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Abstract

Background: Infections are often associated to comorbidity that increases the risk of medical conditions which can
lead to further morbidity and mortality. SARS is a threat which is similar to MERS virus, but the comorbidity is the key
aspect to underline their different impacts. One UK doctor says “I’d rather have HIV than diabetes” as life expectancy
among diabetes patients is lower than that of HIV. However, HIV has a comorbidity impact on the diabetes.

Results: We present a quantitative framework to compare and explore comorbidity between diseases. By using
neighbourhood based benchmark and topological methods, we have built comorbidity relationships network based
on the OMIM and our identified significant genes. Then based on the gene expression, PPI and signalling pathways
data, we investigate the comorbidity association of these 2 infective pathologies with other 7 diseases (heart failure,
kidney disorder, breast cancer, neurodegenerative disorders, bone diseases, Type 1 and Type 2 diabetes). Phenotypic
association is measured by calculating both the Relative Risk as the quantified measures of comorbidity tendency of
two disease pairs and the φ-correlation to measure the robustness of the comorbidity associations. The differential
gene expression profiling strongly suggests that the response of SARS affected patients seems to be mainly an innate
inflammatory response and statistically dysregulates a large number of genes, pathways and PPIs subnetworks in
different pathologies such as chronic heart failure (21 genes), breast cancer (16 genes) and bone diseases (11 genes).
HIV-1 induces comorbidities relationship with many other diseases, particularly strong correlation with the
neurological, cancer, metabolic and immunological diseases. Similar comorbidities risk is observed from the clinical
information. Moreover, SARS and HIV infections dysregulate 4 genes (ANXA3, GNS, HIST1H1C, RASA3) and 3 genes
(HBA1, TFRC, GHITM) respectively that affect the ageing process. It is notable that HIV and SARS similarly dysregulated
11 genes and 3 pathways. Only 4 significantly dysregulated genes are common between SARS-CoV and MERS-CoV,
including NFKBIA that is a key regulator of immune responsiveness implicated in susceptibility to infectious and
inflammatory diseases.

Conclusions: Our method presents a ripe opportunity to use data-driven approaches for advancing our current
knowledge on disease mechanism and predicting disease comorbidities in a quantitative way.

Keywords: Comorbidities infections, Disease associations, SARS, HIV

Background
The term “comorbidity” refers to the coexistence of mul-
tiple diseases or disorders in relation to a primary disease
or disorder in an individual [1]. A comorbidity relation-
ship between two diseases exists whenever they appear
simultaneously in a patient more than chance alone [2].
It represents the co–occurrence of diseases or presence
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of different medical conditions one after another in the
same patient [1,3]. Some diseases or infections can coexist
in an individual by coincidence, and there is no patho-
logical association among them. However, in most of
the cases, multiple diseases (acute or chronic events)
occur together in a patient because of the associations
among them. These comorbidity associations can be due
to direct or indirect causal relationships and the shared
risk factors among diseases [4]. For an instance, a type
of genetic abnormality linked to cancer is more com-
mon in patient of type 2 diabetes than other people [5].
Examples of comorbidity studies are many, often referring
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to chronic obstructive pulmonary disease (COPD) [6,7],
obesity [8], mental disorders [9], immune-related diseases
[10], cancer [11] etc.
Comorbidity can be attributed to the disease connec-

tions on the molecular level, such as dysregulated genes,
PPIs (protein–protein interactions), and metabolic path-
ways as potential causes of comorbidity [1,3,12,13]. From
a genetic perspective, a pair of diseases is connected
because they have both been associated with the same
dysregulated genes [14,15], whereas from a proteomics
perspective phenotypically similar diseases are related
via biological modules such as PPIs or molecular path-
ways [16,17].
Population-based disease association is important in

conjunction with molecular and genetic data to uncover
the molecular origins of diseases and disease comorbidi-
ties. Patient medical records contain important clarifica-
tion regarding the co-occurrences of diseases affecting
the same patient [2]. During the last few years, several
researchers have been conducted the disease comor-
bidity analysis to understand the origins of many dis-
eases [1,12,18]. Goh, Cusick, Valle, Childs, Vidal, Barabasi
et al. and Feldman, Rzhetsky, Vitkup et al. built net-
works of gene-disease associations by connecting dis-
eases that have been associated with the same genes
[14,15], whereas Lee, Park, Kay, Christakis, Oltvai and
Barabási et al. constructed a network in which two dis-
eases are linked if metabolic reactions are associated
between them [13]. Disease association studies from
proteomic point of view have been studied by Rual,
Venkatesan, Hao, Hirozane-Kishikawa, Dricot, Li, Berriz,
Gibbons, Dreze, Ayivi-Guedehoussou et al. and Stelzl,
Worm, Lalowski, Haenig, Brembeck, Goehler, Stroedicke,
Zenkner, Schoenherr, Koeppen et al. [19,20]. Rzhetsky,
Wajngurt, Park and Zheng et al. inferred the comorbid-
ity links between 161 disorders from the disease history
of 1.5 million patients [12]. However, all of these efforts
have focused on the role of a single molecular or pheno-
typic measure to capture disease–disease relationships. In
our work we have used disease–gene associations, PPIs,
molecular pathways and clinical information to obtain
statistically significant associations and comorbidity risks
among diseases.
Inflammation is a hallmark of many serious human

infectious diseases associated to a wide variety of infec-
tions, such as HIV-1 [21]. UK doctor Max Pemberton
says “I’d rather have HIV than diabetes” as life expectancy
among diabetes patients is lower than that of HIV [22].
However, HIV has a comorbidity impact on the diabetes.
Also the flu can cause complications, including bacterial
pneumonia, or the worsening of chronic health problems.
Asthma is the most common comorbidity in patients
hospitalized for swine influenza (H1N1) infection [23].
Dengue can cause myocardial impairment, arrhythmias

and, occasionally, fulminant myocarditis [24]. Chronic
medical conditions, such as heart disease, lung disease,
diabetes, renal disease, rheumatologic disease, dementia,
and stroke are risk factors for influenza complications
[25]. Common chronic infections such as periodontitis
or infection with Helicobacter pylori may also increase
stroke risk [26]. Moreover, the severity of pneumonia in
patients coinfected with influenza virus and bacteria is
significantly higher than in those infected with bacte-
ria alone. The incidence of flu is higher in children and
younger adults than in older individuals, but influenza-
associated morbidity and mortality increase with age,
especially for individuals with underlying medical condi-
tions such as chronic cardiovascular diseases [27]. During
the ageing process the immune system becomes com-
promised and it causes an increasing inflammation [28].
In particular, chronic inflammation (inflammageing) and
metabolic function are strongly affected by the ageing
process [29]. The ageing of populations is leading to an
unprecedented increase different diseases like cancer and
fatalities. It is reported that 80% of the elderly population
has three or more chronic conditions [30].
On the other hand, respiratory viruses are an emerging

threat to global health security and have led to worldwide
epidemics with substantial morbidity and mortality [31].
Coronaviruses (CoVs) cause respiratory and enteric dis-
eases in human and other animals that induce fatal res-
piratory, gastrointestinal and neurological disease. Severe
acute respiratory syndrome (SARS) is an epidemic human
disease, is caused by a coronavirus (CoV), called SARS-
associated coronavirus (SARS-CoV) [32]. SARS patients
may present with a spectrum of disease severity ranging
from flu-like symptoms and viral pneumonia to acute res-
piratory distress syndrome and death [33]. Most of the
deaths were attributed to complications related to sepsis,
ARDS and multiorgan failure, which occurred commonly
in the elderly for comorbidities [34]. Age and comorbid-
ity (e.g. diabetes mellitus, heart disease) were consistently
found to be significant independent predictors of vari-
ous adverse outcomes in SARS [35]. Children with SARS
have better prognosis than adults [34]. Advanced age and
comorbidities were significantly associated with increased
risk of SARS-CoV related death, due to acute respira-
tory distress syndrome [35]. Mild degree of anaemia is
common in the SARS infected patients and patients who
have recovered from SARS show symptoms of psycholog-
ical trauma [34]. Another novel coronavirus MERS-CoV,
which is a new threat for public health, has similar clin-
ical characteristics to SARS-CoV, but the comorbidity is
the key aspect to underline their different impacts [36,37].
MERS-CoV causes respiratory infections of varying sever-
ity and sometimes fatal infections in humans including
kidney failure and severe acute pneumonia [38]. Despite
sharing some clinical similarities with SARS (eg, fever,
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cough, incubation period), there are also some important
differences such as the rapid progression to respiratory
failure, which we have studied on comorbidities point of
view.
Infection with the human immunodeficiency virus-1

(HIV) and the resulting acquired immune deficiency syn-
drome (AIDS) affects cellular immune regulation [39].
HIV infection severely impacts on the immune system
causing phenotypic changes in peripheral cells and dys-
regulates the innate immune system [40]. Significant
number of HIV-1 infected patients exhibits osteopenia
and osteoporosis, leading to higher incidence to develop
weak and fragile bones during the course of disease [41].
HIV has also been associated with an increased risk of
developing both diabetes and cardiovascular disease [42].
Infection with HIV weakens the immune system and
reduces the body’s ability to fight infections that may lead
to cancer [43,44]. People infected with human immun-
odeficiency virus (HIV) have a higher risk of some types
of cancer (Kaposi sarcoma, non-Hodgkin lymphoma,
cervical cancer, anal, liver, lung cancer, and Hodgkin
lymphoma) than uninfected people [45]. Many people
infected with HIV are also infected with other viruses
that cause certain cancers [46,47]. HIV infection even
when controlled by highly active antiretroviral therapy
(HAART) is being linked to chronic inflammation [48].
People with HIV-1 infection appear to have a markedly
higher rate of chronic kidney disease than the general
public [49]. It is because some of the risk factors associ-
ated with HIV-1 acquisition are the same as those that
lead to kidney disease because of the virus itself and some
therapies (e.g. HAART therapy). Antiretroviral therapy for
HIV may increase the risk of developing metabolic syn-
drome (abdominal obesity, hyperglycaemia, dyslipidaemia
and hypertension) and thus predispose to type 2 diabetes
and cardiovascular disease. Many of the biologic factors
thought to be causally associated with inflammation in
HIV disease are also thought to be causally associatedwith
the inflammation of ageing [50].
Infections (acute and chronic conditions) are often asso-

ciated to comorbidity that increases the risk of medical
conditions which can lead to further morbidity and mor-
tality. Comorbidities related to flu have been recently
investigated [51]. Comorbidities for tuberculosis have also
been studied recently [52,53]. To understand the overall
mechanism we have studied the comorbidity associations
of SARS and HIV infections. Both HIV and SARS are
emerging infectious diseases in the modern world; each
of these diseases has caused global societal and economic
impact related to unexpected illnesses and deaths [54].
SRAS is a significant public health threat and HIV is a
long term chronic infection. Since these two infections are
associated with high mortality rates and there are no clin-
ically approved antiviral treatments or vaccines available

for either of these infections, we have selected these two
infections for our study. Centred on the SARS and HIV-1
infections we have investigated highly heterogeneous dis-
ease comorbidity networks using the disease–gene associ-
ations, PPI subnetwork, molecular pathways and clinical
information.

Results and discussion
Results
Wehave presented a systematic and quantitative approach
to discover human disease comorbidities using different
sources of available mRNA expression, protein-protein
interactions, signalling pathways, disease–gene associ-
ations, disease–disease associations and disease–drug
associations data. It has been shown that SARS coro-
navirus infects and replicates in a wide variety of host
cells in susceptible animals and human beings [55,56].
To understand the host response to this pathogen, we
analysed the gene expression patterns of SARS infected
patients, compared to normal subjects using oligo-
nucleotide microarrays from the NCBI GEO (http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1739) [55].
We analysed the microarray gene expression data of over
8,700 genes from the PBMCs of 10 SARS patients, and
compared with healthy control samples. We found that
274 genes (p < 0.01,> 1.5 fold change) were differen-
tially expressed as compared to healthy controls in which
120 genes were significantly up regulated and 154 genes
were significantly down regulated (see Additional file 1:
Table S1).
On the other hand, monocytes are the key immune

responsive cells whose function is adversely impacted
by HIV-1. HIV-1 infection radically alters the monocyte
phenotype, which is reflected in an HIV-1 induced gene
expression analysis. Monocyte gene expression microar-
ray data were collected for control and HIV patients from
the NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE18464) [57]. To find out the significant
dysregulated genes during the HIV-1 infection, we have
performed global gene expression analysis. We found that
186 genes (p < 0.01,> 1.5 fold change) were differen-
tially expressed as compared to healthy controls in which
71 genes were up regulated and 115 genes were down
regulated (see Additional file 2: Table S2).
Considering the significantly dysregulated genes of

SARS (274 genes) and HIV-1 (186 genes) infections,
and gene-disease associations information, we have con-
structed two gene-disease associations networks (GDN),
which are used to explore the shared genetic associations
and disease comorbidity. Starting from the bipartite graph
we generated biologically relevant network projections
and constructed multi-relational gene-disease network
in which nodes are diseases or genes, and edges indi-
cate association between gene and disease. This bipartite

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1739
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1739
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18464
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18464
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graph consists of two disjoint sets of nodes, where one
set corresponds to all known genetic disorders and the
other set corresponds to all of our identified significant
genes for SARS and HIV-1 infections. The list of disor-
ders, disease genes, and associations between them were
obtained from the Online Mendelian Inheritance in Man
(OMIM) [58], a compendium of human disease genes and
phenotypes (see details in the Methods section). We clas-
sified each disorder into one of 21 disorder categories
based on the physiological system affected as introduced
in Goh, Cusick, Valle, Childs, Vidal, Barabasi et al. [14].
In the GDN, nodes represent diseases class or genes,

and two disorders are connected to each other if they
share at least one gene in which mutations are asso-
ciated with both diseases groups (Figures 1 and 2).
The number of interlinked genes between SARS infec-
tion and other diseases indicates that immunological,

hematological, neurological, metabolic and dermatolog-
ical diseases categories are strongly associated with the
SARS infection (see Figure 1 and Additional file 3:
Table S3). Few genes are also shared between more than
2 categories of diseases i.e those disease groups are also
associated through at least that genes. For an instance,
the gene ATM shared among SARS infection, cancer and
immunological diseases. Therefore, cancer and immuno-
logical diseases are also interrelated through the gene
ATM. Among all these disease classes immunological dis-
eases class is tightly correlated with the SARS infection
due to the highest number of genes (12 genes) shared
between them. On the other hand, the number of asso-
ciated genes between HIV infection and other diseases
indicates that neurological, metabolic, cancer and hema-
tological diseases categories are strongly correlated with
the HIV infection (see Figure 2 and Additional file 4:

Figure 1 The gene-disease association network centred on the SARS infection is constructed based on the different categories of
diseases that are connected and showed comorbidities with the SARS infection through the different genes. Red colour represents
different categories of disorders and green colour represents different genes that are common with the other categories of disorders. The size of a
disease node is proportional to the number of dysregulated genes shared between the infections/disorder groups. A link is placed between a
disorder and a disease gene if mutations in that gene lead to the specific disorder.
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Figure 2 The gene-disease association network centred on the HIV infection is constructed based on the different categories of diseases
that are connected and showed comorbidities with the HIV-1 infection through the different genes. Red colour represents different
categories of disorders and green colour represents different genes that are common with the other categories of disorders. The size of a disease
node is proportional to the number of dysregulated genes shared between the infections/disorder groups. A link is placed between a disorder and
a disease gene if mutations in that gene lead to the specific disorder.

Table S4). Few HIV dysregulated genes are also shared
between more than 2 categories of diseases such as the
gene TGFB1 is shared among HIV infection, cancer and
skeletal diseases. It is notable that 11 significant genes (4
upregulated and 7 downregulated) are similarly dysregu-
lated in the both SARS and HIV infections.
To observe the association of SARS and HIV infections

with other 7 important diseases (chronic heart failure, kid-
ney disorders, breast cancer, parkinson, osteoporosis, type
1 and type 2 diabetes), we have collected mRNA microar-
ray raw data associated with each disease from the Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/)
accession numbers are GSE9006, GSE9128, GSE15072,
GSE7158, GSE8977 and GSE7621 [59]. After several steps
of statistical analysis we have selected the most significant
over and under expressed genes for each infection and dis-
ease. We also performed cross compare analysis to find

the common significant genes between each disease and
SARS/ HIV-1 infection. We observed that SARS infection
shares 21, 12, 16, 5, 11, 11, 11 and 13 genes correspond-
ing to the chronic heart failure, kidney disorders, breast
cancer, parkinson, osteoporosis, HIV-1 infection, type 1
and type 2 diabetes. On the other hand, HIV-1 infection
shares 11, 10, 17, 9, 7, 11, 9 and 7 genes corresponding to
the chronic heart failure, kidney disorders, breast cancer,
parkinson, osteoporosis, SARS infection, type 1 and type 2
diabetes. Then we built disease–disease relationships net-
work for SARS and HIV-1 infection with other diseases
(see Figures 3 (a) and (b) and Additional file 5: Table S5
and Additional file 6: Table S6). Since genes do not func-
tion alone and they coordinate their activities in the form
of complexes or molecular pathways. Therefore two dis-
eases are potentially inter–correlated to each other if they
share at least one commonly associated pathway. For this

http://www.ncbi.nlm.nih.gov/geo/
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Figure 3 Network of the eight diseases or infections (chronic heart failure, kidney disorders, breast cancer, parkinson, osteoporosis,
HIV/SARS infection, type 1 and type 2 diabetes) that are associated and showed co-morbidities with the (a) SARS infection and (b) HIV
infection through the shared genes and commonpathways. There are some highly up and down regulated genes that are common between
SARS/HIV infection and the other 8 diseases or infections. Up and down arrows are indicated the common highly up and down dysregulated genes
between SARS/HIV infection and the corresponding infection or disease.
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reason we have used reactome pathway database [60] and
selected the pathways related to these 7 diseases as well as
SARS and HIV-1 infections. We have observed that dis-
eases and infections shared pathways between them as
shown in Figures 3 (a) and (b) and Additional file 5: Table
S5 and Additional file 6: Table S6.
Dysregulation in a protein subnetwork may yield the

dysfunction of multiple protein subnetworks. Therefore,
multiple diseases may be caused by the malfunction of a
protein complex. So, two diseases are potentially related
to each other if they share one or more commonly asso-
ciated protein subnetwork. To identify the association
between diseases based on the PPI subnetwork, we used
significantly associated disease protein pairs data from
the HPRD data base [61]. To find statistically significant
associations among diseases, we built disease networks
centred on the SARS and HIV infections in which two
diseases are comorbid if there exists one or more protein
subnetwork that are associated with both diseases. The
disease similarity network and the protein-protein inter-
action network are integrated systematically and compre-
hensively in a simple and compact manner to formulate
the disease comorbidity for the SARS and HIV-1 infec-
tions as shown in Figures 4 and 5. We showed that SARS
andHIV infections shared PPI subnetworks with the other
7 diseases or infections similar to the gene-disease and
pathway-disease associations as shown in Figures 4 and 5.
Based on the gene expression, protein-protein interac-

tion and molecular pathways data, we have found that
both SARS and HIV-1 infections have a strong association
with other 8 diseases or infections (chronic heart failure,
kidney disorders, breast cancer, parkinson, osteoporosis,
HIV/SARS infection, type 1 and type 2 diabetes). These
diseases and infections are also strongly correlated among
them. We present the correlation strength and distance
between a pair of these diseases and infections in Figure 6.
We show that some diseases (such as kidney disorders,
breast cancer, osteoporosis and heart failure) are more
associated with the SARS infection (see Figure 6). Kidney
disorder is also tightly connected with the HIV-1 infec-
tion. The probability of occurring comorbidities between
the more tightly connected diseases is more than that of
others.
It is notable that the patient medical records contain

important evidence regarding the co-occurrences of dis-
eases affecting the same patient. So, we constructed a
phenotypic disease comorbidity network using 32 million
medical records of 13039018 patients data from MedPAR
and analysed its structural properties to better understand
the connections among diseases and infections. Nodes
are unique diseases and edges indicate co-morbidity of
the diseases. We included edges between disease pairs
for which the co-occurrence is significantly greater than
the random expectation based on population prevalence

of the diseases. As pointed out in [2], the Relative Risk
(RRij) overestimates relations involving rare infections
and diseases, and underestimates relationships between
very common disorders or infections. On the other hand,
φ-correlation underestimates comorbidity between rare
and frequent diseases, and discriminates associations
between disorders of similar appearances. Thus, we built
a network by selecting only the statistically significant net-
work edges having RRij ≥ 20 and φij ≥ 0.06. Figure 7 sum-
marises the set of all comorbidity associations among all
diseases expressed in the study population by construct-
ing a Phenotypic Disease Network (PDN). In the PDN,
nodes are disease phenotypes identified by unique ICD-9-
CM (The International Classification of Diseases) disease
codes, and links connect phenotypes that show signifi-
cant comorbidity according to the relative risk RRij ≥ 20
and the correlation φij ≥ 0.06. Our phenotypic disease
network consists of 336 unique diseases nodes and 1018
co-morbidity relationships.
SARS-associated coronavirus ICD-9-CM diagnosis

code is 079.82, which is under the group of “Viral and
chlamydial infection in conditions classified elsewhere
and of unspecified site” and ICD-9-CM diagnosis code
079. Moreover, the ICD-9-CM code 480.3 is for the pneu-
monia due to SARS associated coronavirus. So we have
considered both ICD-9-CM codes 079.82 and 480.3 for
our phenotypic SARS comorbidity study. In our 3 digit
code data we have considered 079 and for 5 digit code
data we have considered 480.3. Considering the relative
risk RRij ≥ 10 between the disease group 079 and other
disorder categories, we have constructed the PDN as
shown in Figure 8(a), and considering the relative risk
RRij ≥ 20 between the disease group 480.3 and other dis-
order categories, we have constructed the PDN as shown
in Figure 8(b). We presented only the most significant
relative risk associations (see Additional file 7: Table S7
and Additional file 8: Table S8).
The ICD-9-CM diagnosis code for the Human immun-

odeficiency virus (HIV) infection is 042 to 044, which is
under the group of “Infectious and parasitic diseases” and
ICD-9-CM code (001–139). So we have considered both
3 digit and 5 digit ICD-9-CM codes for our phenotypic
comorbidity studies related to HIV infection. Consider-
ing the relative risk RRij ≥ 20 between the disease group
042 and other disorder categories, we have constructed
the PDN as shown in Figure 9(a) and considering the rela-
tive risk RRij ≥ 100 and φ-correlation φij ≥ 0.06 between
the disease groups under the sub categories of 042 and
other disorder categories, we have constructed the PDN
as shown in Figure 9(b). Only the most significant relative
risk association is represented (see Additional file 9: Table
S9 and Additional file 10: Table S10).
To observe the trend of phenotypic relative risk cor-

responding to the number of shared genes between 2
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Figure 4 Protein–protein interaction network of the eight diseases and infections (chronic heart failure, kidney disorders, breast cancer,
parkinson, osteoporosis, HIV infection, type 1 and type 2 diabetes) that are associated and showed comorbidities with the SARS infection
through the sharing protein subnetwork.

diseases, we have computed the number of shared genes
between two diseases and their corresponding phenotypic
relative risk of the occurrence of comorbidities as shown
in Figure 10. We observed that with increasing number
of shared biomarker genes between 2 diseases, the phe-
notypic relative risk is also increased. We may predict
existing diseases of a patient and the prospective disease
comorbidities through the identification of highly up and
down dysregulated genes. So based on the available data

we could predict the disease comorbidities and the level of
the comorbidities using the regressionmodel as Figure 10.
It is notable that ageing is also a “disease”, not a natural

process, for which age-related diseases increase expo-
nentially with chronological time. So, to understand the
impact of ageing on the disease comorbidities for SARS
and HIV infections we have considered the ageing data
from the GenAge database (http://genomics.senescence.
info/genes/human.html) [62,63]. After cross comparing

http://genomics.senescence.info/genes/human.html
http://genomics.senescence.info/genes/human.html
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Figure 5 Protein–protein interaction network of the eight diseases and infection (chronic heart failure, kidney disorders, breast cancer,
parkinson, osteoporosis, SARS infection, type 1 and type 2 diabetes) that are associated and showed comorbidities with the HIV infection
through the sharing protein subnetwork.

our 274 significant genes of SARS infection condition and
186 significant genes of HIV-1 infection condition with
the 76 ageing related genes, it is observed that 4 genes
(ANXA3, HIST1H1C, RASA3,GNS) are significantly over
expressed in the both SARS infection and human ageing
process as shown Figure 11, and 1 gene (HBA1) is sig-
nificantly over expressed and 2 genes (TFRC, GHITM)
are significantly under expressed in the both HIV infec-
tion and human ageing process as shown Figure 12. So

from this observation it is recognised that SARS and
HIV-1 infections are also linked with the ageing process of
human through the regulation of distinct genes and path-
ways. On the other hand, ageing is directly linked with
some other diseases and inflammation including cancers.
Thus SARS and HIV infections also make comorbidities
with other diseases through the genes related to ageing
process. So the infection of SARS and HIV play multi way
comorbidities with different diseases.
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Figure 6 Network of the comorbidities risk probability among 9 diseases and infections (SARS infection, Osteoporosis, Parkinson, Type 1
Diabetes, Type 2 Diabetes, Heart failure, Kidney disorders, Breast cancer and HIV-1 infection). Comorbidities probability distances among
infections and diseases are presented through the edges and variances are represented by the size of the nodes.

Human lung epithelial cells are likely among the
first targets to encounter invading severe acute respira-
tory syndrome-associated coronavirus (SARS-CoV) [32].
Thus, a comprehensive evaluation of the complex epithe-
lial signalling to SARS-CoV is crucial to better under-
stand SARS pathogenesis. Since both of the SARS-CoV
and MERS-CoV infections cause severe lung pathology
we compare and contrast the genes expression level of
SARS-CoV infection and MERS-CoV infection. To com-
pare between SARS-CoV and MERS-CoV infections, and
the affect on the disease comorbidities, we have per-
formed the time series microarray data analysis for the
both types of infections on lung compared to controls.
We have considered gene expressionmicroarray data from
the NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE45042) [64]. From the analysis of SARS-
CoV vs mock-infected controls (treated the same way
except without the virus) we have found 215 genes are
highly significant and from the analysis of MERS-CoV vs
Mock we have found 234 gens are highly significant (see
details in the Additional file 11: Table S11 and Additional
file 12: Table S12). Interestingly, only 4 genes (NFKBIA,
EGR1, DDIT31 and IFIT2) are common between these
two infections (see Figure 13). However, only 2 genes
(NFKBIA and EGR1) play an important role and differ-
entially expressed among the both infections in lung and
also in SARS infected PBMCs. Then from the hierarchical
cluster analysis of the differentially expressed genes of the

lung infection by SARS-CoV andMERS-CoV, we observed
distinct groups of genes that were significantly changed
over time (see Additional file 13: Figure S1 and Additional
file 14: Figure S2, and Additional file 11: Table S11 and
Additional file 12: Table S12).
The log fold changes of the common 4 genes (NFKBIA,

EGR1, DDIT31 and IFIT2) expression level for the infec-
tion of MERS-CoV and SARS-CoV are presented in the
Figures 14 and 15. We observed that the log fold changes
of NFKBIA genes expression level is sharply upregulated
in the both types of infections corresponding to time
point. So NFKBIA is an important bio-marker for the both
MERS-CoV and SARS-CoV infections. It is also observed
that the inflammatory genes NFKBIA is a highly over
expressed in the both PBMCs and lung cells for the infec-
tion of SARS and also for the infection of MERS in the
lung cells (see Figure 16). Indeed, the immune system
plays a pivotal role in the outbreak of the inflammatory
state. So in case of SARS infection, the NFKBIA gene plays
an important role for the disease comorbidities.
On the other hand, similar diseases share common

genes and could be treated by the same drugs [17], which
may allow us to make predictions for new uses of existing
drugs. For an instance, the anti-diabetic drug metformin
plays a major protective effect against cancer develop-
ment and increases significantly higher survival rate of
the cancer patients [65]. The finding is that the ear-
lier the metformin regimen was initiated, the greater the

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45042
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45042
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Figure 7 Phenotypic Disease Networks (PDNs). Nodes are diseases and links are correlations. Node colour identifies the diseases based on the
ICD9 category. Only statistically significant links with RRij >= 20 and φ >= 0.06 are shown.
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Figure 8 Phenotypic Disease Networks (PDNs) for SARS infection. Nodes are diseases and links are correlations. Node labels identify the ICD9
codes at the 3-digit category level in (a) and 5-digit category level in (b). Only statistically significant links with relative risk RRij are shown.

preventive benefit for the cancer patient. There is an evi-
dence that the antiviral medication, ribavirin, does not
work in case of SARS infection [66]. To this end, we used
Connectivity Map (Cmap), which is a database of more
than 1,400 drug transcriptional signatures in several cell
lines [67]. This database allows to identify of molecules
that induce similar or opposite transcriptional changes
relative to the query signature, based on their connec-
tivity enrichment scores. As a query signature we used
our 274 highly dysregulated genes for the SARS infec-
tion. We generated the connectivity score value ranges
between +1 and -1, where a highly positive score indicates
that the drug induces changes similar to those induced

by viral infection, while a highly negative score indicates
that the drug reverses the expression of the SARS signa-
ture. Based on the connectivity score we have selected
most potential positive and negative regulators of SARS
viral response (see details in the Additional file 15: Table
S13). Potential negative regulators indicate that drugs
reverse the SARS signature gene expression. Among the
negative potential regulator, the drug molecule tetra-
cycline, zalcitabine, gibberellic acid, prestwick-642 and
sulfaquinoxaline are more potential for the MCF7 cell
line and vorinostat for the HL60 cell line. Based on the
data demonstrate the efficacy of different drug against
SARS virus can be predicted effective drug treatment

Figure 9 Phenotypic Disease Networks (PDNs) for HIV-1 infection. Nodes are diseases and links are correlations. Node labels identify the ICD9
codes at the 3-digit category level in (a) and 5-digit category level in (b). Only statistically significant links with relative risk RRij are shown.



Moni and Liò BMCBioinformatics 2014, 15:333 Page 13 of 23
http://www.biomedcentral.com/1471-2105/15/333

Figure 10 Correlation between the number of shared genes and
phenotypic relative risk for the disease comorbidities.

for the emergent viruses. Furthermore, immunomodula-
tory drugs that reduce the excessive host inflammatory
response to respiratory viruses have therapeutic ben-
efit to reduce the SARS infection as well as disease
comorbidities.

Discussion
We presented and analysed multi-relational disease
comorbidity relationships of SARS and HIV-1 infections
with other diseases or infections based on the associations
of genetics, proteomics, molecular signalling pathways
and phenotypic disorders. The combination of molecular
biology, genetics and clinical medicine has greatly facil-
itated understanding of how different diseases relate to
each other. Based on the combined genetics, PPIs, path-
ways and clinical data, our disease networks can disclose
potentially novel disease relationships that have not been
captured by previous individual studies. The underlying

hypothesis behind this line of research is that once we
catalogue all disease-related genes, PPI complex and sig-
nalling pathways, if we do not consider environmental
changes, we will be able to predict the susceptibility of
each individual to future diseases using various molecular
biomarkers and it will help us to enter an era of predic-
tive medicine. Our results indicate that such a combina-
tion of molecular and population-level data could help to
build novel hypotheses about disease mechanisms. Fur-
thermore, if two or more diseases have associated comor-
bidity, the occurrence of one of them in a patient may
increase the likelihood of developing the other diseases.
We have also studied the differences between MERS-

CoV and SARS-CoV in the host response. This enables
rapid assessment of viral properties and the ability to
anticipate possible differences in human clinical responses
toMERS-CoV and SARS-CoV and their impact on comor-
bidities with respect to the general comorbidities con-
ditions. We used this information to predict potential
effective drugs against SARS-CoV, a method that could
be more generally used to identify candidate therapeutics
in future disease outbreaks. These investigation approach
may also help to generate hypotheses and make rapid
advancements in characterising the new viruses.
We also found that patients’ response of SARS appears

to be mainly an innate inflammatory response using NFK-
BIA, rather than any specific immune response against
a viral infection such as HIV. However, HIV infection
and highly active antiretroviral therapy (HAART) also
increase the immune reconstitution inflammatory syn-
drome (IRIS) and inflammation through the NF-κB path-
ways [68]. Moreover we have studied before about the
impact of HIV infection on bone diseases and infection
(e. g. osteoporosis and osteomyelitis). We observed that
genes (e.g. RANKL) and pathways (e.g. NF-κB) that are
dysregulated by HIV infection also impact on the bone
remodelling and bone related diseases. It is also recog-
nised that inflammation plays a role in cancer aetiology,
and various studies have found that inflammation may

Figure 11 Four genes (ANXA3, HIST1H1C, RASA3 and GNS) that are linked between SARS infection and ageing. For the causes of these
genes, ageing process of the SARS infected patients increase faster. Up arrows indicate the highly up dysregulated genes.
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Figure 12 Three genes (HBA1, TFRC and GHITM) that are linked between HIV-1 infection and ageing. For the causes of these genes, ageing
process of the HIV infected patients increase faster. Up and down arrows indicate the highly up and down dysregulated genes.

causes IRIS, obesity and tumour-promoting effects [69].
Moreover, inflammation is an important concomitant
cause of many major age-associated pathologies such as
cancer, neurodegeneration and diabetes [70]. Our study
provides important evidence to associate diseases with
the ageing process at the system level and helps to
understand more about the comorbidities of the com-
plex diseases. The ageing process itself is accompanied
by a chronic low-grade inflammation, which is termed
“inflammageing”. The combination of metabolic-driven
and age-driven inflammatory pathways plays a pivotal
role in disease progression. This observation suggests that
inflammageing and meta-inflammation can share stimuli
and pathogenic mechanisms for comorbidities.
We suppose that what is happening for the

comorbidities we investigate is similar to what found

Figure 13 Venn diagram of the highly over and under expressed
genes for the SARS-CoV infection in lung and PBMC cells and
MERS-CoV infection in the lung cells vs. corresponding to their
Mock.

for prions [71,72]. Similar to most infectious agents,
prion causes inflammatory responses by activating innate
immunity through glial cells in the brain.
The complete transcriptome of the prion brain at 10

different time points is observed during the 22-week
period [71,72]. At the beginning of the disease, both
normal and diseased mouse networks were the same.
Although the disease started in the most unique network
of prion accumulation and replication it is progressed to
the other networks. Based on this approach we may pro-
pose a pathway model for comorbidities how hubs genes
dysregulate several other pathways to influence comor-
bidities. The number of dysregulated pathways could be
proportional to the amount of dysregulation of hub genes.
Our pathway model may states that the hubs that are over
turned on, may direct the signal to the different path-
ways creating comorbidities as shown in Figure 17. For
the infection, one of the pathways related to the inflam-
mation starts dysregulation. With increasing time, both
confidence level of inflammation and the number of dys-
regulated pathways are increased. Moreover, with the
increasing of inflammation the number of diseases for the
comorbidities may increase. So initially infection dysreg-
ulates one signalling pathway of any cells and that causes
other pathways may be dysrupted. In this way disrupting
pathways increase more diseases in the same patient and
make multimorbidity.
Disease genes play a central role in the human inter-

actomes. Overlapping component genes serve as bridges
across the relatively independent functional modules or
pathways. So perturbation in one pathway, such as the
NF-κB signalling pathway, could be propagated through-
out the other relevant pathways. We found SARS and
HIV-1 infections share 11 significantly dysregulated genes
as well as molecular pathways. Both SARS and HIV-1
viruses may infect and find an already existing comor-
bidity or generate a new comorbidity through the per-
turbation of the infected pathways. Furthermore, it may
provide us an opportunity to investigate the role of other
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Figure 14 Log fold changes of the expression level (y axis) of the MERS-CoV infected genes (x axis) corresponding to Mock in different
time points.

genes from the same pathway in the disease space. There-
fore, pathways could be used to represent the underlying
biology of diseases and make prediction of disease comor-
bidities. In most of the cases, the correlativeness among
genes, pathways and diseases aremany-to-many, e.g. a dis-
ease is associated to many different genes and pathways;
and a pathway is associated to many different diseases.
This study suggests that a single pathway can be involved
in many diseases whereas a disease may have dysregu-
lation in many biological processes. Hence, if a drug is
already available to treat a disease through modulating
the activity of a pathway, then it could potentially be
used to treat other diseases that are strongly linked with
the same pathway. On the other hand, when a disease
shows dysregulation in multiple pathways, a pathway-
guided combined drugmay be employed in the treatment.

Figure 15 Log fold changes of the expression level (y axis) of the
SARS-Cov infected genes (x axis) corresponding to Mock in
different time points.

Moreover, the protein subnetwork–based approach to
diseases may aid in drug discovery, in fact it can poten-
tially be used to treat other diseases that are linked to
the same protein complex. Thus, our findings not only
potentially help us to understand how different diseases
are related based on their underlying molecular mecha-
nisms but also provide insights into the design of novel,
protein complex-guided therapeutic interventions for
diseases.

Personalisedmedicine: guidelines for predicting
comorbidities
Extending the concept of subclassifying patient cohorts to
the single patient level refers to as personalised medicine.
During the last few years, acceptance level of the person-
alised medicine is sharply increased as it has been appar-
ent that standard treatment approaches are rarely efficient
across the entire patient population. Advances in high-
throughput molecular assay technologies in the fields of
genomics, proteomics and other “omics” is increasing
the diagnostic and therapeutic strategies for personalised
treatment. As a result, declining per-sample cost has
given rise to numerous public repositories of biomolec-
ular data. In particular, the availability of these data sets
for many different diseases presents a ripe opportunity
to use data-driven approaches to advance our current
knowledge of disease relationships in a systematic way.
The identified disease patterns can then be further inves-
tigated with regards to their diagnostic utility or help in
predicting novel therapeutic targets. Medicine will focus
on each individual patient. It will become intrinsically
proactive and will increasingly focus on wellness rather
than disease. Proactive and personalised medicine will
bring fundamental changes to healthcare, taking carefully
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Figure 16 Log fold changes of the expression level (y axis) of the SARS infected NFKBIA and EGR1 genes (x axis) corresponding to Mock.

targeted preventative or therapeutic action at the earliest
indications of risk or disease comorbidities.
We are entering into the genomic era ofmedicine, where

a patient’s genetic/genomic data is becoming important
for clinical decision making, including disease risk assess-
ment, disease diagnosis and subtyping, drug therapy and
dose selection, risk assessment for adverse drug reac-
tion, and family planning [73]. Today multi-scale and
complex biomedical data are gathered and analysed to
uncover combinations of predictive disease profiles. Our
genome, as well as multiple proteomes, multiple tran-
scriptomes, multiple metabolomes, and other person-
alised data sets obtained at different points in our lives,
will be readily available at affordable prices for each indi-
vidual. In the near future, clinicians will have to consider
genetic/genomic implications to patient care throughout
their clinical workflow, including electronic prescribing
of medications. Therefore, for the implementation of the
personalised medicine system, a model could be devel-
oped that will take individual genetic data. Dysregulated
biomarker genes will be identified from this genetic data
and disease will be identified from the gene–disease
association database. Based on the information of the
existing disease, the model will predict disease comor-
bidities using the disease–disease associations database.
This will provide us to detect many diseases at the earli-
est detectable phase, even weeks, months, or maybe years
before the symptoms appear and it will afford crucial
insights into optimizing of our wellness. Thus, person-
alised medicine will give fundamental new insights into
disease mechanisms, and hence will open new opportuni-
ties for diagnosis, therapy and prevention from the disease
comorbidities.

Conclusion
In this study, we have considered all available categories
of omics and phenotypic data to quantify the SARS and
HIV-1 infections centred comorbidity associations. We
have shown that the phenotype disease network (PDN)
has a heterogeneous structure where some diseases are
highly connected while others are hardly connected at
all. Our findings showed that disease progression can be
represented and studied using network methods, offering
the potential to enhance our understanding of the origin
and evolution of human diseases. Detecting comorbid-
ity in a large population is of clinical interest due to the
fact that it may reveal new information useful for cause
of diseases as well as for new treatment strategies. This
study demonstrates the value of an integrated approach in
revealing disease relationships and new opportunities for
therapeutic applications. So we can say that this kind of
approach will be helpful for making evidence-based rec-
ommendations about disease comorbidities. Moreover,
considering environmental factors (such as physiologi-
cal stress, diet), ethnic group and gender discriminations
are important factors in the comorbidity analysis. Our
network approach could be extended as a comorbidity
map by integrating diet, exercise and other factors as
in [74].

Methods
Data
The gene-disease associations data used in this study
were collected from the Online Mendelian Inheritance
in Man (OMIM) database (http://www.ncbi.nlm.nih.gov/
omim/). This OMIM database is the best-curated repos-
itory of all known disease genes and their associated

http://www.ncbi.nlm.nih.gov/omim/
http://www.ncbi.nlm.nih.gov/omim/
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Figure 17 Progressive temporal activation of pathways. A schematic view of networks becoming disease comorbidities increased for the
perturbation of the pathways dysregulation advances with time. The red circles indicate increased levels of dysregulated gene expression relative to
control and the red linked indicate dysregulated pathways that have been increased from infection as compared with normal control. The green
indicated transcripts that are the same in control and infection condition. The four panels represent the network with time intervals of the infection
progression. With time the inflammation confidence level is increased which is indicated by confidence interval.

disorders [75,76]. Genotype-phenotype relationships, as
summarised in the OMIM database, contained more than
5000 human disease-genes associations involving 1500
diseases and 3000 disease associated genes. Each entry of
the OMIM is composed of four fields, the name of the
disorder, the associated gene symbols, its corresponding
OMIM id, and the chromosomal location.We selected the
entries with the “(3)” tag, for which there is strong evi-
dence that at least one mutation is cause of the disorder.
OMIM initially focused on monogenic disorders but in
recent years has expanded to include complex traits and
the associated genetic mutations that confer susceptibility
to these common disorders [58]. Subsequently we classi-
fied each disorder into 21 primary disorder classes based
on the physiological system affected as introduced in Goh,
Cusick, Valle, Childs, Vidal and Barabasi et al. [14]. Disor-
ders having distinct multiple clinical features are assigned

to the “multiple” class. This classification scheme reflects
the phenotypic similarities among diseases in the same
class and has been successfully used in the recent studies
of systematic disease analysis [77].
The gene expression data used in this study was

obtained from the NCBI Gene Expression Omnibus
(GEO) (http://www.ncbi.nlm.nih.gov/geo/) [59]. We have
considered 10 different data sets for our analysis
(accession numbers are GSE1739, GSE45042, GSE17400,
GSE9006, GSE9128, GSE15072, GSE7158, GSE8977,
GSE18464 and GSE7621) [32,55,57,64,78-82]. These data
sets contain data from the patients of different age and sex.
After several rounds of filtering, normalization and sta-
tistical analysis, we had microarrays representing SARS,
MERS, HIV-1 infections and 7 other human diseases
(heart failure, kidney disorders, breast cancer, parkinson,
osteoporosis, type 1 and type 2 diabetes).

http://www.ncbi.nlm.nih.gov/geo/
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The protein-protein interaction (PPI) data for human
was obtained from the Human Protein Reference
Database (HPRD) [61]. HPRD contains the maxi-
mum number of PPI data among all publicly avail-
able literature-derived databases for human PPI [83].
We have used the reactome knowledge base of human
biological pathways database for our pathways asso-
ciation analysis [60]. For the cross compare analysis
between the SARS and HIV infections, and ageing process
we have download ageing data from the human age-
ing genomic resources (http://genomics.senescence.info/
download.html) [62,63]. They have collected human age-
ing genes after an extensive review of the literature. These
genes are commonly dysregulated during the ageing
process.
To test the validity of the proposed disease associations,

we examined the disease co-occurrence information at the
population level. We obtained statistically significant pair-
wise comorbidity associations reconstructed from over
32 million medical records in the US Medicare claims
database recorded in the ICD-9-CM format (http://www.
icd9data.com), which are frequently used for epidemio-
logical and demographic studies and collected from [2].
We used MedPAR records from 1990 to 1993, where the
dates and reasons for all hospitalizations were reported
in ICD-9-CM format and it contains the diagnoses of
13039018 elderly patients. Each record consists of the
date of visit, a primary diagnosis and up to 9 secondary
diagnosis. All diagnoses are specified by ICD9 codes of
up to 5 digits. The first three digits specify the main
disease category while the last two are used to give addi-
tional information about the disease. In total, the ICD-
9-CM classification consists of 657 different categories
at the 3 digit level and 16,459 categories at the 5 digit
level [2].
To determine whether some existing drug compounds

can reverse the SARS infection signature, we used the
publicly available ConnectivityMap (Cmap) database [67].
Cmap provides associations among genes, chemicals and
disease or infection conditions. It is a collection of
genome-wide transcriptional data from cultured human
cells treated with 1,400 different compounds.

Methods
The method of global gene expression analysis using
oligonucleotide microarrays has proven to be a sensitive
method to develop and refine the molecular determi-
nants of human disorders [55]. Using this technology,
we compared the gene expression profiles of SARS, HIV
and other diseases. To avoid the problems of comparing
microarray data of different platforms and experimen-
tal systems, we normalized the gene expression data in
each microarray sample (disease state or control) using
the Z-score transformation (Zij) for each disease gene

expression matrix using Zij = gij−mean(gi)
SD(gi) , where SD is

the standard deviation, gij represents the expression value
of gene i in sample j. This transformation allows for the
direct comparison of gene expression values across vari-
ous microarray samples and diseases. To combined more
than one data series or experiments for a given disease, we
employed a linear regression approach to obtain a com-
bined t-test statistic between two conditions. Data were
log2-transformed and we calculated expression level for
each gene using a linear regressionmodel : Yi = β0+β1Xi,
where Yi is the gene expression value and Xi is a disease
state (disease or control). The coefficients β0 and β1 are
the parameters of this model and were estimated by least
squares. The t-test statistic, when estimating the value of
β1, is the same as the standard t-test statistic between
disease and control states.
Time series microarray gene expression data analysis

was divide into two steps: pre-processing and identifica-
tion of statistically significant points by t-test, ANOVA
and regression analysis to find differently expressed gene
profiles in different time points. In the first step, we pre-
processed the experimental data using different statistical
methods and finally followed by post less normaliza-
tion, recommended by the Golden Spike Project [84]. In
the second step, we have used a most suitable method
“maSigPro” (microarray Significant Profiles) to identify
differentially expressed genes in time-course microarray
experiments, which is a two step regression method suc-
cessfully applied on more than one groups of time-series
[85,86]. This two steps regression strategy is used to find
genes with significant temporal expression changes and
significant differences between experimental groups. This
procedure first adjusts this global model by the least-
squared technique to identify differentially expressed
genes and selects significant genes applying false discov-
ery rate control procedures. Then stepwise regression is
applied as a variable selection strategy to study differences
between experimental groups and statistically significant
profiles. After finding differentially gene expression pro-
files among the group of experiments, the next step is
to cluster them according to their profile similarities.
The hierarchical clustering and the median gene expres-
sion profiles of clusters are performed according to the
“maSigPro” package in R [85].
Student’s unpaired T-test was performed to identify

genes that were differentially expressed in patients over
normal samples and significant genes were selected. A
threshold of at least 1.5 fold change and a p value
for the t-tests of less than 0.01 were chosen. In addi-
tion, a two-way ANOVA with Bonferroni’s post-hoc test
was used to establish statistical significance between
groups (< 0.01). Pathways and functional categories were
considered as over-represented when Fisher’s exact test
p value was < 0.01. For presenting the signalling and

http://genomics.senescence.info/download.html
http://genomics.senescence.info/download.html
http://www.icd9data.com
http://www.icd9data.com
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interaction pathways of the different significant genes, we
used cytoscape for data integration and network visual-
ization [87,88] and reactome functional interaction (FI)
cytoscape plugin for knowledge base of human biological
pathways and network processes [60].
For the gene disease association, we have considered the

neighbourhood based benchmark and topological meth-
ods, which are better suited to our networks [89]. In this
case, topological refers to methods that rely only on the
structure of the network to draw conclusions. We con-
struct a GDN from gene–disease associations where the
node in the network can be either a disease or a gene.
This network can also be regarded as a bipartite graph.
Diseases are connected when the diseases share at least
one significant dysregulated genes. Let a particular set of
human diseases D and a set of human genes G, gene-
disease associations attempt to find whether gene g ∈ G is
associated with disease d ∈ D. If Gi and Gj, the sets of sig-
nificant up and down dysregulated genes associated with
diseases i and j respectively, then the number of shared
dysregulated genes (ngij) associated with both diseases i
and j is as follows:

ngij = N
(
Gi ∩ Gj

)
(1)

The co-occurrence refers to the number of shared genes
in the GDN. The common neighbours is the based on
the JaccardCoefficient method, where the edge prediction
score for the node pair is as:

E(i, j) = N
(
Gi ∩ Gj

)

N
(
Gi ∪ Gj

) (2)

where E is the set of all edges. The number of shared
pathways and protein subnetwork that links between dis-
eases i and j are calculated using the equation 1 and
the link prediction score is measured using the equation
2.
To estimate the correlation starting from disease co-

occurrence, we need to quantify the strength of dis-
ease association for comorbidities by dipicting a distance
between two diseases. For the analysis of the phenotypic
data, we used the Relative Risk (RRij) as the quantified
measures of comorbidity tendency of two disease pairs
and checked φ-correlation (φij) to measure the robustness
of the comorbidity associations. The RRij is observing in
a pair of diseases i and j affecting the same patient. When
two diseases co-occur more frequently than expected by
chance, we will get RRij > 1 and φij > 0. However, RRij
and φij are not independent of each other and each carries
unique biases that are complementary [1,2]. So, we used
both measures of comorbidity to ensure the robustness
of our investigations. The RRij allows us to quantify the

co-occurrence of disease pairs compared with the random
expectation which is calculated as:

RRij = Cij/N(
PiPj − Cij

)
/N2 = CijN

PiPj − Cij
(3)

where N is the total number of patients in the popula-
tion, Pi is the incidences/prevalences of disease i, Pj is the
incidence of disease j and Cij is the number of patients
that have been diagnosed with both diseases i and j. For
RRij >= 1 comorbidity is larger than expected by chance
and for RRij < 1 comorbidity is smaller than expected
by chance. To calculate the significance of the relative
risk RRij, we used the Katz, Baptista, Azen and Pike et
al. method to estimate confidence intervals [90]. Accord-
ing to their estimation, the 99% confidence interval for
the RRij between two diseases i and j is calculated by:
Lower bounds of the confidence interval (LB) = RRij ∗
exp(−2.56∗σij) and Upper bounds of the confidence inter-
val (UB) = RRij ∗ exp(2.56 ∗ σij), where σij is given by:
σij = 1

Cij
+ 1

PiPj − 1
N − 1

N2 . Disease pairs within the 99%
confidence interval are only considered if the LB value is
larger than 1 when RRij is larger than 1, or if the UB value
is smaller than 1 when RRij is smaller than 1.
Relative risk measure is intrinsically biased towards

overestimation of relationships between rare diseases and
underestimates the co-morbidity of more frequent dis-
eases [2]. This bias can be reduced by introduction of
a φ-correlation measure. We can quantify the strength
of comorbidities by calculating the correlation coefficient
associated with a pair of diseases i and j as:

φij = CijN − PiPj√(
PiPj − Cij

)
(N − Pi)

(
N − Pj

) (4)

where Cij is the number of patients affected by both dis-
eases, N is the total number of patients in the studied
population, and Pi and Pj are the morbidity or incidence
of the ith and jth diseases respectively. The φ-correlation is
the Pearson’s correlation for the variables which only take
0 or 1 values [91]. For φij > 0 comorbidity is larger than
expected by chance and for φij < 0 comorbidity is smaller
than expected by chance. We can determine the signifi-
cance of φ �= 0 by performing a t-test. This consists of
calculating t according to the formula: t = φ

√
n−2√
1−φ2

, where
n is the number of observations used to calculate φ.
To predict the comorbidities considering the primary or

index disease we have calculated the conditional relative
risk (conditional RRij) as follows:

RRk
ij = P

(
i, j|I = k

)

P (i|I = k)P
(
j|I = k

) (5)

for all possible disease pairs i and j, for the cases that one
index disease (I) is present (k = true) or absent (k = false).
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Then for each pair of diseases, we say that i and j are
mediated by that index disease if the RRtrue

ij is significantly

different (higher or lower) from RRfalse
ij (p = 0.01).

We have weighted the edges using a mutual informa-
tion metric which quantifies how much greater the edge
relationship is with respect to co-occurrence. The mutual
information weight between two diseases i and j is defined
as

Wij = Cij
Pi + Pj − Cij

(6)

where Cij is the observed co-occurrence and Pi and Pj
are the morbidity or prevalence of the ith and jth diseases
respectively.
To compare between SARS-CoV andMERS-CoV, a gene

set enrichment analysis was undertaken using GSEA [92].
To find out the correlation (similarities) and distance
(dissimilarities) among the diseases from the integrated
analysis of multidimensional data (gene expression and
protein protein interaction), we have applied Euclid-
ian distance measurement and metric multi-dimensional
scaling (MDS) using majorization [93]. MDS is a set of
methods for discovering hidden structures inmultidimen-
sional data. Based on a proximity matrix derived from
variables measured on objects as input entity, these dis-
tances are mapped on a lower dimensional spatial repre-
sentation. Optimization problem is used to find mapping
in target dimension of the data based on given pairwise
proximity information while minimize the objective func-
tion. The particular objective function (or loss function)
we used in this work is a sum of squares, commonly called
stress. We used majorization to minimize stress and this
MDS solving strategy is known as SMACOF (Scaling by
MAjorizing a COmplicated Function). Stressmajorization
is an optimization strategy used in multidimensional scal-
ing (MDS) where, for a set of nm-dimensional data items,
a configuration X of n points in r(<< m)-dimensional
space is sought that minimizes the stress function σ(X).
Here r is 2 that means the (r × n) matrix X lists points in
2-dimensional Euclidean space. We have applied the cost
function σ to measures the squared differences between
ideal (m-dimensional) distances and actual distances in
r-dimensional space as follows:

σ(X1,X2) =
n1∑
i=1

n2∑
j=1

wij
(
δij − dij (X1,X2)

)2 (7)

X1 of dimension n1 × p as the individual’s or judge’s
configuration, and X2 of dimension n2 × p as the object’s
configuration matrix. The least squares metric multidi-
mensional scaling or MDS problem is the minimization
of σ and over all m × p configurations X. Here wij are
given non-negative weights and dij are given non-negative

dissimilarities. The dij(X) are the Euclidean distances
between rows i and j of X. Thus

dij(X1,X2) =
√√√√

p∑
s=1

(
x1is − x2js

)2 (8)

where wij ≥ 0 is a weight for the measurement between
a pair of points (i, j), dij(X) is the Euclidean distance
between i and j, and δij is the ideal distance between the
points (their separation) in them-dimensional data space.
Note that wij is used to specify a degree of confidence in
the similarity between points (e.g. 0 can be specified if
there is no information for a particular pair). A configura-
tion X which minimizes σ(X) gives a plot in which points
that are close together correspond to points that are also
close together in the original m-dimensional data space.
Programming scripts are freely available at www.cl.cam.
ac.uk/~mam211/comoR/.
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Additional file 1: Table S1. Highly statistical significantly differential
expressed genes between SARS and control group in PBMCs.

Additional file 2: Table S2. Highly statistical significantly differential
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Additional file 3: Table S3. The gene-disease association related to the
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Additional file 12: Table S12. Highly statistical significant differentially
expressed genes between MERS-CoV and reference group (Mock) in lung
epithelial cells.

Additional file 13: Figure S1.Median expression profile of SARS-CoV vs
Mock using hierarchical clustering (Ward method, Pearson correlation) of
215 statistical significantly differential expressed genes (p < 0.001). The
information regarding each of the clusters and genes is described in
Additional file 11: Table S11.
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information regarding each of the clusters and genes is described in
Additional file 12: Table S12.

Additional file 15: Table S13. Connectivity Map results of predicted
drugs per instance (for each drug and cells line) to reverse SARS-CoV for
early and sustained signature (drugs with negative enrichment scores).
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