Roche-Lima et al. BMIC Bioinformatics 2014, 15:318
http://www.biomedcentral.com/1471-2105/15/318

BMC
Bioinformatics

RESEARCH ARTICLE Open Access

Metabolic network prediction through
pairwise rational kernels

Abiel Roche-Lima'", Michael Domaratzki' and Brian Fristensky?

Abstract

Background: Metabolic networks are represented by the set of metabolic pathways. Metabolic pathways are a series
of biochemical reactions, in which the product (output) from one reaction serves as the substrate (input) to another
reaction. Many pathways remain incompletely characterized. One of the major challenges of computational biology is
to obtain better models of metabolic pathways. Existing models are dependent on the annotation of the genes. This
propagates error accumulation when the pathways are predicted by incorrectly annotated genes. Pairwise
classification methods are supervised learning methods used to classify new pair of entities. Some of these
classification methods, e.g., Pairwise Support Vector Machines (SVMs), use pairwise kernels. Pairwise kernels describe
similarity measures between two pairs of entities. Using pairwise kernels to handle sequence data requires long
processing times and large storage. Rational kernels are kernels based on weighted finite-state transducers that
represent similarity measures between sequences or automata. They have been effectively used in problems that
handle large amount of sequence information such as protein essentiality, natural language processing and machine
translations.

Results: We create a new family of pairwise kernels using weighted finite-state transducers (called Pairwise Rational
Kernel (PRK)) to predict metabolic pathways from a variety of biological data. PRKs take advantage of the simpler
representations and faster algorithms of transducers. Because raw sequence data can be used, the predictor model
avoids the errors introduced by incorrect gene annotations. We then developed several experiments with PRKs and
Pairwise SVM to validate our methods using the metabolic network of Saccharomyces cerevisiae. As a result, when PRKs
are used, our method executes faster in comparison with other pairwise kernels. Also, when we use PRKs combined
with other simple kernels that include evolutionary information, the accuracy values have been improved, while
maintaining lower construction and execution times.

Conclusions: The power of using kernels is that almost any sort of data can be represented using kernels. Therefore,
completely disparate types of data can be combined to add power to kernel-based machine learning methods. When
we compared our proposal using PRKs with other similar kernel, the execution times were decreased, with no
compromise of accuracy. We also proved that by combining PRKs with other kernels that include evolutionary
information, the accuracy can also also be improved. As our proposal can use any type of sequence data, genes do
not need to be properly annotated, avoiding accumulation errors because of incorrect previous annotations.
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Background

Related work

Metabolic networks allow the modelling of molecular sys-
tems to understand the underlying biological mechanisms
ina cell [1]. Metabolic networks are represented by the set
of metabolic pathways. Metabolic pathways are a series of
biochemical reactions, in which the product (output) from
one reaction serves as the substrate (input) to another
reaction. The experimental determination of metabolic
networks, based on known biological data such as DNA
or protein sequences, or gene expression data, is still very
challenging [2]. Thus, there have been several efforts to
develop supervised learning methods to determine genes
coding for missing enzymes and predict unknown parts of
metabolic networks [3,4].

Most of the methods to predict metabolic networks
assume that the genome annotation is correct, e.g., Path-
way Tools [4], a software application to predict metabolic
networks using information from BioCyc databases [5].
Pathway Tools uses a two part algorithm, in which part
1 infers the reactions catalyzed by the organism from
the set of enzymes present in the annotated genome,
and part 2 infers the metabolic pathways present in the
organism from the reactions found in the part 1. Con-
sidering BioCyc and MetaCyc have a huge amount of
available data, this application can potentially make pre-
cise metabolic pathway predictions [6]. However, part
2 is based on the annotated genes, and if there are
errors in the annotation, the inferred pathways will
not be correct. Therefore, these methods intrinsically
carry error accumulations due to incorrect genome
annotations.

To tackle this problem, we have previously proposed
using information directly related to the sequence as
the primary data (e.g., genomic and proteomic data)
[7]. As a result, we obtained the best accuracy values
using Support Vector Machine (SVM) methods combined
with string kernels representing the sequence data. We
experimentally demonstrated that SVMs supersede other
methods, such as matrix kernel regression, for predict-
ing metabolic networks. This is consistent with recent
results showing the usefulness of SVMs in bioinformatics
[8]. However, our solution [7] was computationally expen-
sive in terms of execution time because of sequence data
manipulation.

Other authors have also combined SVM and other
supervised learning techniques with kernel methods to
predict metabolic networks [9-11]. The main advantage
of using kernel methods is that heterogeneous data can
be represented and combined simultaneously. Thus, if
disparate types of data can be manipulated as kernels,
data from many sources can be made to contribute uni-
formly to the information in a training set when building a
model [12].
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Yamanishi [9] and Kotera et al. [11] described the
theory and implementation of GENIES, a web applica-
tion that allowed prediction of the unknown parts of
metabolic networks using supervised graph inference and
kernel methods. Several algorithms were implemented
in GENIES to find the decision or predictive func-
tions for supervised network inference. Some of these
algorithms were Kernel Canonical Correlation Analysis
(KCCA) [13,14], Expectation-Maximization (EM) algo-
rithm [15] and Kernel Matrix Regression (KMR) [9]. The
authors developed several experiments, but they did not
use sequence data. Therefore, one of the motivations to
extend our previous research [7] was to use sequence
data combined with these algorithms. As noted above, we
obtained the best accuracy values with the SVM method
combined with sequence kernels, but with high execution
times.

To address these high computational costs, we con-
sider the results from Allauzen et al. [16], who proposed
a method to predict protein essentiality using SVMs and
manipulating sequence data using rational kernels. The
authors designed two sequence kernels (called general
domain-based kernels), which are instances of rational
kernels. To handle the large amount of data (6190 domains
each with around 3000 protein sequences), automata rep-
resentation was used to create the rational kernels. Their
results showed that the final kernels favourably predicted
protein essentiality. We note, however, that none of the
previous works using rational kernels in bioinformatics
[16-18] have considered problems related to biological
network predictions.

Based on the fact that the rational kernels described by
Allauzen et al. [16] can be extended to other problems,
we define new kernels to be applied to metabolic network
predictions. In this research, we represent sequence data
using rational kernels. Rational kernels take advantage of
the fast algorithms for, and efficient representation of,
transducers for sequence manipulations to improve per-
formance. As sequence data can be used, raw genomic
or proteomic information may be considered, and this
method avoids problems associated with incorrect anno-
tation when predicting metabolic networks. Additionally,
the current work is the first to combine rational kernels
(using finite-state transducers) [17-20] with known pair-
wise kernels [10,21-23] to obtain pairwise rational kernels.
While the kernel techniques proposed in this paper can
be applied equally to any machine learning tools that
employ kernel methods, such as KCCA, EM or KMR, we
have focused on SVMs as an illustration of their capabil-
ity to reduce computational costs. We have also chosen
SVM methods in light of the experimental results we
obtained in previous works [7], as well as the efficiency
and effectiveness of SVM methods to predict protein
essentiality [16].
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Automata and transducers

Automata define a mathematical formalism to analyze and
model real problems through useful machines [24]. An
automaton has a set of states (generally represented by
circles), and transitions (generally represented by arrows).
The automaton moves from one state to another state
(makes a transition) when activated by an event or func-
tion. One variant of an automaton is called finite state
machine. A finite-state machine can be used to model
a simple system, such as turnstiles or transit lights, or
complex systems such as sophisticated spaceship controls
[25].

Automata work on sequence of symbols, where X*
denotes all the finite sequences using the symbols on the
alphabet X, including € that represents the empty sym-
bol. In order to formally define automata and transducers,
we will follow the notations used by Cortes et al. [17]. An
automaton A is a 5-tuple (X, Q, [, F, §) [24] where X is the
input alphabet set, Q is the state set, I C Q is the subset
of initial states, F C Q is the subset of final states, and
8 C Q x (X U {e}) x Qis the transition set. A transition
t € & describes the actions of moving from one state to
another when a condition (input symbol) is encountered.

Similarly, a Finite-State Transducer (FST) is an automa-
ton where an output label is included in each transition in
addition to the input label. Based on the above definition,
a FST T is a 6-tuple (X, A, Q, [, F, §) [18], where the new
term A is the output alphabet and the transition set § is
nowd € Q x (X U{e}) x (AU {€}) x Q. Similar to the pre-
vious definition, a transition ¢ € § is the action of moving
from one state to another when the input symbol from =
is encountered and the output from A is produced.

In addition, Automata and Finite-State Transducers can
be weighted, where each transition is labelled with a
weight. Thus, a Weighted Automaton (WA) is a 7-tuple
(2,Q,1,F, 8, 1, p) and a Weighted Finite-State Transducer
(WEST) is a 8-tuple (X, A, Q, L, F, 6, A, p) [18], where the
new terms A and p are: A : [ — R, the initial weight func-
tion, and p : F — R, the final weight function. The new
transitions for the WAs and WFSTsare § C Qx (X U{e}) x
RxQand§ € Qx(XU{e}) x (AU{e}) xR x Q, respectively,
where R represents the weights as real numbers.
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As an example, a weighted transducer is shown in
Figure 1(a). We use as delimiters the colon to sepa-
rate the input and output labels of the transitions and
the slash to separate the weight values (i.e., the nota-
tion is input:output/weight). States are represented by
circles, where the set of initial states are bold circles and
the set of final states are double circles. Only the ini-
tial and final states have associated weighs (the notation
is state/weight). Example 1 shows how to compute the
weight to the transducer T (i.e., T(x,y)) for two given
sequences x and y. In this case, we define the alphabets
¥ ={G,C}and A = {G, C}.

Example 1. The weight (or value) associated to the trans-
ducer T in Figure 1(a) for the pair (x,y) = (GGC, CCG) €
¥* x A* is computed as:

T(GGC,CCG) = 1%2x3x6%1+1%x3x1x4%x1 =48,
considering that there are two accepting paths labelled
with input GCC and output CCG. These paths are:

Path 1 : State O — State 0 — State 1 — State 3,

Path 2 : State O — State 1 — State 2 +— State 3.
The initial and final values in the terms of T(GGC, CCG)
correspond to the weights of the initial and final
states.

Figure 1(b) shows a graph representation of a weighted
automaton. It can be obtained as the output projection of
the transducer T where the input labels are omitted. Thus,
the alphabet A is A = {G, C} and the weight computation
of the automaton A for two given sequences is shown in
Example 2.

Example 2. The weight (or value) associated to the
Automaton A in Figure 1(b) for y = CCG € A* is com-
puted as:

A(CCG) =1%2%3%6%1+1%3%x1%x4%x1=48
considering that there are two accepting paths labelled
with CCG. These paths are:

Path 1 : State 0 — State O — State 1 — State 3,

Path 2 : State 0 +— State 1 > State 2 > State 3.
The initial and final values in the terms of A(CCG)
correspond to the weights of the initial and final states.

(a) )
GCl2 C/\% e

%

GC“ \(3_/0 Cl2 .
C“ ~

Figure 1 Weighted transducer and weighted automaton representing sequences in the alphabet ¥ = A =
Transducer T. (b) Weighted Automaton A (A is obtained projecting the output of T).
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There are several operations defined on automata and
transducers, such as inverse and composition. Given any
transducer T, the inverse T~! is the transducer obtained
when the input and output labels are swapped for each
transition. The composition operation of the transduc-
ers T1 and T, with input and output alphabets both
equal to ¥ is a weighted transducer, denoted by T7 o
T5, provided that the sum given by (77 o T2)(x,y) =
Y ses+ T1(%,2)Ta(z, ) is well defined in R for all (x,y) €
z*,

Rational kernels

In order to manipulate sequence data, FSTs provide a sim-
ple representation as well as efficient algorithms such as
composition and shortest-distance [18]. Rational Kernels,
based on Finite-State Transducers, are effective for ana-
lyzing sequences with variable lengths [17].

As a formal definition, a function k : ¥* x A* — R
is a rational kernel if there exists a WEST U such that k
coincides with the function defined by U, i.e., k(x,y) =
U(x,y) for all sequences x,y € I* x A* [17]. From now
on, we consider the input and output alphabets with the
same symbols (i.e., ¥ = A), and only the terms ¥ and X*
will be used.

In order to compute the value of U(x,y) for a partic-
ular pair of sequences x,y € X£* x X*, the composition
algorithm of weighted transducers is used [17]:

o First, My, M, are considered as trivial weighted
transducers representing x, y respectively, where
My(x,x2) =1 and My(v,w) =0 forv # x or w # x.
My is obtained using the linear finite automata
representing x by augmenting each transition with an
output label identical to the input label and by setting
all transition, initial and final weights to one. M, is
obtained in a similar way by using y.

e Then, by definition of weighted transducer
composition:

My o U o My)(x,y) = My (x, x) U (x, y)My(y, y).
Considering M, (x,x) = 1 and My (y,y) = 1, we
obtain (My o U o M,)(x,y) = k(x,y), i.e,, the sum of
the weights of all paths of My o U o M, is exactly
Ux,y) = k(x, ).

Based on this representation, a two-step algorithm is
defined by Cortes et al. [17] to obtain k(x,y) = U(x,y).

Algorithm 1 Rational Kernel Computation

INPUT: pair of sequences (x,y) and a WEST U

(i) compute N using composition as N = M, o U o M,
(ii) compute the sum of all paths of N using
shortest-distance algorithm, which is equal to U (x, y).
RESULTS: value of k(x,y) = U(x,y)
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Using Algorithm 1, the overall complexity to com-
pute one value for the rational kernel is O(|U||M,||M,|),
where |U| remains constant. In practice, this complexity is
reduced to O(|U| + |M,| + |M,|) in many kernels which
have been used in areas such as natural language process-
ing and computational biology. For example, Algorithm 1
for the n-gram kernel has a linear complexity (see a
detailed description of the #-gram kernel below).

Kernels used in training methods for discriminant clas-
sification algorithms (e.g., SVM) need to satisfy Mercer’s
condition or equivalently be Positive Definite and Sym-
metric - PDS [18]. Cortes et al. [18] have proven a result
that gives a general method to construct a PDS rational
kernel using any WESTs.

Theorem 1. ([18]). If T is an arbitrary weighted trans-
ducer, then U = T o T~ ! defines a PDS rational kernel.

n-gram kernel as a rational kernel

Hofmann et al. [26] have defined a class of similarity mea-
sures between two biological sequences as a function of
the number of equal subsequences that they have. As an
example of such measures is the spectrum kernel defined
by Leslie et al. [27]. Similarity values are the results of
summing all the products of the counts for the same sub-
sequences. It is also referred to in computational biology
as the k-mer or n-gram kernel. In the rest of this paper, we
use the term n-gram to follow the notation of Hofmann
et al. [26] and Cortes et al. [17].

The n-gram kernel is defined as k,(x y) =
le‘zn cx(2)cy(2) for a fixed integer n, which represents
subsequences of length n. Here, ¢,(b) is the number of
times that the subsequence b appears in a. k;, can be
represented as a rational kernel using the weighted trans-
ducer U, =T,o0T, 1 where the transducer T}, is defined
as Ty(x,2) = cx(z), for all x,z € X* with |z| = n [18].
For example, for n = 2, ko (x,y) = Z|z\=2 cx(2)cy(2) is the
rational kernel where z represents all the subsequences
in X* with size 2 and T, (x,z) = cx(z) counts how many
times z occurs in x.

Allauzen et al. [16] extended the construction of
this kernel, k,, to measure the similarity between
sequences represented by automata. Firstly, they define
the count of a sequence z in a weighted automaton A
as ca(?) = ) ,cx+ cu(2)A(u), where u ranges over the
set of sequences in X* which can be represented by
the automaton A. This equation represents the sums
obtained for each u, of how many times z occurs in
u multiplied by the weight (or value) associated to the
sequence u in the automaton A (as is computed in
Example 2).

Then, the similarity measure between the weighted
automata A; and Ay, according to the n-gram kernel &, is
defined as:
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kn(A1,Az) = Y (A1 0 Ty 0 T, ' o Ag)(x,9)
x,yeX

Y cay(@)ea, (@) (1)

|z|=n

Based on this definition and using Algorithm 1, the
n-gram rational kernel can be constructed in time
O(|Uy| 4 M|+ |M,]), as described by Allauzen et al. [16]
and Mohri et al. [28].

Yu et al. [29] have verified that n-gram sequence kernels
alone are not good enough to predict protein interactions.
We address their concerns in our experiments by combin-
ing n-gram with other kernels that include evolutionary
information.

Pairwise kernels

We apply kernel methods to the problem of predicting
relationships between two given entities, i.e., pairwise pre-
diction. Models to solve this problem have as an input
two instances, and the output is the relationship between
them. Kernels used in these models need to define simi-
larities between two arbitrary pairs of entities. Typically,
the construction of pairwise kernels K are based on simple
kernels k, where k : X x X — R. In this paper four differ-
ent pairwise kernels are investigated: Direct Sum Learning
Pairwise Kernel [21], Tensor Learning Pairwise Kernel (or
Kronecker Kernel) [22,30,31], Metric Learning Pairwise
Kernel [23] and Cartesian Pairwise Kernel [10].

All these pairwise functions guarantee the symmetry
of the pairwise kernels K, ie., K((x1,y1),(x2,52)) =
K((x2,y2), (x1,91)), where x1,x2,y1,y2 € X. Also, if the
simple kernel k is PDS (satisfies the Mercer condition),
the resulting pairwise kernel K also is PDS, for each of
the pairwise kernels defined above [10,32].

Pairwise support vector machine

The rationale for the preceding discussion on represent-
ing disparate types of data as kernels is to enable us to
use them in machine learning formalisms such as Support
Vector Machines (SVMs). SVMs are used for classifica-
tion and regression analysis, defined as supervised models
with associated learning algorithms [33]. In this research,
we use SVMs for classification. SVMs represents the data
as vectors in a vector space (i.e., input or feature space).
As a training set, several entities x; (vectors) classified
in two categories are given. A SVM is trained to find a
hyperplane that separates the vector space in two parts.
Each part of the feature space groups the entities into
the same category. Then, a new entity x can be classified
depending their location in the feature space related to the
hyperplane [33].

Pairwise Support Vector Machines, instead, classify pair
of entities (x,y) [32]. Let us formally define the binary
Pairwise Support Vector Machine formulation, following
Brunner et al. [32]: given a training data ((x;, ), d;), where
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d; has binary values (e.g., the pair (x;,y;) is classified as
+lor—1),i =1,...,n,j = 1,...,n and the mapping
function @, then the Pairwise SVM methods find the opti-
mal hyperplane, w! ® (x;, ;) + b = 0, which separate the
points in two categories. One of the solutions is based on
the dual formalism of the optimization problem described
in Cortes et al. [33]. In this case the decision function is:

Fooy) =370 ik (@), ) +b,

where K is the pairwise kernel, (x;,y;) is the set of train-
ing examples, « is obtained from the Lagrange Multipliers
as a function of w (the normal vector) and b is the offset
of the hyperplane (please, see Cortes et al. [33] for more
details). In this case, @ and b are the “learned” parame-
ters during the training process. Thus, f classifies the new
pairs (x, y). For example, if f(x,y) >= 0, (x, y) is classified
as +1, otherwise (x, y) is classified as —1.

Metabolic networks

In this work, the metabolic network is represented as a
graph, in which the vertices are the enzymes, and the
edges are the enzyme-enzyme relations (two proteins are
enzymes that catalyze successive reactions in known path-
ways). Figure 2 represents a graphical transition from a
metabolic pathway to a graph.

In a traditional representation of a metabolic path-
way, enzymes are vertices (nodes), and metabolites are
edges (branches). Following Yamanishi [9], we represent
it differently, where the interactions between pairs of
enzymes are considered discrete data points. For exam-
ple, in Figure 2(a), the enzyme numbered EC 5.3.1.9
can create D-fructose-6-phosphate as a product, which
is in turn used as a substrate by the enzyme numbered
EC 2.7.1.11. This means there is an enzyme-enzyme rela-
tion between EC 5.3.1.9 and EC 2.7.1.11. Then, we create
a graph in which enzyme-enzyme relations become edges
and enzymes are nodes as is shown in Figure 2(b). If there
is a relation between two enzymes, such a relation is clas-
sified as +1 (i.e., interacting pair). Enzyme-enzyme pairs
for which no relation exists are classified as —1 (non-
interacting pairs). Figure 2(c) describes these classifica-
tions, which are used as training set in the SVM method.

Using pairwise kernel and SVM to predict metabolic
networks

The input data, considered as the training example
dataset ((x;,yi),d;), is a set of known pairs of enzymes
(or genes) classified in two categories (interacting or
non-interacting pairs). Figure 3(a) shows an example of
the input data, obtained from the metabolic network
described in Figure 2(c). In Figure 3(a), enzymes are rep-
resented by EC number (top) and gene nomenclature
(bottom).
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(a) $ (b) 53.1.9
B -D-giocose-6-phosphate
« I St 3.1.3.11 2.7.1.11
pentose phosphate pathway l
D-froctose-6phosphate —
7 N 4.1.2.13
3.1.3.11 2.7.L1
fructose-1.6-biphosphate+— A3.1.2
A
4.1.2.13 ()
z
o 1
Mp-fpla :
5.3.1.2 f by
A &
D-glvceraldehyde-3-phosphate dihydroxyacefone phosphate
Figure 2 Conversion from a metabolic network to a graph representation. (a) Part of the Glycolysis Pathways, from BioCyc Database [5,6].
(b) The resulting graph with the nodes (enzymes) and edges (enzyme-enzyme relations). (c) Table that represents known enzymes relations (EC
numbers related are classified as +1 and non-related as -1).

Figure 3(b) represents an example of the pairwise
kernel (K ((x1,91), (x2,¥2))). Several state-of-the-art pair-
wise kernels were mentioned above. For example, if we
consider the Tensor Product Pairwise Kernel K [22], then
K((x1,y1), (x2,92)) is computed using a simple kernel k
(e.g., k could be the simple Phylogenetic (PFAM) ker-
nel described by Ben-Hur et al. [22]). The PFAM kernel
(Kpfam (%, y)) describes similarity measures based on the
PFAM database [34] between the gene x and the gene y.
Thus, the Tensor Product Pairwise Kernel K, using as a
simple kernel the PEAM Kernel &y, is defined as:

K((x1,91), (%2,¥2)) = Kpfam (%1, %2) * Kpfam (¥1, y2)
+ kpfam (x1,y2) * kpfam (y1,%2)

For example, in Figure 3(b)-bottom, if the genes are
associated to the variables as follow: x; = YAR071W, y; =
YALOO2W, x5 = YDR127W, y; = YALO38W, the Tensor
Product Pairwise Kernel is:

A Pairwise SVM based on the dual formalism of the
optimization problem is represented in Figure 3(c). The
parameters «;; and b are learned, using the pairwise
kernel, K, and the training dataset, (x;,y;). Finally, new
pairs of enzymes or genes (x,y) can be classified as
interacting or not-interacting, depending the evaluation
of the decision function f (see an example representation
in Figure 3(d)). By predicting the gene interactions of the
other unseen examples, all the metabolic pathways can be
predicted.

The pairwise kernel computation is one of the most
expensive tasks during the prediction of the metabolic
networks in processing and storage. Using sequence data
causes even longer execution times and large storage
needs. However, we have mentioned the advantages of
using sequence data in order to avoid error accumu-
lation because of genome annotation dependencies. As
well, SVMs guarantee better accuracy values than other

K (*1,91), (%2,92)) = Kyt (YARO71W, YDR127W) Kyt (YALOO2W, YALO38W)
+ K (YARO71W, YALO38W) * Kpfy (YALOO2W, YDR127W) = 0.5.
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(a) Training Dataset b) Pairwise Kernels
, K (5.3.1.0.2.7.1.1) (5.3.1.3,2.7.1.13)
e o Using |[(5.3.1.92.7.1.1) 1 0.5
Enzymes|| (53.1.3,2.7.1.13) 0.5 1
5319-41213 -1 9
S s sy o (EC) (3.1.3.11,4.1.2.13) 0.2 0.3
31311-27.111 1 (5.3.1.9,5.3.1.2) 0.1 0.2
YARO71W - YALOO2ZW +1 S . Slhod
YDR127W - YALO38W -1 . (YARO7TWYALOOZW) 1 0.5
ek . Using |[(yDR127WYALO38W) 0.5 1
YERO52C - YALO54C -1 G i s
YGR194C - YAROI5W  +1 ENES |[(YARO7IWYALOOZW) 0.2 .
(YER052C,YAL054C) 0.1 0.2

™~ e

Training process-Parameter estimation
to obtain the decison function:

enzymes 2.5.8.1 and 3.5.7.8 --> Interact

flx.y) f_\_:"u‘p'\'\u" yi) (x,y))+b
(c)
(d) Predictor Process - Classification of an unseen value
Using Enzymes (EC) Using Genes
x=2.5.8.1 x=Q0085
y=3.5.7.8 y=YBL076C
£(2.5.8.1,3.5.7.8) = 3 £(00085 YBLO76C) = -2

genes Q0085 and YBLO76C --> do not interact

interacting or non-interacting.

Figure 3 Diagram of pairwise SVM applied to metabolic network prediction. (a) An example of the pairs in the training set using the EC
numbers (top) or gene names (bottom). (b) The pairwise kernel as a matrix, where the numerical values in each cell correspond to a measure of
similarities, given two pairs of EC numbers (top) or two pairs of gene names (bottom). (€) A model is trained to estimate the parameters a;; and b of
the decision function f. (d) Given a new pair of EC numbers (left) or gene names (right) the decision function is evaluated and the pair is classified as

supervised learning methods along with sequence ker-
nels for metabolic network inference [7]. Therefore, we
focus on improvement of the pairwise kernel computa-
tions and representation, by incorporating rational kernels
to manipulate the sequence data. To accomplish this, we
have proposed a new framework called Pairwise Rational
Kernels.

Methods

Pairwise rational kernels

In this section, we propose new pairwise kernels based
on rational kernels, i.e., Pairwise Rational Kernels (PRKs).
They are obtained using rational kernels as the sim-
ple kernels k. We have defined four PRKs, based on
the notations and definitions in the Background Section
above.

Definition 1. Given X € X* and a transducer U, then a
function

K:(XxX)x (XxX)— Ris:

e a Direct Sum Pairwise Rational Kernel (Kppips) if
K((x1,91), (%2, 52)) = U(x1,%2) + U1, y2)+
U(y1,x2) + U(x1,y2)

e a Tensor Product Pairwise Rational Kernel
(Kprkr) if
K((x1,51), (x2,¥2)) = U(x1,%2) * U(y1,y2)+
U(x1,y2) * Uy, %2)
® a Metric Learning Pairwise Rational Kernel
(Kprim) if
K((x1,y1),(x2, y2)) = (U (x1, %2) — U (%1, y2) — U (y1, %2)
+U(y1,92))?
e a Cartesian Pairwise Rational Kernel (Kpric) if
K((x1,91), (x2,¥2)) = U(x1,%2) * 8(y1 = y2)
+8(x1 = x2) * U(y1,92)
+U(x1,¥2) *8(y1 = x2)
+8(x1 = y2) * U(y1,%2)
where §(x = y) = 1if x = y and 0 otherwise,
Vx,y € X.

Following Theorem 1, if we construct U using a
weighted transducer T, such as U/ = T o T~!, then
we guarantee U is a Positive Definite and Symmetric
(PDS) kernel. PDS is a needed condition to use kernels
in training classification algorithms. Since all the kernels
defined above are results of PDS kernel operations, the
PRK kernels are also PDS [35].
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Algorithm

We have designed a general algorithm, Algorithm 2, to
compute the kernels, using the composition of weighted
transducers. This is a an extension of Algorithm 1. It
uses as an input the transducers My, My, My,, M,,,
that represent the sequences x1,y1,%2,92 € X and the
Weighted Finite-State Transducer U, and outputs the
value 0f1<((x17y1)7 (eryZ))'

Algorithm 2 Pairwise Rational Kernel Computation

INPUT: pairs of sequences (x1, 1), (x2,¥2) and WEST U
(i) obtain My,, My, , My,, M, and use transducer
composition to compute:

N1 =My, ol o M,,

Ny = My, oU o My,

N3 =My, oU o My,

Ny =My, oU o My,

(ii) compute the sum of all paths of N, N3, N3, Ny using
shortest-distance algorithm

(iii) compute the formulas in Definition 1:
Kprips((x1,91), (%2, 92)) = N1 + Na + N3 + Na

Kprr ((%1,91), (%2, ¥2)) = Ny * Ng + Np % N3

Kpricm ((%1,91), (%2,2)) = (N1 — N2 — N3 + Ny)?
Kprrc ((x1,y1), (%2,52)) = N1x6(y1 = y2)+No*8(y1 = x2)
+N3 % 6(x1 = y2) + Ng * 5(x1 = x2)

RESULTS: values of K((x1,y1), (x2,%2))

In our implementation described below, we use the n-
gram rational kernel as the kernel U (see the n-gram kernel
as a rational kernel Section for more details). Then, the
complexity of steps (i) and (ii) are O(|My,| + My, | +
|My, | + |M,, ). Step (iii) adds a constant time complexity.
We conclude that PRKs based on n-gram kernels can also
be computed in time O (|Mx1| + My, | + My, | + |My2|).

Experiments

In this section we describe experiments to predict
metabolic networks using pairwise SVMs combined with
PRKs. We aim to prove the advantage of using PRKs to
improve execution time during the computation of the
pairwise kernels and the training process, while maintain-
ing or improving accuracy values.

Dataset

We used data from the yeast Saccharomyces cerevisiae
[36]. This species was selected to compare our methods,
implementations and results with other methods that also
predict biological networks for Saccharomyces cerevisiae
[9,10,22].

The data for this species were taken from the KEGG
pathway [37] and converted to a graph as described
in the previous section (see Figure 2 for more details).
There were 755 nodes and 2575 interacting pairs in the
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graph for this species. As we used SVM methods for
the metabolic network inference, we prefer a balanced
dataset. In this dataset, we have an unbalanced pro-
portions of interacting (+1) and non-interacting (—1)
classified pairs (e.g., for this dataset there were 282060
non-interacting pairs). In order to balance our dataset, we
followed the procedure recommended by Yu et al. [29],
using the program BRS-noint to select non-interacting
pairs. Yu et al. [29] describes the bias towards non-
interacting pair selection during the training process and
the accuracy estimation. To eliminate this bias, the BRS-
noint program is used to create a “balanced” negative
set to maintain the right distribution of non-interacting
and interacting pairs. As a result, we obtained 2574 non-
interacting pairs for a total of 5149 pairs in the training
process.

Training process and kernel computation

The known part of the metabolic network was converted
in a graph and then obtained the pairs of training set,
corresponding to Figure 3(a). The PRK representation
coincides with Figure 3. Here, we describe the compu-
tation of PRKs (which is the main contribution of this
research), given the data from the yeast Saccharomyces
cerevisiae:

e each of the 755 known genes were represented as a
trivial weighted automaton (i.e., Ax;, Ay, . - . Axyss)
using the nucleotide sequences,

e the n-gram kernel, with #n = 3, was used as a rational
kernel, then U(Ay,,Ax,) = Z|Z|=3 CAy, (z)ch2 (2) (see
the n-gram kernel as a rational kernel Section for
more details),

e Algorithm 2 was implemented to obtain the K values,

e asan example, the Tensor Product Pairwise Rational
Kernel in Definition 1 is obtained by:
Kpricr (%1, 31), (%2,¥2)) =
= U(Ax;, Axy) * U(Ay,, Ay,) + U(Ax, Ayy)
+UAy, Axy)

= Z\Z|:3 CAy (Z)CAxZ (2) * Z\Z|:3 CAy, (Z)CAy2 (2)+
+ 212123 Ay, (D)eay, (2) * D7), 5 ca,, (2)ca,, (2).

e finally, all the PRK kernels K with positive
eigenvalues were normalized to avoid the fact that
longer sequences may contain more n-grams,
resulting in more similarities [16].

We implemented this method to compute the PRKs
using Open Finite-State Transducer (OpenFST) library
[38] and OpenKernel library [39]. The input data were
nucleotide sequences of known genes, and the outputs
were the pairwise rational kernel values as a similarity
measure between pairs. Example 3 shows the input and



Roche-Lima et al. BMC Bioinformatics 2014, 15:318
http://www.biomedcentral.com/1471-2105/15/318

output values for the method described above, equivalent
to Figure 3(b), but using sequence data.

Example 3. Given nucleotide sequences x1,y1,%2,%2,
which represent abbreviated examples of known genes in
the dataset,

x1 = GCTAAATTGGACAAATCTCAATGAAATTGTC
TTGG

y1 = ATGTCCTCGTCTTCGTCTACCGGGTACAGAA
AA

xy = CATGACTAAAGAAACGATTCGGGTAGTTATT
TGGCGG

y9 = ATCTACAAGCGAACCAGAGTCTTCTGCAGGC
TTAGAT

the Tensor Product Pairwise Rational Kernel Kppxr
((%1,51), (x2,72)) can be obtained using the 3-gram ratio-
nal kernel, e.g., for z = TCT, the values are:

® ca, (2) = 2 because, TCT appears twice in x;
GCTAAATTGGACAAATCTCAATGAAATTG
TCTTGG,

® ca, (z) = 2 because, TCT appears twice in y;
ATGTCCTCGTCTTCGTCTACCGGGTACAGA
AAA,

® ca,, (z) = 1 because, TCT appears once in xp
CATGACTAAAGAAACGATTCTGGTAGTTATT
TGGCGG, and

® cy,, (2) = 3 because, TCT appears three times in y,
ATCTACAAGCGAACCAGAGTCTTTCTGCAGG
CTTAGAT.

With these results and other values corresponding
to 3-gram rational kernel, the Kppxr is computed as:
Kprrr ((%1,51), (x2,92)) = 0.3, where 0.3 is a measure of
similarity.

SVM and predicting process

To implement the pairwise SVM method, we use the
sequential minimal optimization (SMO) technique from
the package LIBSVM [40] in combination with OpenKer-
nel library [39]. During the training process, the decision
function was obtained by estimating the parameters, as is
shown in Figure 3(c). Now, the prediction process allows
classification of new pairs of nucleotide sequences as
interacting or not interacting by evaluating the decision
function. Example 4 shows a description of the prediction
process, similar to the process described in Figure 3(d),
but using nucleotide sequences.

Example 4. This example describe the predictor process.
Suppose we want to know if

x = CTCAAAGTCTTAATGCTTGGACAAATTGAAAT
TGG, and
y=TCTACAGAGTCGTCCTTCGTCTACCGGGAAAAT,
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which represent abbreviated nucleotide sequences, inter-
act or do not interact. The decision function, f(x,y), was
previously obtained during the training process (see the
Pairwise support vector machine Section for more details).
If the resulting value of evaluating the decision function
f(x,y) is greater than 0, the pair (x,y) interact, otherwise
the pair (x,y) do not interact. Suppose that the evaluation
is

fx,y) =f(CTCAAAGTCTTAATGCTTGGACAAATTGA
AATTGG. .., TCTACAGAGTCGTCCTTCGTCTACCGG
GAAAAT ...)) = +3.

Then, we predict that these nucleotide sequences (x,y)
interact in the context of the metabolic network of the
yeast Saccharomyces cerevisiae.

In this case, we used 755 genes during the training pro-
cess, but the species has more than 6000 genes [41].
Then, the rest of the metabolic pathways can be predicted
by classifying all other pairs of genes (or pairs of raw
nucelotide sequences), as interacting or non-interacting,
using the decision function f. Note that the decision func-
tion is obtained once during the training process, but can
be used as often as needed during the prediction process.

The advantage of using sequence data is that nucleotide
sequences can be used, even if it is not annotated.
Also, any other type of sequence data, e.g., from high-
throughput analysis, can be considered and combined,
using a similar implementation.

Experiment description and performance measures

We used pairwise SVM with PRKs for metabolic
network prediction, using the data and algo-
rithms described above. We ran experiments for
twelve different kernels. Firstly, we used four PRKs
described in Definition 1 using the 3-gram rational
kernel (i.e., KprxpS—3gram» KPRKT—3gram» KpRKM—3gram
and Kprxc—3gram)- In addition, a combination of PRKs
with other kernels were considered. We included the
phylogenetic kernel (Kj,) described by Yamanishi 2010
[9] and PFAM kernel (Kp,) describe by Ben-Hur et al.
[22]. Then, a second set of experiments were devel-
oped combining PRKs with the phylogenetic kernel (i.e.,
Kprips—s3gram + Kphy KprkT—3gram + Kphy, KprkM —3gram +
Kpny and Kprxc—3gram + Kppy). Finally, we combined
PRKs with the PFAM kernel, obtaining Kprxps—3gram ~+
Kyfam» KprT—3gram + Kpfam» KpRKM—3gram + Kpfam and
Kpricc—3gram + Kyfam kernels. Considering that the phy-
logenetic and PFAM kernels were PDS, the resulting
combinations were also PDS [35].

To compare the advantages of the PRKs framework,
we developed a new set of experiments with the same
dataset, but without using finite-state transducers. We
considered the pairwise (n-gram) kernel, i.e., K7—_3gram.
KT_3¢ram denoted the pairwise tensor product described
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in the Pairwise kernels Section. To be consistent with the
previous experiments, we combined the Kr7_3¢/um ker-
nel with the phylogenetic kernel (K}4,) and PFAM kernel
(Kpfam), ie., Kr—3gram + Kphy and K7-3gam + Kyfam ker-
nels, respectively. The pairwise SVM algorithm was used
to predict the metabolic network using the same data set
described above. Table 1 describes the groups created to
compare these kernels with the equivalent PRKs.

All the experiments were executed on a PC intel
i7CORE, 8MB RAM. To validate the model, we used the
10-fold cross validation method and measured the average
Area Under the Curve of Receiver Operating Characteris-
tic (AUC ROC) score.

Cross-validation method is a suitable approach to val-
idate performance of predictive models. In k-fold cross-
validation, the original dataset is randomly partitioned
into k equal-sized subsets. Then, the model is trained k
times. Each time, one of the k subsets is reserved for
testing and all the remaining k — 1 subsets are used for
training. The final value is obtained as the average of the k
results (see Kohavi et al. [42] for more details).

A Receiver Operating Characteristic (ROC) curve is a
plot of the True Positive Rate (TPR) versus the False Pos-
itive Rate (FPR) for different possible cut-offs of a binary
classifier system. A cut-off defines a level for discriminat-
ing positive and negative categories. ROC curve analysis
is used to assess the overall discriminatory ability of the
SVM binary classifiers. The area under the curve (aver-
age AUC score) has been used as a metric to evaluate the
strength of the classification.

In addition, the 95% Confidence Intervals (ClIs)
have been computed, following the method described
by Cortes and Mohri [43]. The authors provide a
distribution-independent technique to compute confi-
dence intervals for average AUC values. The variance
depends on the number of positive a negative examples
(2575 and 2574 in our cases) and the number of classifica-
tion errors, ranging between 889 and 1912 in our cases.

Results and discussion

Table 2 shows the SVM performance, execution times and
95% Cls grouped by the kernels mentioned above. As we
can see, the experiments using only the PRK have the best
execution times (Exp. I) as the transducer representations
and algorithms speed up the processing. However, the

Table 1 Groups for PRK and pairwise kernel comparison

Group PRKs ! Pairwise Kernel 2
N-GRAM KPRKT—3gmm KT—Sgram

PHY KprkT—3gram+Kphy Kr—3gram =+ Kphy
PFAM KprKT —3gram+Kpfam Kr—3gram + Kpfam

"Kernels were taken from Table 2.
2Computed with the Tensor Product Pairwise Kernel.
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accuracy is not comparable to Experiments II and IIIL
Similar results were obtained by Yu et al. [29] with PPI net-
works. They stated simple sequence-based kernels, such
as n-gram, do not properly predict-protein interactions.
However, when Yu et al. [29] combined sequence kernels
with other kernels that incorporate evolutionary informa-
tion, the accuracy of the model predictor was improved.
We obtained similar results applied to metabolic net-
works predictions: when the PHY and PFAM kernels were
included (Experiments II and III, respectively), accuracies
were improved while maintaining adequate processing
times. The best accuracy value was obtained by com-
bining the PRK-Metric-3gram and PFAM kernels (aver-
age AUC=0.844). Other papers have used similar kernel
combinations to improve the prediction of biological net-
works, such as Ben-Hur et al. [22] and Yamanishi [9].
However, rational kernels have not been used in previous
research.

Ben-Hur et al. [22] report an average AUC value of
0.78 for PFAM kernels, while Yamanishi [9] reports an
average AUC of 0.77 for the PHY kernel for predicting
Saccharomyces cerevisiae metabolic pathways. We have
previously developed similar experiments but using SVM
methods [7]. As a result, we obtain AUC values of 0.92
for PFAM kernel and 0.80 for PHY kernel, with execution
times of 12060 and 7980 seconds, respectively. However,
in all cases a random selection of negative and posi-
tive training data was used. As noted by Yu et al. [29],
the average AUC values obtained by random selection of
data for training machine learning tools results in a bias
towards genes (or proteins) with large numbers of inter-
actions. As such, the high AUC results in these previous
works cannot be directly compared to the results in this
paper. We have employed the balanced sampling tech-
niques suggested by Yu et al. [29] to combat bias in the
training set. Our results, with average AUC values in the
range 0.5-0.844, are comparable to and exceed in cases the
results obtained by Yu et al. [29] with balanced sampling,
which range from 0.5-0.75 across several different kernels
for protein interaction problems. We have also obtained
these results in execution times of 15-140 seconds. With
the exception of the direct sum kernel, all of the con-
fidence intervals are above the behaviour of a random
classifier.

We developed one more experiment with the PFAM
kernel as a simple kernel of the Pairwise Tensor Product
(Kyfam) using a balanced sampling as suggested by Yu
et al. [29]. Note that it is not a PRK; it is a regular
pairwise kernel using PFAM as a simple kernel, similar
to the example in the Using pairwise kernel and SVM
to predict metabolic networks Section. As a result, the
average AUC was 0.61 and the execution time was 122
seconds. When we compare these values with the results
in Table 2 Exp. I, we can see that the kernels Kprxar—3gram
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Table 2 Average AUC ROC scores and processing times for various PRKs

Exp Type of kernels Kernel Average AUC score Runtime (sec) Confidence intervals
Pairwise Rational PRK-Direct-Sum (Kpgkps—3gram) 0499 15.0 [0.486,0.512]
Kernels (PRK) PRK-Tensor-Product (Kerxr —3gram) 0.597 16.2 [0.589, 0.605]
(3-gram) PRK-Metric-Learning (Kegki—3gram) 0.641 174 [0.633,0.648]
PRK-Cartesian (Kprkc—3gram) 0.640 15.0 [0.632,0.647]
PRKs combined PRK-Direct-Sum+Phy (Kpakps—3gram + Kphy) 0425 136.2 [0.411,0438]
" with phylogenetic PRK-Tensor+Phy (Kerkr—3gram+Kphy) 0.733 1356 [0.725,0.741]
data (Kpny Non- PRK-Metric+Phy (Kpiv—3gram+Kphy) 0.761 139.2 [0.753,0.768]
sequence kernel) PRK-Cartesian+Phy (Kprkc—3gram+Kphy) 0.742 1326 [0.734,0.749]
PRKs combined PRK-D-Sum+PFAM (Kprkps—3gram+Kpfam) 0.493 136.2 [0.480, 0.506]
il with PFAM data PRK-Tensor+PFAM (Kerkr—3gram+Kpfam) 0.827 136.8 [0.819,0.834]
Kotam PRK-Metric+PFAM (Kerii—3gram *+Kpfam) 0.844 1404 [0.837,0.850]
Sequence kernel) PRK-Cartesian+PFAM (Kpgkc —3gram+Kpfam) 0.842 1320 [0.835,0.849]

and Kprgc—3gram have better average accuracy (i.e., 0.641
and 0.640, respectively) with lesser average execution
times (17.4 and 15.0 seconds, respectively). In addition,
when the Pairwise Rational Kernel 3-gram was combined
with the PFAM kernel in the Exp. III, (ie., Tensor
Product Pairwise Rational Kernel - Kprg1—3gram+Kpfam)
the average accuracy value (average AUC=0.827) was
better than the Pairwise Tensor Product (Kpf,), while
the execution time just was increased 14.8 seconds (i.e.,
from 122 seconds, using Kyf,,, to 134.8 seconds, using
Kpric T—3gram +K, pfam ).

In order to statistically compares theses results, we
applied the McNemar’s non-parametric statistical test
[44]. McNemar’s tests have been recently used by Bostanci
et al. [45] to prove significant statistical differences

between classification methods. McNemar’s test defines a
z score, calculated as:

(INgr — N| — 1)
(Nyr + Ngs)

)

where Nfs is the number of times Algorithm A failed
and Algorithm B succeeded, and Ny is the number of
times Algorithm A succeeded and Algorithm B failed.
When z is equal to 0, the two algorithms have similar
performance. Additionally, if Ny is larger than Ny then
Algorithm B performs better than Algorithm A, and vice
versa. We computed the z scores considering Algorithm A
as the SVM algorithm using the Pairwise Tensor Product
(Kyfam) and three different Algorithm Bs, using SVM
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Figure 4 Comparison of some pairwise rational kernels and pairwise kernels grouped by kernel types (N-GRAM group, PHY group and

Pairwise Rational
Kernels

® Parwise Kernel




Roche-Lima et al. BMC Bioinformatics 2014, 15:318
http://www.biomedcentral.com/1471-2105/15/318

with three different PRKs from Table 2 (i.e., Kpria1—3grams
Kpricc—3gram and Kprgr—3gram+Kpfam mentioned above).
In all cases, we obtained z scores greater than 0 (ie.,
4.73, 4.54, 7.51), which mean the PRKs performed better.
These z-score also proved that the difference was statis-
tically significant with a confidence level of 99% (based
on Two-tailed Prediction Confidence Levels described
by [45]).

The Cartesian Kernel has not been widely used since
it was defined by Kashima et al. [10]. Kashima et al. [10]
used Expression, Localization, Chemical and Phylogenetic
kernels to predict metabolic networks. Each of these
are non-sequence kernels. In the current experiments
we computed, for first time, the pairwise Cartesian ker-
nel with a rational kernel (sequence kernel) to repre-
sent sequence data for metabolic network prediction.
Cartesian kernels [10] have been defined as an alternative
to improve the Tensor Product Pairwise Kernel [22] com-
putation performance. In the three experiments shown in
Table 2, we confirmed this definition, as we have obtained
better accuracy and execution times when we used the
Cartesian Pairwise Rational Kernel (Kprxc—3gram) rather
than the Tensor Product Rational Kernel (KprxT—3gram)-
Comparing our results with Kashima et al. [10], we
obtained better average AUC values (i.e., 0.844 vs 0.79),
and approximately the same average of the execution
times (i.e., 93 seconds). Kashima et al. [10] used non-
sequence data and random selection of positive and nega-
tive data for training.

Figure 4 shows the results of the experiments compar-
ing the PRK framework with other pairwise kernels. The
three comparative groups described in Table 1 were used.
As can be seen, the execution times were better when the
PRKs are used in the three groups. This proves that PRKs
compute faster because rational kernels use finite-state
transducer operations and representations, improving the
performance.

The power of using kernels is that almost any sort
of data can be represented using kernels. Therefore,
completely disparate types of data can be combined to
add power to kernel-based machine learning methods
[8]. For example, coefficients describing relative amounts
of metabolites involved in a biochemical reaction (i.e.,
stochiometric data) can also be represented as ker-
nels and added to strength the predicting model. For
example, the reaction catalyzed by fructose-bisphosphate
aldolase [EC 4.1.2.13] splits 1 molecule of fructose
1,6-bisphosphate into 2 molecules of glyceraldehyde
3-phosphate, where the relative amounts of substrate
and product are represented by the coefficients 1 and
2, respectively. A stoichiometric kernel therefore would
encode coefficients for all substrates and products, where
enzymes that do not interact would have stoichiometric
coefficients of 0. Other authors [46-48] have defined and
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used similar types of stochiometric data, which can be
converted into kernels to be consider with PRKs.

Conclusion

In this paper, we introduced a new framework called
Pairwise Rational Kernels, where pairwise kernels are
obtained based on transducer representations, i.e., ratio-
nal kernels. We defined the framework, developed general
algorithms and tested on the pairwise Support Vector
Machine method to predict metabolic networks.

We used a dataset from the yeast Saccharomyces cere-
visiae to validate and compare our proposal with similar
models using data from the same species. We obtained
better execution times than the other models, while
maintaining adequate accuracy values. Therefore, PRKs
improved the performance of the pairwise-SVM algo-
rithm used in the training process of the supervised
network inference methods.

In these methods, the learning process are executed
once to obtain the decision function. The decision func-
tion can be used as many times as necessary to predict
interaction between the other sequences in the species
and predict the metabolic pathways.

The methods in this research used sequence data
(e.g., nucleotide sequences) to predict these interactions.
Genes do not need to be correctly annotated as the raw
sequences can be used. Therefore, our methods were
able to avoid the error accumulation due to wrong gene
annotations.

As future work, our proposal will be used to produce a
set of candidate interactions of pathways from the same
and other species, that could be experimentally validated.
As well, other pairwise rational kernels may be developed
using other finite-state transducers operations.
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