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Abstract

biological data.

Background: Analysis of cellular processes with microscopic bright field defocused imaging has the advantage of
low phototoxicity and minimal sample preparation. However bright field images lack the contrast and nuclei
reporting available with florescent approaches and therefore present a challenge to methods that segment and track
the live cells. Moreover, such methods must be robust to systemic and random noise, variability in experimental
configuration, and the multiple unknowns in the biological system under study.

Results: A new method called maximal-information is introduced that applies a non-parametric information
theoretic approach to segment bright field defocused images. The method utilizes a combinatorial optimization
strategy to select specific defocused images from each image stack such that set complexity, a Kolmogorov
complexity measure, is maximized. Differences among these selected images are then applied to initialize and guide a
level set based segmentation algorithm. The performance of the method is compared with a recent approach that
uses a fixed defocused image selection strategy over an image data set of embryonic kidney cells (HEK 293T) from
multiple experiments. Results demonstrate that the adaptive maximal-information approach significantly improves
precision and recall of segmentation over the diversity of data sets.

Conclusions: Integrating combinatorial optimization with non-parametric Kolmogorov complexity has been shown

to be effective in extracting information from microscopic bright field defocused images. The approach is application
independent and has the potential to be effective in processing a diversity of noisy and redundant high throughput

Background
Cell segmentation is the identification of cell objects and
their observable properties from biological images. Cur-
rent cell segmentation methods perform most accurately
when applied to high contrast and minimal noise images
obtained from samples where the cells have fluorescently-
labeled cell nuclei and stained membranes, and are dis-
tinct with minimal adherent membranes. However, these
ideal conditions rarely exist.

Fluorescently tagging cells using green fluorescent pro-
tein (GFP) leads to robust identification of each cell during
segmentation. While GFP tagging is widespread, there
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are disadvantages when applying the method repeatedly
to the same sample since under repeated application of
high-energy light the cells can suffer phototoxicity. Such
light can disrupt the cell behavior through stress, shorten
life and potentially confound the experimental results
[1-3]. Significantly, a requirement for GFP labeling adds a
step before a new cell line can be studied, thus making it
difficult to apply this method in a clinical setting.

The alternative is to use bright field microscopy, the
original and the simplest microscopy technique, wherein
cells are illuminated with white light from below. How-
ever, using only bright field imaging of unstained cells
presents a challenging cell detection problem because
of lack of contrast and difficulty in locating both cell
centers and borders, particularly when cells are tightly

© 2014 Mohamadlou et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.


mailto:Nick.Flann@usu.edu
http://creativecommons.org/licenses/by/2.0

Mohamadlou et al. BMC Bioinformatics 2014, 15:32
http://www.biomedcentral.com/1471-2105/15/32

packed. Bright field imaging, while eliminating photo-
toxicity, leads to an excess of segmentation errors that
significantly reduce biological and medical utility.

We seek to remedy the disadvantages and harness the
experimental advantages of bright field microscopy of liv-
ing cells by applying information-theoretic measures over
defocused images to improve segmentation accuracy. The
approach applies Kolmogorov complexity to identify the
most informative subset of images within the focal stack
that maximize information content while minimizing the
effect of noise.

The paper first briefly reviews existing methods for
segmentation of living cells, with a focus on recent
approaches to defocused bright field images. Next, mea-
sures of Kolmogorov complexity are introduced and
applied to image data. The new maximal-information
method is then defined and evaluated by comparing its
performance with a recent method sephaCe [3] over image
sequence data sets from three separate experiments. An
analysis and a discussion of the results follows.

Cell segmentation methods

Several cell segmentation approaches have been devel-
oped over time for detection of live cells in microscopy
images [4-7]. Most of the approaches binarize an image
with certain thresholding techniques, and then use a
watershed or level-set based method on either inten-
sity, gradient, shape, differences in individual defocused
images (referred to as frames) [3,8], or other measures.
The algorithms then remove small artifacts with size fil-
ters, and apply merge and split operations to refine the
segmentation [4-6].

Florescent microscopy cell segmentation
Most studies can primarily be categorized into a few key
approaches. Wavelets are used for decomposing an image
in both the frequency and spatial domain, and can be
an effective tool since wavelets are robust to local noise
and can discard low frequency objects in the background.
Genovesio et al. [9] developed an algorithm to segment
cells by combining coefficients at different decomposi-
tion levels. Wavelet approaches work well with whole cell
segmentation, but have difficulty to segment internal cell
structures. In Xiaobo et al. [10] a watershed algorithm
was introduced for cell nuclei segmentation and phase
identification. Using adaptive thresholding and feature
extraction, Harder et al. [11] classified cells into four cell
classes comprising of interphase cells, mitotic cells, apop-
totic cells, and cells with clustered nuclei. In Solorzano
et al. [12] the level set method determines cell boundaries
by expanding an active contour around each detected cell
nuclei.

While these cell segmentation algorithms have been
developed for fluorescence microscopy images, defocused
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bright field cell segmentation demands more complex
and advanced level of image processing. Broken bound-
aries, poor contrast, partial halos, and overlapping cells
are some of the shortcomings of available algorithms [3,8]
when applied to images lacking fluorescent reporters.

Defocused bright field microscopy approaches

Selinummi et al. [13] introduced z-projection based
method to replace whole cell florescent microscopy with
bright field microscopy. This method computes an inten-
sity variation over a stack of defocused images (referred
to as the z-stack) to obtain a contrast-enhanced image
called a z-projection. Since variability of pixel intensity
inside a cell is high compared to the background, the
resulting z-projection image has high contrast and can
substitute for an image obtained through whole cell flores-
cent microscopy. The z-projection approach is straight-
forward and free from parameters setting. However, in
order to distinguish between adherent cells, a second
channel of nuclei florescent microscopy is required. As
a final step CellProfiler [14] software is applied to both
the z-projection and nuclei florescent channel to pro-
duce cell segmentation. While the z-projection approach
avoids whole cell florescence, it still requires an additional
nuclei channel of florescent microscopy and so does not
eliminate potential problems with cell toxicity.

Implementation

A recent method that needs only bright-field defocused
images has been introduced in sephaCe [3]. This sys-
tem is capable of both the detection and segmentation of
adherent cells and can be downloaded from (http://www.
stanford.edu/~rsali/sephace/seg.htm) as a free and open
source image analysis package. In contrast to Selinummi
et al. where all the frames of the z-stack are utilized,
sephaCe selects only a subset of five frames as input to
the image processing system. sephaCe selects this subset
using a hard-coded strategy independent of each data set
and each individual z-stack contained within that data set.
Therefore sephaCe does not adapt to the inevitable equip-
ment and biological sample variation. While parameters
of the image processing method can be tuned for spe-
cific data sets somewhat ameliorating the problem, a more
general purpose non-parametric frame selection method
is needed for high-throughput processing of diverse data
sets. This work introduces a new adaptable frame selec-
tion method that applies an information theoretic mea-
sure to select frame subsets specific to the idiosyncracies
of each z-stack. This method is referred to as maximal-
information.

Following frame subset selection, the maximal informa-
tion method applies the same image processing and seg-
mentation algorithm of sephaCe. Ali et al. [3,8] presents
a series of algorithms that automatically segment each z-
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stack without the need for any florescent channel. The key
to discriminating adherent cells is to initialize a level-set
algorithm [15] with the difference between two strongly
defocused frames and then guide contour expansion using
the difference of two weakly defocused frames. As an ini-
tial step, the in-focused frame is detected by selecting that
image from the z-stack in which the Shannon entropy
[16] is minimized. Given an image histogram I, entropy is
defined as:

E() = — / 1 f PG logplisydsdy (1)
y=1Jx=

Where p(I(x,y)) is the probability of pixel intensity
values. Entropy value is expected to be maximized for
strongly out of focused images and minimized for the
in-focus image. Let the in-focus image frame be I°.

After detecting the in-focus image, four additional
images from the z-stack are selected, two above the in-
focus frame and two below. To initialize the level set algo-
rithm, a difference image is generated from two strongly
defocused images selected at a fixed distance of £25 um
from the in-focus frame, referred to as I™" and I~~.
This image is binarized using the Otsu [17] thresholding
method and then small artifacts are removed by labeling
connected components and applying size filter.

To guide the level set algorithm in expanding the ini-
tial cell boundaries, another difference image is generated
between two slightly defocused images +£10 pm from
the in-focus frame, referred to as IT and I~. Details on
how this difference image is applied to compute local
phase and local orientation images that direct the border
expansion is given in [8] and [3].

Motivation for the maximal information approach

In the sephaCe package the four defocused frames are
chosen at fixed distances (+10 um1, £25 um) from the
in-focused frame to initialize and guide the level-set algo-
rithm. Figure 1(a) illustrates an entropy analysis of a
z-stack with 21 frames in which the image separation is
3 um. The in focus frame I° is determined as the 12’th
frame, the 9'th and 15’th frames are the weakly defocused
frames I~ and I (in this case &9 um due to sampling
resolution), the strongly defocused frames /=~ and I+
are the 4'th and 20’th frames. In this z-stack image, as
the frames become more blurred, their entropy increases
monotonically implying that there are no irregularities
within the frames. In this ideal case, the fixed strategy can
produce reasonable results.

However, in experiments over a diversity of images
(given in Section Results) this fixed selection of out-of-
focus frames is demonstrated to produce poor segmen-
tation. A fixed strategy cannot take into account random
and systemic noise, variability in experimental configura-
tions including microscope configurations, and multiple
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unknowns in the biological system under study. Some of
these conditions are illustrated in selected frame images
in Figure 1(c). Two possible reasons to account for the
irregular entropy-focus plane relationship in Figure 1(b)
are:

¢ Biological variability where cells do not adhere to the
flat surface of the culture medium but vary in the
z-dimension as they change morphology and form
cell-cell adhesive bonds. That is, a focused frame for
one cell could be a defocused frame for other cells. In
Figure 1(c), the bright upper cell is positioned higher
than the rest. Therefore a semi-random level of
sharpness resides in the all defocused images.

e Systemic noise introduced by microscopy and
imaging. For instance in Figure 1(c), frame 6 has
strip noises introduced by the camera. Strip noise
residing in the image increases the entropy value from
the 5’th frame to 6’th frame while a decrease is
expected.

Applying this fixed distance strategy to select strongly
defocused frames can add unwanted initial active con-
tours resulting in over-segmentation and also can miss
initial active contours resulting in under-segmentation.
Likewise, fixed selection of weakly defocused frames
can add anomalies into the local phase and orienta-
tion images and thus misdirect the contour expansion to
include or exclude cells, particularly when cells are tightly
packed.

Overall, the fixed approach in selecting initial images
in the sephaCe package is brittle and error-prone. The
unavoidable variation requires an adaptable method
rather than a fixed approach. The maximal-information
method uses an optimization based approach that
searches the combinations of z-stack frames to select
the four frames that contain the highest information,
evaluated using Kolmogorov information-theoretic mea-
sure [18]. This process is repeated for each individual
z-stack and so adapts to the distinctiveness of each sam-
ple. Since the maximal-information method is adaptive,
it can be applied to a diversity of data sets utilizing
different microscopes, lighting conditions and biological
samples.

Kolmogorov information set complexity

Set complexity [19], denoted W, is applied to quantify the
amount of information contained within each possible set
of four image frames. The measure is general purpose and
non-parametric in that it computes the information con-
tent of set of objects so long as they can be encoded as
strings. Set complexity has been applied to understand
the organization and information content of biological
data sets including developmental pattern formation [20],
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Figure 1 Relationship between frame entropy as the focus level changes in the z-stack is shown in (a) and (b). In (a) there is a monotonic
increasing and then decreasing relationship between focus and entropy, with the in-focus frame containing minimum entropy. In (b) a nosier data
set is employed and the relationship between focus and entropy is irregular. As can be seen in frame 6, banding and stripe noise introduced by the
microscope unexpectedly increases entropy. (c) lllustrates four corresponding frames for data set analyzed in graph (b).
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genetic regulatory network dynamics [21], and gene inter-
action network structure [22]. The Kolmogorov complex-
ity [18] of a string is the length of shortest algorithm that
can be used to generate the string. Exact computation is
undecidable, but it can be approximated by the compres-
sion size of a string. Bzip2 and zip compressor with block
size of 900 Kbytes have been tested and shown robust for
this purpose.

A related Kolmogorov complexity measure is the Nor-
malized Compression Distance NCD) defined as the
length of the shortest program that computes one given
string from another. This measure provides a quantifica-
tion of similarity between the strings since the more sim-
ilar they are, the shorter the program needed. Again, this
measure is undecidable but can be estimated using com-
pression. Normalized Compression Distance described in
[23] and [24] defined below, is such a measure of similarity

between two objects that applies compression size C(s) of

string s:

C(s; +s5) — min(C(s;), C(s)))
max(C(s;), C(s)))

NCD(s;, s7) = 2)

Where s; + s; is the concatenation of s; and s; string. If
the two strings compress smaller together than separately,
then NCD will be closer to 0.0. As the two strings are
more similar, the concatenated string is more compressed
resulting in a lower NCD value. Random strings or dissim-
ilar regular patterns are not as compressed and so NCD
will be closer to 1 [25,26].

L C(si+5) ~ C(s)) ~ C(s}) then NCD(s}, 55) ~ 0.0

2. C(s] +s;) ~ C(s}) + C(s;) thenNCD(s{,s]'.") ~ 1.0

3. C(s] + s;?) ~ C(s)) and C(sls.) ~ 0.0 then
NCD(s},s}) ~ 1.0
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Where s" is from the set of random strings and s°* are
simple strings containing regular patterns.

Set complexity [19] of a set of # strings S = {s1,...,s,}
is defined:
1
U(S) = prem—t Z C(s) Z NCD(s;, s;)(L—NCD(s;, 57))
s;i€S SjFSi
3)

Set complexity captures the relationships among strings
in the set, discounting when strings are very similar (NCD
close to 0.0) and so contain the same information, or
highly dissimilar so that they have nothing in common
and appear random (NCD closer to 1.0). The value is max-
imized when each string is intrinsically complex (high
C(S;)) and the similarity between the strings lies between
maximally dissimilar and maximally similar NCD(s;, s;) ~
0.5, which occurs when C(s; + s55) = C(s:)/2 — C(s)),
assuming C(s;) > C(s).

Figure 2 gives an example of applying W(S) to defo-
cused images. Along the top are the original frames and
below them is their binary representation following an
Otsu thresholding step. Each binary image is encoded
as a string by concatenating each column scanning from
left to right (more details are provided in Algorithm 1).
For each image the compression size is given. NCD val-
ues between each pair of the images is provided in
Table 1.

The maximal-information segmentation method

To select the four most informative frames from a z-stack
with # frames, the method searches the space of all pos-
sible combinations of two frames from above the in-focus
frame (/T and IT) and two frames from below the in-
focus frame (I~ and I~ ™), evaluates each set for W, then
picks the maximizing combination. The method is given
in Algorithm 1.

Page 5 of 10

Algorithm 1 The maximal-information algorithm to
select the four z-stack frames needed to initialize the
level set method for segmentation. Let the input z-stack
be I containing n frames. The algorithm returns the in-
focus frame and four defocused frames. Note that all
compression calculations are calculated once and cached.

1: maximal-information(I)
: % binarize and linearize images
: fori=1tokdo
Ipli] =Otsu(I[i])
end for
: % compress individual and pairwise strings
fori =1tokdo
Cli]= CUpli])
9: end for
10: fori =1to k do
11: forj=i+1tokdo

PN Wy

2 Clijl=Cpli+Ipl) .
13: NCDIi, jl = (Cli,j] — min(C[{], C[j])/max(Cl[i], C[j])
14:  end for

15: end for

16: % find in-focus frame

172 m < EUI[])I1 <i<k

18: 10 « I[m]

19: % search for weakly and strongly out-of-focus frames
20: Whin < 00

21: fori=1tom —2do

222 forj=i+1tom—1do

23: fork=m+1ton—2do

24: forl=m+2ton—1do
25: Wy < W(i,j,k I, NCD, C)
26: if Winin > Wy then

27: Whin < Yo

28: I «— I I < I[jl; I~ < I[k}; 1~ < I[1];
29: end if

30: end for

31: end for

32: end for

33: end for

34: return [T, 1,190,171~

First each image in the z-stack is binarized using the
Otsu [17] thresholding method and then converted to
a string (linearization) by concatenating each column
of the image to the next column [27]. Many meth-
ods of linearization were explored in [27] and column

‘ LS
¢ 7

.!._ g .
4 v 6 ﬁi&t
b /§/ g

Figure 2 Strongly and weakly defocused selected frames from time step 1 in data set one. Top row is the raw image frames. The second row

Image
Raw
AN
. W
v ¥
Otsu | Y/ 0/@
i Pl
A
is the binary image following Otsu thresholding that is linearized and compressed.
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Table 1 The NCD values for the four image frames given in
Figure 2

NCD rt r I~ [
[+ 0.0 0.1429 0.2154 0.1071
I 0.0 0.0 0.2615 0.1296
I~ 0.0 0.0 0.0 0.2000
I~ 0.0 0.0 0.0 0.0

concatenation was found to be effective because spatially
located regularities are picked up by compression. Bzip2
is applied to compute the compression size of each indi-
vidual string and also each pairwise concatenated string
(for NCD, Equation 2). From these cached compression
values, pairwise NCD values are determined.

The O(n?) compression step dominates the computa-
tion time since strings must be written to file before
processing; the final W calculation involves only matrix
operations and is very fast, even though more combina-
tions must be computed. For the three data sets studied
in this work, the preprocessing and level set algorithms
of sephaCe take approximately 10 seconds per z-stack.
The maximal-information frame selection method adds
approximately 20 seconds per z-stack to the run time.
Timings were on an Intel Pentium G640 Processor 2.8
GHz (3 MB cache).

Results

Set complexity analysis of image data

To understand how Kolmogorov Complexity measures
could reveal information in z-stacks, an initial study was
performed by computing the NCD between each pair of
21 frames for three data sets each containing 192 z-stacks.
The data sets used for in this work are human embryonic
kidney cells (HEK 293T) sampled at 5 minute intervals
for 16 hours. Each z-stack sequence is from a distinct
experiment. Data was obtained using a Leica DM6000
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microscope with each z-stack containing 21 image frames
each separated by 10 um, with resolution 1024 x 1024
12-bit grey-scale pixels. Since the z-stack was sampled at
a 10 wum resolution, the strongly defocused frames for
sephaCe were set at +30 um.

Figure 3 presents values of NCD in the form of
a heatmap for each pair of frames along the z-stack
sequence for a selection of three images. Frames tend to
decrease in similarity as the focus distance increases so
that blue areas (low NCD) are mostly around the diago-
nal, and red areas off the diagonal. However, each image
displays significant individuality due to noise, microscope
variability over time and changes in the biological sample
as cells divide, die and move. This inconsistency among
NCD matrices over time justifies the need for an adaptive
frame selection strategy.

Four frames of the z-stack are chosen to start and guide
the level set algorithm. Figure 4 compares the computed ¥
of frames obtained by the maximal-information method
with the W of the frames identified using the fixed dis-
tance method of sephaCe, for all 192 z-stacks. In all cases
the maximal-information frame set has a higher infor-
mation content then the fixed sephaCe set. While this
result is not surprising, it supports the need for adapt-
ability as it demonstrates the inability of a fixed strategy
to pick those images that have high intrinsic information.
A mean difference hypothesis statistical analysis demon-
strates that these differences are significant, see Table 2.
According to the p-value in Table 2, that is much lower
than 0.05, the mean difference hypothesis is rejected and
so there is a significant difference between the mean val-
ues of the two groups. That is, selecting images using
maximal-information guarantees sets with higher ¥ than
the sephaCe method.

Precision and recall analysis
Two examples of segmented bright field microscopy
frames are shown in Figure 5. In (a) both algorithms select

frames of each z-stack.

Figure 3 NCD values shown as a heatmap for all pairs of image frames in the z-stack of three selected defocused image stacks from the
same experiment. Color code blue specifies pairs of frames with lowest NCD values and red specifies highest NCD values. In each heatmap, the
lowest z frame is in the lower left, the highest z frame is in the upper right. Analysis illustrates that off-diagonal NCD values range from 0.6 (most
similar images) to 1 (red, most dissimilar images). Along the diagonal NCD equals zero (blue). Note the diversity of similarity relationships among the
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Figure 4 A parametric plot of set complexity values for the four defocused frames selected by the two algorithms. The X axis indicates the
complexity value of the frame set selected by maximal-information and the Y axis indicates complexity value for the frame set selected by sephaCe.
Each data point represents one z-stack from the 192 z-stacks in the human embryonic kidney cells (HEK 293T) data set.
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similar frames and produce similar and accurate results.
In (b) maximal-information selects a alternative set of
frames at different focus planes (compared to the fixed
strategy) and produces significantly lower segmentation
errors. Here the sephaCe method fails to accurately detect
four cells along with over-segmenting another.

In order to evaluate the segmentation results, the raw
microscope z-stacks were provided to a human expert
(Joseph C. Shope, Utah State University) who identified
the cells using Image-Pro Plus (Media Cybernetics). Opti-
mal z-frames were selected and cell centers determined

Table 2 Set complexity values for two different approaches

Fixed defocused
distance (sephaCe)

Selected by
maximal-information

Mean 278.5049 345.1289
Variance 10620.73 1233647
Observations 192 192
Pearson correlation 0.9603
P(T<=t) one-tail 1.19825E-67
t Critical one-tail 16536
P(T<=t) two-tail 2.3965E-67
t Critical two-tail 1.9736

by fitting a major and minor axis to produced excel files
of cell center coordinates for each z-stack. No segmenta-
tion results were given to the expert during this initial cell
identification. In parallel, the two methods were applied to
the data sets to produce segmentation results for each z-
stack, drawn as overlays with red (maximal-information)
and blue (sephaCe) as in Figure 5. Next, the segmen-
tation results were overlaid with the expert-determined
cell centers and for both methods a count was made of
the correctly identified cells (true positive), missing (false
negative) and fragments of cells identified as one cell or
spurious objects (false positive). To measure the quality
and utility of the methods overall, the precision Pr and
recall Re of maximal-information and sephaCe correction
was determined, where:

o o
tp+fp tp+fn

with tp, fp, fu being the count of detected true positive,
false positive, and false negative objects, respectively. In
Table 3 the precision and recall of maximal-information
are both significantly better than sephaCe for each of the
three data sets.

In Table 3 the average correctly segmented cells for
maximal-Information is higher than sephaCe method and
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(a)

(b)

Figure 5 Example cell segmentation results for two z-stacks of human embryonic kidney cells (HEK 293T) overlaid on the in-focus frame.
Segmentations produced by maximal-information are shown in red; segmentations produced by sephaCe are shown in blue. In (a) both algorithms
select similar frames and produce similar and accurate results. In (b) maximal-information selects a alternative set of frames at different focus planes
from the fixed strategy and produces significantly lower segmentation errors. Here the sephaCe method fails to accurately detect four cells along
with over segmenting another. In (€) segmentation results are shown closeup.

Table 3 Segmentation results for three data sets for human embryonic kidney cells (HEK 293T)

Data set one Maximal-information SephaCe Correlation t- stat P(T < t)one-tail
Correct segmentation tp 9.12 5.76 0.3970 9.4557 0.0
Unexpected areas fp 0.68 0.80 0.2355 -0.5492 0.2939
Missing cells fn 1.60 4.72 -0.0909 -9.0929 0.0
Precision Pr 93.20% 89.36% 0.3295 1.4461 0.0805
Recall Re 85.37% 54.34% -0.2903 8.2830 0.0

Data set Two Maximal-information SephaCe Correlation t stat P(T < t)one-tail
Correct segmentation tp 1335 12.60 04344 34701 0.0012
Unexpected areas fp 1.15 2.20 0.1633 -4.0977 0.0003
Missing cells fn 0.50 1.25 0.2939 -34701 0.0012
Precision Pr 92.30% 85.45% 0.1690 43714 0.0001
Recall Re 96.40 % 91.08% 0.2822 3.4407 0.0013
Data set three Maximal-information SephaCe Correlation t stat P(T < t)one-tail
Correct segmentation tp 15.56 11.86 04549 10.18 0.0
Unexpected areas fp 172 2.00 0.3642 -0.9434 0.1759
Missing cells fn 2.81 6.36 0.4926 -9.9501 0.0
Precision Pr 91.66% 86.23% 0.3887 2.6898 0.0

Recall Re 85.94% 65.21% 04256 10.12 0.0

tp is the average count of correctly identified cells, fp is unexpected segmentations and fn is cells that were missed. Recall and precision are given as percentages.
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demonstrates the advantage of extracting more informa-
tive frames in the z-stack. The average of both missing and
unexpected cell segmentation for maximal-information
are lower than sephaCe method. All three of these mea-
sures of quality are shown to be significantly better for
maximal-information than for the sephaCe using a paired
one-tail T-test (values that are less than 10~8 are reported
as 0.0 in the table).

In addition, Table 3 includes the inter-method correla-
tion of tp, fp, fu over the z-stack data sets. High correlation
implies that the performance of both methods is con-
sistent in that they perform poorly on the same set of
“difficult” images, and well on the same set of “easy”
images. Results in Table 3 show that true positives are
highly correlated implying that the cells correctly identi-
fied by maximal-information include some of the set of
cells recognized by sephaCe.

Conclusions

This work has presented a method for identifying live
cells in bright field defocused images. The method applies
Kolmogorov complexity measures to identify specific out-
of-focus frames that encode the maximum information.
These frames are then used to initialize active contours
and guide contour expansion for level-set segmentation
algorithms as applied in the sephaCe method.

The new maximal-information approach is compared
with a selection strategy employed in the original sephaCe
that picks out-of-focus frames using fixed offsets from the
estimated in-focus frame. An empirical study using a large
data set of embryonic kidney cells (HEK 293T) z-stacks
taken from different experimental runs has demonstrated
that the adaptive method significantly improves the recall
and precision of the segmentation.

Kolmogorov set complexity identifies the most informa-
tive frames by exploiting similarity measures between all
pairs of frames contained within the NCD matrix. Each
selected frame is sufficiently dissimilar (high NCD) to
other frames in the set so as to provide unique and syn-
ergistic information about each cell in the z-stack. Recall
that the dissimilarity is due to changes in cell appearance
as the focal plane is moved through the cell profile. By
selecting the best degree of dissimilarity, the differences
between frames (used to initialize and guide the active
contour of the level-set method) maximize sensitivity to
the presence and shape of cells. Kolmogorov set complex-
ity also tempers the effects of noise by discounting frames
that have too higher dissimilarity since this is most likely
due to noise.

The method introduced here is generally applica-
ble because it relies on fundamental non-parametric
information-theoretic properties and treats data as sim-
ple strings, ignoring the actual semantics. Robustness
is achieved by viewing frame selection as combinatorial
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optimization problem with set complexity as the scoring
function. The full potential of the method in dealing with
noise, variability in experimental configurations, and mul-
tiple unknowns across a diversity of biological data will be
explored in further studies.

Availability and requirements

Project name: maximal-information

Project home page: https://sites.google.com/site/maxi
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License: GNU GPL
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