-gene associations, gene functions and the topol-
ogy of the human PPI network in our analysis. We applied
three different measures to estimate the similarity score
of diseases, and these measures were systematically eval-
uated against ICD-9 classification system, a statistical
measure of comorbidity and GWAS data. Our results
showed the correlation between associations predicted by
our measures and known disease associations, and we
also demonstrated the use of our measures in discovering
novel disease associations and validated it via literature
curation.
Novel disease associations uncovered in this study can

be further used to improve our understanding of disease
classification. For example, a human disease network that
models the relationship of diseases can be constructed
based on these similarity measures, and computational
approaches, such as clustering, can be applied to detect
communities in the disease network. This may provide the
opportunity to redefine the current disease classification
and further lead to improvements in disease diagnosis,
prognosis and treatment.

Additional file

Additional file 1: Supplementary information. The Supplementary
information file contains all additional figures and tables mentioned in the
manuscript.
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