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Abstract

Background: Proteins dynamically interact with each other to perform their biological functions. The dynamic
operations of protein interaction networks (PPI) are also reflected in the dynamic formations of protein complexes.
Existing protein complex detection algorithms usually overlook the inherent temporal nature of protein interactions
within PPI networks. Systematically analyzing the temporal protein complexes can not only improve the accuracy of
protein complex detection, but also strengthen our biological knowledge on the dynamic protein assembly processes
for cellular organization.

Results: In this study, we propose a novel computational method to predict temporal protein complexes.
Particularly, we first construct a series of dynamic PPI networks by joint analysis of time-course gene expression data
and protein interaction data. Then a Time Smooth Overlapping Complex Detection model (TS-OCD) has been
proposed to detect temporal protein complexes from these dynamic PPI networks. TS-OCD can naturally capture the
smoothness of networks between consecutive time points and detect overlapping protein complexes at each time
point. Finally, a nonnegative matrix factorization based algorithm is introduced to merge those very similar temporal
complexes across different time points.

Conclusions: Extensive experimental results demonstrate the proposed method is very effective in detecting
temporal protein complexes than the state-of-the-art complex detection techniques.

Keywords: Dynamic protein-protein interaction, Gene expression, Stable interaction, Transient interaction, Protein
complex

Background
With the technological advances in high-throughput
screening techniques, large-scale protein-protein interac-
tion (PPI) data have been generated and catalogued for
many species [1-3]. Proteins seldom act alone, and they
often bind together to form complexes to carry out their
biological functions [4-6]. Comprehensive investigation
of protein complexes could help to reveal the structure
of PPI networks, predict protein functions and eluci-
date cellular mechanisms underlying various diseases [7].
Computational detection of complexes has thus attracted
tremendous attentions during the past decade [6,8-14].
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According to their life time, PPIs could be classified
into stable or transient PPIs [15,16]. Stable PPIs which
are important in maintaining the cell fitness and stabil-
ity are usually permanent and irreversible. Meanwhile,
transient PPIs can associate and dissociate temporar-
ily, and thus they provide a mechanism for the cell
to quickly respond to extracellular stimuli. As physi-
cal interactions determined by popular high-throughput
technologies, e.g. yeast two-hybrid (Y2H) and Tandem
Affinity Purification with mass spectrometry (TAP-MS)
lack of temporal information, majority of existing com-
plex detection methods treat the PPI network as a static
network that can not be used to detect temporal pro-
tein complexes. In reality, however, cellular systems are
highly dynamic and responsive to environmental cues
[17]. The real PPI network in cell keeps changing over
different stages of the cell cycle [18], leading to mul-
tiple dynamic protein interaction networks. As such, it
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is desirable to design novel computational methods that
can take the inherent dynamic characteristics of PPI net-
works into consideration to better detect temporal protein
complexes.
Nevertheless, the advent of DNA microarray technolo-

gies has enabled the differential expressions of thou-
sands of genes under various experimental conditions to
be monitored simultaneously and quantitatively [19,20],
which provides the useful temporal information to com-
plement the static protein interaction data in the gene
level. There have been some attempts to investigate the
temporal properties for individual proteins and protein
interactions by integrating PPI data with time-course
gene expression data [21-29]. For example, in [22], the
authors proposed a three-sigma principle to identify
active time points for individual proteins. They fur-
ther investigated the temporal protein associations and
protein state transition on the identified active time
points.
Temporal protein complexes are typically constructed

by the dynamic assembly or disassembly of proteins to
perform various biological functions. Tracking the tempo-
ral protein complexes could reveal important insights into
dynamic modular mechanisms and improve our under-
standing on the disease pathways etc [23,30]. To detect
temporal protein complexes, we need to leverage the tem-
poral information from gene expression data to construct
time-evolving dynamic protein interaction networks. In
[31], the authors incorporated the “time” factor for pro-
teins in the form of cell-cycle phases into the analysis of
complexes and studied the temporal phenomena of com-
plex assembly and disassembly across various cell cycles.
Wang et al. identified temporal protein complexes from
the dynamic PPI networks by applying static complex
detection methods (e.g., MCL) for each time point [22]. In
[28], the authors proposed DHAC (Dynamical Hierarchi-
cal Agglomerative Clustering) complex miningmethod, to
detect temporal complexes from individual dynamic PPI
networks.
We observe that the above few methods for predict-

ing temporal protein complexes suffer from the following
two major limitations. Firstly, their methods just focus
on the individual dynamic PPI networks and fully ignore
the correlations between the networks at consecutive
time points. Note that while there are different temporal
complexes occur at different time points, many protein
complexes will still form stable macromolecular com-
plexes to perform their important biological functions
[21]. As many stable interactions that perform funda-
mental roles for the cell are conserved across different
time points, the corresponding complexes will also occur
in multiple consecutive dynamics PPI networks and they
should thus change smoothly across time [24,26], tomain-
tain the cell fitness and stability as well as to avoid the

adverse disruption of the basic operations of the cell.
These existing methods, however, have overlooked the
smoothness of the temporal complexes at different time
points and simply apply static complex detection meth-
ods for each individual dynamic PPI network. Secondly,
as multi-functional proteins are often involved in different
complexes, it is highly desirable to discover overlapping
complexes to better decipher the inherent overlapping
modular structures of PPI networks. However, existing
methods, namely DHAC and MCL, do not generate the
overlapping protein complexes and they are thus less
accurate.
To address the above two issues, in this paper we

propose a novel technique to detect temporal protein
complexes from the dynamic PPI networks. We first con-
struct a series of dynamic PPI networks by detecting
stable interactions and transient interactions by integrat-
ing protein interaction data and gene expression data.
Particularly, the stable interactions are reserved across
different time points to serve as the backbone of the
protein interaction networks, while the existence of a tran-
sient interaction at a certain time point depends on the
specific activities and functions required from the two
associated proteins. Then, based on the concept of over-
lapping temporal communities [32], we propose a novel
Time Smooth Overlapping Complex Detection model
(TS-OCD) to detect overlapping temporal protein com-
plexes from the constructed dynamic PPI networks, which
allows individual complex to grow and shrink across dif-
ferent time points. Finally, a Nonnegative Matrix Factor-
ization (NMF) based method is introduced to effectively
merge those very similar temporal complexes across time
and track their evolutionary process. We have performed
extensive experiments to evaluate the performance of
our TS-OCD model. Experimental results show that TS-
OCD is able to achieve significantly better results than
the state-of-the-art algorithms for detecting protein com-
plexes. Moreover, our algorithm is accessible as a tool,
which could be downloaded from http://mail.sysu.edu.cn/
home/stsddq@mail.sysu.edu.cn/dai/others/TSOCD.zip.

Methods
In this section, we first present how to construct dynamic
PPI networks, and subsequently introduce how to detect
overlapping temporal protein complexes from the con-
structed dynamic PPI networks.

Constructing dynamic PPI networks
The dynamic protein-protein interaction networks (DPPI
networks) are constructed by integrating time-course
gene expression data with static PPI networks. A static
PPI network is often modelled as an undirected graph
G = (V , E), where V consists of |V | = N proteins and E
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consists of |E| edges (protein interactions under different
conditions between two proteins in V ). The time-course
gene expression data of these N proteins across T time
points are represented by a N × T matrix GE, which rep-
resents the expression level of N genes across T time
points.
Now, we infer a DPPI network for each time point from

GE and G. Existing methods construct DPPI networks
solely by determining the peak time points of expression
for each protein [22] and the connections among the net-
works at different time points are ignored. To address this
problem, we first extract stable protein interactions from
G, which are supposed to appear at all time points, as
they are encoded by globally co-expressed gene pairs [27].
Particularly, for each protein interaction in G, we calcu-
late their Pearson Correlation Coefficient (PCC) based on
their gene expression profiles across all time points in GE.
Then the protein interactions with PCC values greater
than a certain cutoff δ are defined as stable interactions
due to their corresponding globally co-expressed genes
(we will discuss how to determine the value of δ in next
section). These stable interactions represent the static part
of the DPPI networks and are likely to be reserved across
all time points. Note a N ×N symmetric matrix S is intro-
duced to indicate the stable interactions in the given PPI
network G = (V , E), where Sij = 1 if protein i and j has
a stable interaction, i.e. eij ∈ E and PCC(eij) > δ; Sij = 0
otherwise.
The dynamic parts of the DPPI network for each time

point t(1 ≤ t ≤ T) are inferred from GE and G, as a tran-
sient interaction only presents at certain time points when
both of the associated proteins are in their active forms.
Particularly, at time point t, a protein i is considered to be
in its active form if its expression value is above or equal
to its active threshold which could be denoted as AT(i), as
discussed in [22]. The active threshold for each protein is
determined as follows:

AT(i) = u(i) + 3σ(i)(1 − F(i)). (1)

where u(i) = 1
T

∑T
t=1 GEit and σ(i) are the algorithm

mean and standard deviation of the expression values over
times 1 to T for protein i respectively, and F(i) = 1/(1 +
σ 2(i)) is a weight function which reflects the fluctuation of
the expression values of protein i. For more details, please
refer to [22]. For each edge in the static PPI network (i.e.,
eij ∈ E), it is presented at time point t if proteins i and j
are in their active states (i.e., GEit ≥ AT(i) and GEjt ≥
AT( j)). The dynamic PPI networks can be represented by
a set of graphs, G(t) = (

V , E(t)), t = 1, . . . ,T , where V
denotes the original set of proteins and E(t) represents the
set of edges presented at time point t. Particularly, edge
e(t)ij ∈ E(t) if Sij = 1 (i.e. stable interaction) or eij ∈ E,

GEit ≥ AT(i) and GEjt ≥ AT( j) (i.e. transient interac-
tion). For each dynamic PPI network G(t), A(t) =

[
A(t)
ij

]
∈

{0, 1}N×N is introduced to represent its adjacency matrix,
where A(t)

ij = 1 if e(t)ij ∈ E(t) and A(t)
ij = 0 otherwise.

Detecting overlapping temporal protein complexes
Our objective is to infer D(t)(1 ≤ t ≤ T), a sequence of
time-evolving protein complexes, from the dynamic net-
works G(t)(1 ≤ t ≤ T). Let D(t) =

{
D(t)
k , k = 1, . . . , rt

}
contains rt predicted complexes at time point t. We
define a N × rt protein-complex assignment matrix H(t)

to indicate the membership of proteins in complexes,
where H(t)

ik = 1 if protein i belongs to a complex
D(t)
k

(
i.e. i ∈ D(t)

k

)
, and H(t)

ik = 0 otherwise. Here we
allow overlapping proteins occur in multiple protein com-
plexes simultaneously, i.e. H(t)

ik = 1, H(t)
iz = 1, and

k �= z. Obviously, if we can compute H(t), we can easily
infer D(t).
We further introduce anotherN ×N matrixU(t), where

each element U(t)
ij is the number of predicted complexes

in D(t) which contain both proteins i and j, i.e., U(t)
ij =∣∣∣{D(t)

k ∈ D(t) : i ∈ D(t)
k , j ∈ D(t)

k , 1 ≤ k ≤ rt
}∣∣∣. Clearly, U(t)

represents the co-complex membership among proteins
at the time point t, which allows a protein to belong to
more than one complex. Meanwhile, we have U(t)

ij =
rt∑

k=1
H(t)
ik H(t)

jk .

Model formulation
In order to predict D(t), we first infer U(t) from the
dynamic networks G(t), 1 ≤ t ≤ T . Particularly, We study
the following three factors that are relevant for estimating
U(t).
Firstly, based on the assumption that proteins belong to

same complexes tend to interact with each other, H(t)
ik H(t)

jk
represents the expected number of interactions in com-
plex k that lie between proteins i and j at time point t.
Considering all complexes at time point t, U(t)

ij represents
the expected total number of interactions between pro-
tein i and j in terms of all the rt complexes. Similarly to
[13,33], we assume the observed interaction between pro-
tein i and j at time point t is independently generated by a
Poisson distribution with meanU(t)

ij . Given the generative
model, we can estimate U(t) from A(t) by maximizing the
following likelihood function:

P
(
A(t)|U(t)

)
=

∏
i,j

(
U(t)
ij

)A(t)
ij

A(t)
ij !

exp
(
−U(t)

ij

)
. (2)
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Taking the negative logarithm and dropping constants,
maximizing the above likelihood function is equal to min-
imizing the following loss function:

L
(
U(t)

)
= −

∑
i,j

A(t)
ij log

(
U(t)
ij

)
+ U(t)

ij . (3)

Secondly, stable interactions are preserved across all
the dynamic PPI networks, whereas the transient inter-
actions only present at some special time points and
absent at the other time points. Therefore, we introduce
a smoothness regularization term R to enforce the sta-
ble interactions (with Sij = 1) and their corresponding
complex membership U(t)

ij in U(t) to change smoothly
over time, rather than change dramatically between two
consecutive time points. Here, the smooth regularization

term Rt = ∑
i,j
Sij

(
U(t+1)
ij − U(t)

ij

)2
shows the temporal

smoothness between U(t)
ij and U(t+1)

ij . Correspondingly,
R = ∑T−1

t=1 Rt measures the overall smoothness across all
time points.
Finally, asU(t)

ij = ∑rt
k=1 H

(t)
ik H(t)

jk , the rank of matrixU(t)

cannot be larger than the number of complexes rt . As we
have no prior knowledge on rt , a low rank restriction for
each U(t) is thus needed during estimating U(t). In this
paper, we use the trace norm constraint ‖U(t)‖∗ as a relax-
ation of the low rank constraint [32], which prevents our
model from producing too many complexes and controls
the overlaps among complexes. In particular, ‖U(t)‖∗ is
the sum of singular values of U(t). According to the defi-
nition, it is easy to obtain ‖U(t)‖∗ = ‖H(t)‖2F , where ‖ · ‖F
denotes Frobenius norm.

Temporal protein complex detection
Taking into account all the above three factors and drop-
ping those constants, our objective function, aiming to
minimize the loss function, the regularization term for
smoothness, as well as the low rank constraint, is defined
as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{U(t)}

−
T∑
t=1

∑
i,j

(
A(t)
ij log

(
U(t)
ij

)
− U(t)

ij

)

+λ
T−1∑
t=1

∑
i,j
Sij

(
U(t+1)
ij − U(t)

ij

)2

+β
T∑
t=1

‖U(t)‖∗.

s.t. U(t)
ij ∈ N , t = 1, . . . ,T .

(4)

where λ ≥ 0 and β ≥ 0 are the tradeoff parameters that
control the balance among the three factors. The opti-
mization problem (4) is combinatorial as U(t) specifies all
the possible co-complex memberships among proteins at

the time point t. As such, exhaustive search is impractical
since there are exponentially many possible combinations.
To address this problem, we relax the constrains of U(t)

and H(t) from integers (N ) to real numbers with U(t) ≥ 0
and H(t) ≥ 0.
Ideally, we could first compute the optimal solution Û(t)

and then extract a set of predicted complexes from it eas-
ily. However, because of the real number relaxation, while
Û(t) could approximate the underlying complex structure
of A(t), it may not have a clear block structures that can
clearly indicate protein complexes where protein pairs
inside the complexes all have high Û(t) values. Therefore,
we still need to extract clusters from Û(t) via cluster-
ing methods such as spectral clustering. In this paper,
instead of taking two steps to infer H(t), we present a
novel Time SmoothOverlapping Complex Detection (TS-
OCD) model with the following objective function by
substituting U(t)

ij = ∑rt
k=1H

(t)
ik H(t)

jk into (4):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{H(t)} −
T∑
t=1

∑
i,j

(
A(t)
ij log

(
rt∑

k=1
H(t)
ik H(t)

jk

)
−

rt∑
k=1

H(t)
ik H(t)

jk

)

+λ
T−1∑
t=1

∑
i,j
Sij

(
rt+1∑
k=1

H(t+1)
ik H(t+1)

jk −
rt∑

k=1
H(t)
ik H(t)

jk

)2

+β
T∑
t=1

‖H(t)‖2F .
s.t. H(t) ≥ 0, t = 1, . . . ,T .

(5)

Therefore, we could directly extract clusters from the
optimal solution Ĥ(t). To solve the above objective func-
tion (5), we adopt the multiplicative update rules [34]
which are special cases of gradient descend method with
an automatic step parameter selection and could natu-
rally keep the nonnegativity of H(t). Please refer to the
Additional file 1 for more details. Note each element Ĥ(t)

ik
of Ĥ(t) is a continuous value, describing the propensity
of protein i belonging to a predicted complex k. We dis-
cretize Ĥ(t) into the final protein-complex assignment
matrix H(t)� with the rules in Equation (6). Particularly,
we assign protein i to the predicted complex k if the value
of Ĥ(t)

ik exceed a threshold τ .

H(t)�
ik =

{
1, if Ĥ(t)

ik ≥ τ ,

0, if Ĥ(t)
ik < τ .

(6)

Here, H(t)�
ik = 1 represents protein i is in predicted

complex k at time point t while H(t)�
ik = 0 denotes pro-

tein i is not in predicted complex k. In this study, the
value of τ is set to 0.3, the same as in [14] (In next
section, we will discuss how changing this parameter
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can affect the final results). In addition, we only con-
sider predicted complexes with at least three proteins [12].
The detailed TS-OCD algorithm of identifying tempo-
ral protein complexes is illustrated in Additional file 1:
Figure S4.

Merging temporal protein complexes
Since the dynamic PPI networks,G(t)(1 ≤ t ≤ T), contain
a considerable fraction of stable interactions, some com-
plexes detected across different time points will be quite
similar. Thus we needed to merge those similar complexes
to generate a final set of predicted complexes. Note we will
only match and merge those very similar complexes but
still maintain those time-specific complexes that occur
only at certain dynamic PPI networks.
In this paper, we use aNonnegative Matrix Factorization

(NMF) model to merge similar temporal protein com-
plexes, which provides a low rank approximation of a non-
negative matrix and has been widely used as a clustering
method [35,36]. After we compute a series of protein-
complex assignment matrices H =

{
H(1)�, . . . ,H(T)�

}
,

a combined protein-complex assignment matrix Y is
defined as Y =

[
H(1)�, . . . ,H(T)�

]
. According to this def-

inition, matrix Y = [Yil] ∈ {0, 1}N×L contains N rows and
L = r1 + . . . + rT columns, each of which represents a
complex detected at the corresponding time point, where
Yil = 1 if protein i belongs to complex l and Yil = 0
otherwise. Our objective is to detect similar complexes
from Y .
Assume there are K final complexes inherent in Y , we

formulate the nonnegative matrix factorization of Y as:

min
W ,B≥0

‖Y − WB‖2F (7)

where W ∈ RN×K+ , B ∈ RK×L+ and R+ denotes the
set of nonnegative real numbers. The model is solved
by DTU:Toolbox [37] via multiplicative update method
[34]. After calculating the solutions Ŵ and B̂, we
need to infer the group relationship of each complex
l from B̂. Here, complex l is assigned to a group z if
z = argmax

z
B̂zl . Finally, we merge complexes within same

groups and obtain the final set of predicted complexes.
The flow-chart of our proposed algorithm, including 2
key steps, namely, constructing dynamic PPI networks,
and detecting temporal protein complexes, is shown in
Figure 1.

Results and discussion
In this section, we will first introduce the data, evalua-
tionmetrics and parameter settings. Then, we will present
detailed experimental results.

Data, evaluationmetrics and parameter settings
Protein interaction networks and time course gene
expression data
Two yeast PPI networks have been employed for eval-
uating the performance of various complex detection
methods, including 1) DIP PPI network [38], and 2)
BioGrid PPI network (version 3.1.77) [39]. DIP data
contain 21592 interactions among 4850 proteins, while
BioGrid contain 59748 interactions among 5640 proteins.
Note that both DIP and BioGrid are aggregates of pro-

tein interactions obtained under different conditions or
time points. In order to extract dynamic PPI networks
from these datasets, we have used yeast metabolic cycle
(YMC) gene expression microarrays [40] to infer stable
and transient interactions. YMC reports the expression
values for 3552 significant periodic genes [40] at 12 time
points (i.e. T = 12 in our experiments, there are about
25 minutes per each time interval) over three succes-
sive cycles. The raw data are available on Gene Expres-
sion Omnibus (GEO) [41] with the accession number
GSE3431. Similar to [22], in our experiment, the aver-
age expression value of each gene at the same time point
of three cycles is used as its expression value at that
time point. Among the 3552 genes, 2389 occur in DIP
and 3057 occur in BioGrid. Thus, we retain these genes
and their corresponding interactions in DIP and BioGrid
respectively.

Gold standard protein complexes
To measure whether the predicted complexes match with
known experimentally determined protein complexes, we
have chosen two benchmark complex sets as our gold
standard. They are derived from CYC2008 [42] and MIPS
[43] respectively. For both gold standard sets, to avoid
selection bias, we filter out the proteins that are not
involved in the two PPI networks. Moreover, we only
consider complexes with at least 3 proteins.

Metrics
We utilize two independent quality criteria, namely PR
metric [44] and f -measure [6], to evaluate the perfor-
mance of various complex detection methods. Among
these two measures, PR metric judge how well the pre-
dicted complexes match with known complexes mainly by
considering the percentage of their overlapping proteins.
f -measure is the harmonic mean of recall and precision
where recall measures how many known gold standard
complexes are matched by the predicted complexes, while
precision measures how many predicted complexes are
matched with known complexes. The two metrics have
complementary strengths and they could thus evaluate
the prediction performance from different perspectives.
In addition, they all give a value in the range of 0−1, where
the higher values indicate the better performance.
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Figure 1 Schematic overview of the algorithm. TS-OCD consists of two stages. First, it constructs dynamic PPI networks by integrating physical
protein interaction data and time-course gene expression data. Second, it detects temporal protein complexes from the constructed dynamic PPI
networks.

Please refer to the Additional file 1 for more detailed
description about the two PPI networks, two gold stan-
dard complex sets, as well as two evaluation metrics.

Parameter setting
When extracting dynamic PPI networks from given static
PPI networks, we distinguish stable interactions from

transient interactions by calculating the PCCs of their
associated gene pairs’ expression values across all time
points (i.e., PCC(eij)). Physical interactions with PCC val-
ues greater than a certain cutoff δ are defined as stable
interactions. To determine the cutoff threshold,we use the
PCC values of all the physical interactions and fit the PCC
distribution with two parametric distributions, assuming
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one from the stable interactions and the other from the
transient interactions.
As shown in Figure 2(a), the frequency distribution his-

togram of the PCC values of all physical interactions in
BioGrid shows that they can be sorted into two well sep-
arated classes (interactions in DIP have similar properties
as shown in Figure 2(b)). Therefore, we assume that the
data consist of two distributional components: a η pro-
portion of Gaussian distributed stable interactions and a
(1-η) proportion of anotherGaussian distributed transient
interactions, which is consistent with the observed data.
The proposed Gaussian mixture model (GMM) has the
following form:

p
(
x|μ1,σ 2

1 ,μ2,σ 2
2
) = η

(N (
μ1,σ 2

1 ; x
)) + (1 − η)

(N (
μ2,σ 2

2 ; x
))

(8)
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Figure 2 The frequency distribution histogram of the PCC
values. The frequency distribution histogram of the PCC values of all
interactions on (a) BioGrid and (b) DIP.

where η is the proportion with values between 0 and 1,
N (

μ1, σ 2
1 ; x

)
is the Gaussian distribution with mean μ1

and variance σ 2
1 .

We use Expectation Maximization (EM) algorithm to
estimate the parameters of the above two Gaussian dis-
tributions

(
i.e., μ1, σ 2

1 ,μ2 and σ 2
2
)
for each dataset. The

probability density functions learned from the BioGrid
data and DIP data are shown in Figure 3(a) and (b)
respectively. As shown in Figure 3, the two estimated dis-
tributions for each dataset are well separated. As stable
interactions tend to be encoded by globally co-expressed
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Figure 3 The probability density functions learned from the
GMMs. The estimated probability density functions for the PCC
values of transient interactions and stable interactions on (a) BioGrid
and (b) DIP. For both BioGrid and DIP, the distribution on the left side
corresponds to the estimated distribution for PCC values of transient
interactions while the distribution on the right side corresponds to
the estimated distribution for PCC values of stable interactions.
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gene pairs [27], the curve on the left side may cor-
respond to the estimated distribution for PCC values
of transient interactions while the curve on the right
side may correspond to the estimated distribution for
PCC values of stable interactions. From Figure 3, we
can find that for both BioGrid and DIP, δ ∈ (0.2, 0.4)
can result in a relatively low rate of misclassification
errors. Thus, we consistently keep δ = 0.3 in our
experiments.
Both TS-OCD and NMF need to define the number of

complexes, i.e. {r1, . . . , rT} and K . With our low rank con-
strain of each U(t), we can give TS-OCD a relatively large
values of rt since the model could adaptively control the
number of generated complexes. When merging similar
temporal protein complexes via nonnegative matrix fac-
torization, similar complexes likely to associate with same
latent index and irrelevant latent indexes always obtain
lower associations. As such, the value of K could also be
relatively large since irrelevant dimensions will be filtered
out. In this study, the values for rt (t = 1, . . . ,T), and K
are set to 1000 since our algorithm is not sensitive to their
values.
Recall that TS-OCD has three parameters τ , λ and

β where τ is the threshold parameter, λ and β con-
trol the effects of the smooth regularization term R and
low rank constrain respectively. To fully understand how
these three parameters affect the performance of TS-
OCD, we perform the sensitivity studies. Particularly, we
first keep τ = 0.3 and run TS-OCD with different
combination values of λ

(
λ ∈ {

2−7, 2−6, . . . , 21
})

and β(
β ∈ {

20, 21, . . . , 26
})

and assess how well the predicted
complexes match with gold standard sets. Then we fix the
values of λ and β which result in the best performance,
and study the effect of τ on the performance of TS-OCD
by setting τ = 0.1, 0.2, . . . , 0.6, respectively. Moreover, in
order to verify the generalization of TS-OCD, we select

their best parameter values by testing the performance of
TS-OCD on DIP and BioGrid in terms of f -measure with
respect to the reference set MIPS. Therefore, the perfor-
mance of TS-OCDonDIP and BioGrid with respect to the
other reference set CYC2008 can well validate the general
performance of TS-OCD.
From Figure 4 we observe that for a fixed value of

λ, as the value of β increases, the f -measure increases
initially and decreases after reaching the maximum. Sim-
ilarly, for a fixed value of β , as the value of λ increases,
f -measure increases initially and decreases after reaching
the maximum. Thus both β and λ contribute to improve
the performance of TS-OCD. Overall, we find that for
DIP and BioGrid, λ ∈ [

2(−4), 2(−3)] and β ∈ [
24, 25

]
result in competitive results. On the other hand, we can
find from Figure 5 that TS-OCD is sensitive to τ . Overall,
TS-OCD achieved best performance when τ = 0.3. In
order to avoid evaluation bias and over-estimation of
the performance, we do not tune the parameters for a
particular dataset and fix τ = 0.3, λ = 2(−4) and
β = 24 in the following experiments. Nevertheless,
it is worthy to mention that better performance may
be achieved if the parameters are tuned for a partic-
ular PPI dataset or for a particular complex reference
set.

Comparison with static complex detectionmethods
In order to demonstrate the benefits of using our
constructed dynamic PPI networks, we compare our
proposed TS-OCD method with five state-of-the-art
algorithms, namely ClusterONE [12], MCL [8], MINE
[45], COACH [46] and SPICi [47], which are originally
designed for detecting protein complexes from static PPI
networks. We apply these five algorithms on available
static PPI networks (full PPI networks which are assem-
bled by stable interactions and transient interactions) and
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Figure 4 The effect of λ and β . Performance of TS-OCD on protein complex detection with different values of λ and β measured by f -measure
with respect to MIPS on BioGrid and DIP. The x-axis denotes the value of log λ, the y-axis denotes the value of log β , and the z-axis denotes the value
of f -measure.
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Figure 5 The effect of τ . Performance of TS-OCD on protein
complex detection with different values of τ measured by f -measure
with respect to MIPS on BioGrid and DIP. The x-axis denotes the value
of τ and the y-axis denotes the value of f -measure.

apply TS-OCD on our constructed dynamic PPI net-
works respectively, and evaluate the predicted complexes
in terms of two metrics with respect to two gold stan-
dards. Note optimal parameters are set for MCL, MINE,
COACH and SPICi to generate their best results (in terms
of f -measure with respect to MIPS and CYC2008) while
ClusterONE has used the default parameters set by the
authors. For detailed parameter settings of these five algo-
rithms, please refer to Additional file 1.
We also apply TS-OCD on static PPI networks, i.e.,

discard the smooth regularization term in the objective
function (5) and take the static PPI networks as input (we
denote it as OCD). For fair comparison, optimal param-
eters are also set for OCD to generate its best results. In
addition, we discard their predicted complexes with less
than three proteins, for all the 7 methods. Figure 6 shows
the comparative performance of 7 different algorithms on
two PPI networks with respect to benchmark complex set
CYC2008.Moreover, Table 1 shows the size distribution of
complexes detected by various algorithms, and the values
of recall and precision for each algorithm.
As shown in Figure 6, for both DIP and BioGrid, our

TS-OCD outperforms other 5 existing methods in terms
of two metrics based on the benchmark CYC2008 (we
have similar results with respect to MIPS benchmark in
Additional file 1: Figure S2). For instance, onDIP data, TS-
OCD achieves the highest f -measure 0.472, which is 8.5%
higher than the second best f-measure 0.435, achieved by
SPICi. On BioGrid data, TS-OCD also achieves the high-
est f-measure 0.487, which is 15.4% higher than the second
best f-measure 0.422 achieved by ClusterONE. In Table 1,
we can find that TS-OCD achieves a good performance
due to its high recall and precision. Additional file 1:

Figure 6 Comparisonwith other static protein complex
detection methods. Comparison results on two PPI networks in
terms of PR and f-measure with respect to CYC2008. (a) DIP data.
(b) BioGrid data.

Table S1 in the Additional files shows similar results with
respect to the MIPS benchmark. Interestingly, we also
observe that OCD achieves better performance than the
above 5 existing algorithms on both DIP and BioGrid data.
Thus, even without using time-course gene expression
information, our method could also be utilized to better
detect complexes from static PPI networks. On the other
hand, by taking into account the temporal gene expression
data to construct dynamic PPI networks, our method is
able to capture time-evolving protein complexes and thus
detect complexes much more accurately.

Comparison with dynamic complex detectionmethods
Recently, Park et al. [28] proposed Dynamical Hierarchi-
cal Agglomerative Clustering (DHAC) method to detect
protein complexes from dynamic PPI networks, with
two different versions, i.e. DHAC-const and DHAC-local.
The existing methods, such as ClusterONE, SPICi, MCL,
COACH and MINE, can also be adapted to handle each
of the dynamic PPI networks across different time points.
For fair comparison, we have also applied nonnegative
matrix factorization (NMF) to merge those clusters pre-
dicted by each method into their own final predicted
complex results.
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Table 1 Comparative results of various algorithms on two PPI networks using CYC2008 as benchmark

Network Algorithm # complexes avg size std
CYC2008

Precision Recall f -measure

BioGrid ClusterONE 260 5.97 4.93 0.312 0.655 0.422

SPICi 136 6.06 5.23 0.294 0.448 0.355

MCL 264 8.53 29 0.167 0.405 0.236

COACH 182 7.94 7.48 0.324 0.560 0.411

MINE 219 6.06 7.48 0.311 0.655 0.421

OCD 209 6.62 6.19 0.332 0.647 0.439

TS-OCD 606 7.42 6.95 0.363 0.741 0.487

DIP ClusterONE 166 4.18 1.56 0.301 0.447 0.360

SPICi 78 4.26 1.22 0.453 0.417 0.435

MCL 338 5.21 5.04 0.163 0.592 0.255

COACH 151 4.45 2.12 0.305 0.544 0.390

MINE 121 4.03 1.91 0.355 0.505 0.417

OCD 82 4.24 1.93 0.415 0.417 0.416

TS-OCD 254 3.99 1.43 0.429 0.524 0.472

Here “# complexes” denotes the number of detected complexes, “avg size” and “std” denote the average size and standard deviation of the detected complexes.

Figure 7 illustrates the comparison among all the
above algorithms with respect to CYC2008 (the detailed
comparative results of various algorithms are listed in
Additional file 1: Table S2). We observe that TS-OCD
achieves best performance than existing algorithms con-
sistently in terms of the two measures across DIP and
BioGrid data (similar results obtained with respect to
MIPS benchmark in Additional file 1: Figure S3). More-
over, some existing algorithms combined with our NMF
model obtain notable gains in prediction accuracy on
the dynamic PPI networks. For example, ClusterONE
achieves 0.360 f -measure on the static DIP data, but it
increases to 0.427 on the dynamic DIP data. Similarly,
SPICi achieves 0.355 f -measure on the staticBioGrid data,
but it increases to 0.402 on the dynamic BioGrid data.
Therefore, the information contained in dynamic PPI net-
works are indeed useful and they complement to the static
PPI data for better complex detection.
Besides NMF, there are also some other algorithms that

could be used to merge those similar complexes. Another
widely used method is based on the overlap between dif-
ferent complexes. To study the effectiveness of NMF in
merging those similar complexes, we also apply the reduc-
tion strategy proposed by Wang et al. [22] to merge those
similar complexes. Since their method is based on the
overlap between different complexes, how to decide the
value of the similarity threshold is an important problem.
In this study, the similarity threshold is set to be 0.65 as
recommended by the authors. For more details about the
reduction strategy proposed byWang et al., please refer to
[22]. The results of using the reduction strategy proposed

Figure 7 Comparison with other temporal protein complex
detection methods. Comparison results on dynamic PPI networks
with respect to CYC2008. (a) DIP data. (b) BioGrid data.
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byWang et al. are shown in Additional file 1: Table S3.We
can find fromAdditional file 1: Table S3 that TS-OCD can
still achieve the best performance. Furthermore, we could
find that NMF is more accurate in merging those similar
complexes, since better precision and recall are obtained
when using NMF as the reduction strategy.

Detectingmulti-functional proteins
Protein complexes predicted by various methods can be
used for protein function prediction [48] – a unknown
protein can be assigned with its involved complex’s func-
tions. However, multi-functional proteins carry out dif-
ferent functions by interacting with different partners at
different time points [11]. It is thus a challenging task for
traditional complex detection methods to predict multi-
functional proteins based on the static view of PPI net-
works, which cannot reflect the dynamic nature of real PPI
networks. Our proposed TS-OCD method, on the other
hand, can handle this task well, as it is specially designed
to detect time-evolving overlapping protein complexes by
integrating PPI data with temporal gene expression data.
Next, we present an interesting case study to show how
the complexes predicted by our method help to detect and
analyze multi-functional proteins.
YOR210W is a multi-functional protein which is shared

by three complexes, namely, the DNA-directed RNA poly-
merase I, DNA-directed RNA polymerase II, and DNA-
directed RNA polymerase III [39,42]. Employing SPICi
[47] (designed for non-overlapping complex detection)
and ClusterONE [12] (designed for overlapping complex
detection) on the static BioGrid data, we can find that
only one complex detected by SPICi includes YOR210W
as shown in Figure 8(a), so that SPICi can only assign
one function, i.e., DNA-directed RNA polymerase II to it.
From Figure 8(b), ClusterONE is better than SPICi and it
can assign the protein with two functions, namely DNA-
directed RNA polymerase I and DNA-directed RNA poly-
merase II (for more examples, please refer to Additional
file 1). Finally, our proposed TS-OCD detect all the
above 3 overlapping complexes in Figure 8(c) and thus
we are able to predict proteins’ multi-functions more
accurately.
Moreover, when running SPICi on dynamic BioGrid

PPI networks, it predicts two different complexes with
YOR210W, i.e., {YOR210W, YOR224C, YGR005C,
YOR341W, YOR340C, YDR156W, YJL148W} and
{YJL164C, YER125W, YHL024W, YOR151C, YOL005C,
YGR005C, YOR210W, YOR224C}. These two complexes
match with both the RNA polymerase I and II complexes.
Recall that SPICi can only generate one cluster based
on the static BioGrid data involving YOR210W. Hence,
dynamic networks indeed provide us with more insights
into the proteins’ temporal activities for dynamic complex
formation.

Figure 8 The estimated probability density functions. Interaction
map of DNA-directed RNA polymerase I, II, III complexes detected by
3 different algorithms on BioGrid. Proteins are labeled according to
the complexes they belong to: hexagon nodes represent RNA
polymerase I, circle nodes represent RNA polymerase II, rectangle
nodes represent RNA polymerase III, diamond nodes represent
proteins shared by all the three complexes and parallelogram nodes
represent proteins with other functions. Shaded areas represent the
clusters detected by (a) SPICi, (b) ClusterONE, and (c) TS-OCD.

In addition, as shown in Figure 8(c), TS-OCD predicts
a novel protein YIR010W for both DNA-directed RNA
polymerase I and III complexes. As protein YIR010W
interacts withmostmembers in RNA polymerase I, and all
members in RNA polymerase III, we infer that YIR010W
is likely to be multi-functional and highly related to RNA
polymerase. By checking and browsing the literature, we
find that YIR010W is a component of MIND kineto-
chore complex which is required for correct chromosome
alignment and is related to the assembly of the RNA
polymerase complex.

Conclusion
In real biological environments, protein interaction net-
works are not static – they dynamically change across
different time points [29]. Many existing protein com-
plex mining methods, however, detect protein complexes
from the overly simplified static PPI network model,
which can not capture the inherent dynamic nature of
protein interactions as well as modular temporal protein
complexes.
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Temporal protein complexes are typically constructed
by the dynamic assembly or disassembly of proteins to
perform various biological functions [49]. As they can
better reflect the real-world dynamic molecular mecha-
nisms inside the cellular systems, it is thus crucial to detect
them by systematically analyzing dynamic PPI networks.
Although a few methods have been proposed to iden-
tify temporal protein complexes by applying static com-
plex detection methods for each individual time point,
they fully ignore the correlations between the consecu-
tive dynamic protein networks and thus cannot work well.
In addition, these methods can not generate overlapping
protein complexes and they do not reflect the biological
observation that proteins frequently involve in multiple
protein complexes [6] to play diverse biological functions.
To address these problems, in this study, we introduce

a novel Time Smooth Overlapping Complex Detection
model (TS-OCD) to detect overlapping temporal protein
complexes from the dynamic PPI networks. Particularly,
we construct a series of dynamic PPI networks by detect-
ing stable interactions and transient interactions via inte-
grating protein interaction data and gene expression data.
Our proposed TS-OCD allows individual complex to be
assembled and disassembled across different time points.
Furthermore, with the smoothness regularization term,
our model can detect conserved protein complexes that
play fundamental roles in cellular systems. The analysis
on real biological data shows that our proposed TS-OCD
significantly outperforms existing state-of-the-art tempo-
ral complex detection methods. Furthermore, with the
constructed dynamic PPI networks, our method could
detect multi-functional proteins more correctly. All the
experimental results, including the predicted stable com-
plexes and temporal complexes, are shown in Additional
files 2 and 3. We also investigate the benefits of using
the smoothness regularization term by comparing the
performance of our model without the smoothness regu-
larization term. Our experimental results show that with
the smoothness constrain, our method could detect tem-
poral protein complexes more accurately, as we can bet-
ter consider the conserved protein interactions between
the consecutive networks. The detailed comparison are
shown in Additional file 1.
In summary, compared with existing methods, our

model has the following advantages:

• We have distinguished two different types of protein
interactions for constructing dynamic PPI networks.
In particular, the stable interactions are reserved
across different time points to serve as the backbone
of the protein interaction networks, while transient
interactions are only presented under certain
conditions and thus occurred in dynamic part of PPI
networks.

• It allows the dynamic assembly process, i.e. individual
complex to be assembled and disassembled across
different time points. In addition, with smoothness
regularization, it prevents the value of the assigned
co-complex similarity for proteins with stable
interactions from changing too dramatically.

• It generates the overlapping temporal protein
complexes, which clearly reflect the biological reality
on proteins’ multi-functional roles.

• Finally, our proposed method is unsupervised and
thus is generic enough to apply for the dynamic
complex detection of other species.

The computational complexity for updating H(t) is
O

(
N2rt

)
, where N is the number of proteins, and rt is the

number of complexes at time t. Thus the overall time cost
of TS-OCD isO

(
N2(r1 + . . . + rT )I

)
, whereT is the num-

ber of time points and I is the number of iterations. In
practice the time cost will be much smaller since H(t) is
sparse and the number of proteins at each time point is
less thanN .
Applying our proposed TS-OCD method on dynamic

PPI networks could effectively track the underlying
dynamic modular organization and provide a new biolog-
ical knowledge and insights about the molecular systems.
In this study, we use time-course gene expression data to
help construct dynamic PPI networks since it is one of the
most abundant data that include the temporal informa-
tion of proteins in the gene level. However, as it contains
noisy information, the performance of our proposed algo-
rithm could be limited by its poor quality. Moreover, there
are a few of other related information sources, including
a collection of genomics, functional genomics, genetics
studies and their corresponding result datasets, biological
pathway databases, cellar compartment information and
biomedical ontologies. As such, in our future work, we
will study how to reduce the noise in the gene expression
data as well as to incorporate other biological evidences
for constructing more accurate dynamic PPI networks
that could lead to further performance improvements for
detecting temporal protein complexes.

Additional files

Additional file 1: Supplementary figures and text. This section
provides the supplementary figures referred in the main text and some
text which describes the detailed inference of the solution to Time Smooth
Overlapping Complex Detection model, the data sets and the evaluation
methods we have used, the effects of different parts of the model, random
start effect, convergence analysis, brief description and detailed parameter
settings of the compared clustering algorithms.

Additional file 2: Table S1. Complete lists of the predicted protein
complexes.

Additional file 3: Table S2. Complete lists of the predicted stable
complexes and temporal complexes.

http://www.biomedcentral.com/content/supplementary/1471-2105-15-335-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-15-335-S2.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2105-15-335-S3.xlsx
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