
Nicolae and Rajasekaran BMC Bioinformatics 2014, 15:34
http://www.biomedcentral.com/1471-2105/15/34

RESEARCH ARTICLE Open Access

Efficient sequential and parallel algorithms
for planted motif search
Marius Nicolae* and Sanguthevar Rajasekaran

Abstract

Background: Motif searching is an important step in the detection of rare events occurring in a set of DNA or protein
sequences. One formulation of the problem is known as (l, d)-motif search or Planted Motif Search (PMS). In PMS we
are given two integers l and d and n biological sequences. We want to find all sequences of length l that appear in
each of the input sequences with at most dmismatches. The PMS problem is NP-complete. PMS algorithms are
typically evaluated on certain instances considered challenging. Despite ample research in the area, a considerable
performance gap exists because many state of the art algorithms have large runtimes even for moderately
challenging instances.

Results: This paper presents a fast exact parallel PMS algorithm called PMS8. PMS8 is the first algorithm to solve the
challenging (l, d) instances (25, 10) and (26, 11). PMS8 is also efficient on instances with larger l and d such as (50, 21).
We include a comparison of PMS8 with several state of the art algorithms on multiple problem instances. This paper
also presents necessary and sufficient conditions for 3 l-mers to have a common d-neighbor. The program is freely
available at http://engr.uconn.edu/~man09004/PMS8/.

Conclusions: We present PMS8, an efficient exact algorithm for Planted Motif Search. PMS8 introduces novel ideas
for generating common neighborhoods. We have also implemented a parallel version for this algorithm. PMS8 can
solve instances not solved by any previous algorithms.

Background
This paper presents an efficient exact parallel algorithm
for the Planted Motif Search (PMS) problem also known
as the (l, d) motif problem [1]. A string of length l is caller
an l-mer. The number of positionswhere two l-mers u and
v differ is called their Hamming distance and is denoted
by Hd(u, v). For any string T, T[i..j] is the substring of T
starting at position i and ending at position j. The PMS
problem is the following. Given n sequences S1, S2, . . . , Sn
of length m each, from an alphabet � and two integers l
and d, identify all l-mersM,M ∈ �l, that occur in at least
one location in each of the n sequences with a Hamming
distance of at most d. More formally, M is a motif if and
only if ∀i, 1 ≤ i ≤ n, ∃ji, 1 ≤ ji ≤ m − l + 1, such that
Hd(M, Si[ji..ji + m − 1]) ≤ d.
The PMS problem is essentially the same as the Closest

Substring problem. These problems have applications

*Correspondence: marius.nicolae@engr.uconn.edu
Department of Computer Science and Engineering, University of Connecticut,
Storrs, CT, USA

in PCR primer design, genetic probe design, discover-
ing potential drug targets, antisense drug design, finding
unbiased consensus of a protein family, creating diag-
nostic probes and motif finding (see e.g., [2]). Therefore,
efficient algorithms for solving the PMS problem are very
important in biology and bioinformatics.
A PMS algorithm that finds all the motifs for a given

input is called an exact algorithm. All known exact algo-
rithms have an exponential worst case runtime because
the PMS problem is NP-complete [2]. An exact algorithm
can be built using two approaches. One is sample driven:
for all (m−l+1)n possible combinations of l-mers coming
from different strings, generate the common neighbor-
hood. The other is pattern-driven: for all �l possible
l-mers check which are motifs. Many algorithms employ
a combination of these two techniques. For example, [3]
and [4] generate the common neighbors for every pair of
l-mers coming from two of the input strings. Every neigh-
bor is then matched against the remaining n − 2 input
strings to confirm or reject it as a motif. Other algorithms
([5,6]) consider groups of three l-mers instead of two.

© 2014 Nicolae and Rajasekaran; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Nicolae and Rajasekaran BMCBioinformatics 2014, 15:34 Page 2 of 10
http://www.biomedcentral.com/1471-2105/15/34

PMS algorithms are typically tested on instances gen-
erated as follows (also see [1,4]): 20 DNA strings of
length 600 are generated according to the i.i.d. (inde-
pendent identically distributed) model. A random l-mer
is chosen as a motif and planted at a random loca-
tion in each input string. Every planted instance is
modified in at most d positions. For a given integer l,
the instance (l, d) is defined to be challenging if d is
the smallest integer for which the expected number
of motifs of length l that occur in the input by ran-
dom chance is ≥ 1. Some of the challenging instances
are (13, 4), (15, 5), (17, 6), (19, 7), (21, 8), (23, 9), (25, 10),
(26, 11), etc.
The largest challenging instance solved up to now has

been (23, 9). To the best of our knowledge the only algo-
rithm to solve (23, 9) has been qPMS7 [5]. The algorithm
in [7] can solve instances with relatively large l (up to 48)
provided that d is at most l/4. However, most of the well
known challenging instances have d > l/4. PairMotif [3]
can solve instances with larger l, such as (27, 9) or (30, 9),
but these are significantly less challenging than (23, 9).
Furthermore, for instances that current algorithms have
been able to solve, the runtimes are often quite large.
In this paper we propose a new exact algorithm, PMS8,

which can efficiently solve both instances with large l and
instances with large d. The efficiency of PMS8 comes
mainly from reducing the search space by using the prun-
ing conditions presented later in the paper, but also from
a careful implementation which utilizes several speedup
techniques and emphasizes cache locality.
One of the basic steps employed in many PMS algo-

rithms (such as PMSprune [4], PMS5 [8], PMS6 [9], and
qPMS7 [5]) is that of computing all the common neigh-
bors of three l-mers. In qPMS7, this problem is solved
using an Integer Linear Programming (ILP) formulation.
In particular, a large number of ILP instances are solved
as a part of a preprocessing step and a table is populated.
This table is then repeatedly looked up to identify com-
mon neighbors of three l-mers. This preprocessing step
takes a considerable amount of time and the lookup table
calls for a large amount of memory. In this paper we offer a
novel algorithm for computing all the common neighbors
of three l-mers. This algorithm eliminates the preprocess-
ing step. In particular, we don’t solve any ILP instance. We
also don’t employ any lookup tables and hence we reduce
the memory usage. We feel that this algorithm will find
independent applications. Specifically, we state and prove
necessary and sufficient conditions for 3 l-mers to have a
common neighbor.

Methods
For any l-mer u we define its d-neighborhood as the
set of l-mers v for which Hd(u, v) ≤ d. For any set of
l-mers T we define the common d-neighborhood of T as

the intersection of the d-neighborhoods of all l-mers in T.
To compute common neighborhoods, a natural approach
is to traverse the tree of all possible l-mers and iden-
tify the common neighbors. A pseudocode is given in
Appendix 1. A node at depth k, which represents a k-mer,
is not explored deeper if certain pruning conditions are
met. Thus, the better the pruning conditions are, the faster
will be the algorithm. We discuss pruning conditions in a
later section.
PMS8 consists of a sample driven part followed by a

pattern driven part. In the sample driven part we gen-
erate tuples of l-mers originating from different strings.
In the pattern driven part we generate the common
d-neighborhood of such tuples. Initially we build a matrix
R of size n × (m − l + 1) where row i contains all the
l-mers in Si. We pick an l-mer x from row 1 of R and push
it on a stack. We filter out any l-mer in R at a distance
greater than 2d from x. Then we pick an l-mer from the
second row of R and push it on the stack. We filter out
any l-mer in R that does not have a common neighbor
with the l-mers on the stack; then we repeat the process.
If any row becomes empty, we discard the top of the stack,
revert to the previous instance of R and try a different
l-mer. If the stack size is above a certain threshold (see
section on Memory and Runtime) we generate the com-
mon d-neighborhood of the l-mers on the stack. For each
neighbor M we check whether there is at least one l-mer
u in each row of R such that Hd(M, u) ≤ d. If this is true
then M is a motif. The pseudocode of PMS8 is given in
Appendix 2.
A necessary and sufficient condition for 3 l-mers to have

a common neighbor is discussed in the section on pruning
conditions. For 4 or more l-mers we only have necessary
conditions, so we may generate tuples that will not lead
to solutions. However, due to the way the filtering works,
the following observations apply. Let the stack at any one
time contain t l-mers: r1, r2, . . . , rt where rt is at the top
of the stack. Evidently, the l-mers on the stack pass the
necessary pruning conditions for t l-mers. However, the
following are also true. For any two l-mers ri and rj on
the stack, there exists a common neighbor. This is true
because whenever we filter an l-mer we make sure it has
at least one neighbor in common with the l-mer at the
stop of the stack. Thus, we can prove by induction that
any two l-mers in the stack have a common neighbor. Sec-
ond, any triplet of the form r1, r2, ri, 2 < i ≤ t, has at
least one common neighbor. This is true because when
the stack had only the first two l-mers we filtered out
any l-mer which doesn’t make a compatible triplet with
the two. In general, for any number p < t the (p + 1)
tuples of the form r1, r2, . . . , rp, ri where p < i ≤ t
must pass the pruning conditions for p+ 1 l-mers. There-
fore, even though the pruning for more than 3 l-mers
is not perfect, the algorithm implicitly tests the pruning

Nicolae and Rajasekaran BMC Bioinformatics 2014, 15:34 Page 3 of 10
http://www.biomedcentral.com/1471-2105/15/34

conditions on many subsets of the l-mers in the stack
and thus decreases the number of false positive tuples
generated.

Speedup techniques
Sort rows by size
An important speedup technique is to reorder the rows of
R by size after every filtering step. This reduces the num-
ber of tuples that we consider at lower stack sizes. These
tuples require the most expensive filtering because as the
stack size increases, fewer l-mers remain to be filtered.

Compress l-mers
We can speed up Hamming distance operations by com-
pressing all the l-mers of R in advance. For example, for
DNA we store 8 characters in a 16 bit integer, divided
into 8 groups of 2 bits. For every 16 bit integer i we store
in a table the number of non-zero groups of bits in i. To
compute the Hamming distance between two l-mers we
first perform an exclusive or of their compressed repre-
sentations. Equal characters produce bits of 0, different
characters produce non-zero bits. Therefore, one table
lookup provides the Hamming distance for 8 characters.
One compressed l-mer requires l∗�log |�|	 bits of storage.
However, we only need the first 16 bits of this representa-
tion because the next 16 bits are the same as the first 16
bits of the l-mer 8 positions to the right of the current one.
Therefore, the table of compressed l-mers only requires
O(n(m − l + 1)) words of memory.

Preprocess distances for pairs of l-mers
The filtering step tests many times if two l-mers have a
distance of nomore than 2d. Thus, for every pair of l-mers
we compute this bit of information in advance.

Cache locality
We can update R in an efficient manner as follows. Every
row in the updatedmatrix R′ is a subset of the correspond-
ing row in the current matrix R, because some elements
will be filtered out. Therefore, we can store R′ in the same
memory locations as R. To do this, in each row, we move
the elements belonging to R′ at the beginning of the row.
In addition, we keep track of howmany elements belong to
R′. To revert from R′ back to R, we restore the row sizes to
their previous values. The row elements will be the same
even if they have been moved within the row. The same
process can be repeated at every step of the recursion,
therefore the whole “stack” of R matrices is stored in a
single matrix. This reduces the memory requirement and
improves cache locality. The cache locality is improved
because at every step of the recursion, in each row, we
access a subset of the elements we accessed in the previ-
ous step, and those elements are in contiguous locations
of memory.

Findmotifs for a subset of the strings
We use the speedup technique described in [10]: compute
the motifs for n′ < n of the input strings, then test each of
them against the remaining n−n′ strings. For the results in
this paper n′ was heuristically computed using the formula
provided in Appendix 4.

Memory and Runtime
Since we store all matrices R in the space of a single matrix
they only requireO(n(m−l+1)) words ofmemory. To this
we add O(n2) words to store row sizes for the at most n
matrices which share the same space. The bits of informa-
tion for compatible l-mer pairs takeO((n(m− l+ 1))2/w)

words, where w is the number of bits in a machine word.
The table of compressed l-mers takes O(n(m − l + 1))
words. Therefore, the total memory used by the algorithm
is O(n(n + m − l + 1) + (n(m − l + 1))2/w).
The more time we spend in the sample driven part, the

less time we have to spend in the pattern driven part and
vice-versa. Ideally we want to choose the threshold where
we switch between the two parts such that their runtimes
are almost equal. The optimal threshold can be deter-
mined empirically by running the algorithm on a small
subset of the tuples. In practice, PMS8 heuristically esti-
mates the threshold t such that it increases with d and
|�| to avoid generating very large neighborhoods and it
decreases withm to avoid spending too much time on fil-
tering. All the results reported in this paper have been
obtained using the default threshold estimation provided
in Appendix 4.

Parallel implementation
We can think ofm− l+ 1 independent sub problems, one
for each l-mer in the first string. The first string in each
sub problem is an l-mer of the original first string and the
rest of the strings are the same as in the original input.
Because of this, the problem seems to be “embarrassingly
parallel.” A straightforward parallelization idea is to assign
an equal number of subproblems to each processor. This
method has the advantage that no inter-processor com-
munication is necessary beyond broadcasting the input
to all processors. This method would work well for algo-
rithms where each subproblem is expected to have a
similar runtime. However, for PMS8, the runtime of each
subproblem is very sensitive to the size of the neighbor-
hoods for various combinations of l-mers and therefore
some processors may end up starving while others are still
busy.
To alleviate the above shortcoming we employ the fol-

lowing strategy. The processor with rank 0 is a scheduler
and the others are workers. The scheduler spawns a sep-
arate worker thread to avoid using one processor just for
scheduling. The scheduler reads the input and broadcasts
it to all workers. Then each worker requests a sub problem

Nicolae and Rajasekaran BMCBioinformatics 2014, 15:34 Page 4 of 10
http://www.biomedcentral.com/1471-2105/15/34

Figure 1 Proof of theorem 1, case 1. Proof of theorem 1, case 1: There exists i, 1 ≤ i ≤ 3 for which ni ≥ di . Without loss of generality we assume
i = 1. The top 3 rows represent the input l-mers. The last row shows a common neighborM. In any column, identical colors represents matches,
different colors represent mismatches.

from the scheduler, solves it and repeats. The scheduler
loops until all jobs have been requested and all workers
have been notified that no more jobs are available. At the
end, all processors send their motifs to the scheduler. The
scheduler loops through all the processors and collects the
results. The scheduler then outputs the results.

Pruning conditions
In this section we present pruning conditions applied for
filtering l-mers in the sample driven part and for pruning
enumeration trees in the pattern driven part.
Two l-mers a and b have a common neighbor M such

that Hd(a,M) ≤ da and Hd(b,M) ≤ db if and only if
Hd(a, b) ≤ da + db. For 3 l-mers, no trivial necessary
and sufficient conditions have been known up to now. In
[8] sufficient conditions for 3 l-mers are obtained from
a preprocessed table. However, as l increases the mem-
ory requirement of the table becomes a bottleneck. We
will give simple necessary and sufficient conditions for 3
l-mers to have a common neighbor. These conditions are
also necessary for more than 3 l-mers.
Let T be a set of l-mers and M be an l-mer. If∑
u∈T Hd(M, u) > |T|d then, by the pigeonhole princi-

ple, one l-mer must have a distance from M greater than
d. Therefore, M cannot be a common neighbor of the
l-mers in T. If we have a lower bound on

∑
u∈T Hd(M, u)

for anyM, then we can use it as a pruning condition. If the
lower bound is greater than |T|d then there is no common
neighbor for T. One such lower bound is the consensus
total distance.

Definition 1. Let T be a set of l-mers, where k = |T|. For
every i, the set T1[i] ,T2[i],..,Tk[i] is called the i-th column
of T. Let mi be the maximum frequency of any character
in column i. Then Cd(T) = ∑

i=1..l k − mi is called the
consensus total distance of T.

The consensus total distance is a lower bound for the
total distance between any l-mer M and the l-mers in
T because, regardless of M, the distance contributed by
column i to the total distance is at least k − mi. The
consensus total distance for a set of two l-mers A and B
will be denoted by Cd(A,B). Also notice that Cd(A,B) =
Hd(A,B). We can easily prove the following lemma.

Lemma 1. Let T be a set of l-mers and k = |T|. Let
d1, d2, . . .dk be non-negative integers. There exists a l-mer
M such that Hd(M,Ti) ≤ di, ∀i, only if Cd(T) ≤ �k

i=1di.

Theorem 1. Let T be a set of 3 l-mers and d1, d2, d3 be
non-negative integers. There exists a l-mer M such that
Hd(M,Ti) ≤ di, ∀i, 1 ≤ i ≤ 3 if and only if the following
conditions hold:

Figure 2 Proof of theorem 1, case 2. Proof of theorem 1, case 2: ni < di for all i, 1 ≤ i ≤ 3. The top 3 rows represent the input l-mers. The last row
shows a common neighbor M. In any column, identical colors represents matches, different colors represent mismatches.

Nicolae and Rajasekaran BMC Bioinformatics 2014, 15:34 Page 5 of 10
http://www.biomedcentral.com/1471-2105/15/34

Figure 3 Speedup of the parallel implementation over the single
core version. Speedup of the multi-core version of PMS8 over the
single core version, for several datasets.

i) Cd(Ti,Tj) ≤ di + dj, ∀i, j, 1 ≤ i < j ≤ 3
ii) Cd(T) ≤ d1 + d2 + d3

Proof. The “only if” part follows from lemma 1.
For the “if” part we show how to construct a common

neighborM provided that the conditions hold.We say that
a column k where T1[k]= T2[k]= T3[k] is of type N0.
If T1[k] �= T2[k]= T3[k] then the column is of type N1.
If T1[k]= T3[k] �= T2[k] the column is of type N2 and if
T1[k]= T2[k] �= T3[k] then the column is of type N3. If all
three characters in the column are distinct, the column is

of type N4. Let ni, ∀i, 0 ≤ i ≤ 4 be the number of columns
of type Ni. Consider two cases:
Case 1) There exists i, 1 ≤ i ≤ 3 for which ni ≥ di. We

construct M as illustrated in Figure 1. Pick di columns of
type ni. For each chosen column k setM[k]= Tj[k] where
j �= i. For all other columns set M[k]= Ti[k]. Therefore
Cd(Ti,M) = di. For j �= i we know that Cd(Ti,Tj) ≤
di + dj from condition i) (condition i is assumed to be
true at this point because we are proving the “if” part). We
also know that Cd(Ti,M) + Cd(M,Tj) ≤ Cd(Ti,Tj) from
the triangle inequality. It follows that Cd(M,Tj) ≤ dj.
Since Cd(M,Tj) = Hd(M,Tj) it means thatM is indeed a
common neighbor of the three l-mers.
Case 2) For all i, 1 ≤ i ≤ 3 we have ni < di. We

construct M as shown in Figure 2. For columns k of type
N0,N2 and N3 we set M[k]= T1[k]. For columns of type
N1 we set M[k]= T2[k]. For any i, 1 ≤ i ≤ 3 the follow-
ing applies. If ni + n4 ≤ di then the Hamming distance
between M and Ti is less than di regardless of what char-
acters we choose for M in the columns of type N4. On
the other hand, if ni + n4 > di then M and Ti have
to match in at least ni + n4 − di columns of type N4.
Thus, we pick max(0, ni + n4 − di) columns of type N4
and for each such column k we set M[k]= Ti[k]. Now
we prove that we actually have enough columns to make
the above choices, in other words �3

i=1max(0, ni + n4 −
di) ≤ n4. This is equivalent to the following conditions
being true:
a) For any i, 1 ≤ i ≤ 3 we want ni + n4 − di ≤ n4. This

is true because ni < di.
b) For any i, j, 1 ≤ i < j ≤ 3 we want

(ni + n4 − di) + (nj + n4 − dj) ≤ n4. This can be

Figure 4 The effect of the “sort rows by size” speedup on runtime. Comparison between PMS8 and PMS8 without sorting rows by size (see the
section on Speedup techniques). Note that, in both versions, all the other speedups are enabled. The runtimes are for single core execution,
averaged over 5 random instances.

Nicolae and Rajasekaran BMCBioinformatics 2014, 15:34 Page 6 of 10
http://www.biomedcentral.com/1471-2105/15/34

Figure 5 PMS8 runtimes for multiple combinations of l and d. PMS8 runtimes for datasets with l up to 50 and d up to 25 averaged over 5
random datasets. White background signifies single core execution. Blue background signifies execution using 48 cores. Instances in gray have
more than 500 spurious motifs. Orange cells indicate unsolved instances. Time is reported in hours (h), minutes (m) and seconds (s).

rewritten as ni + nj + n4 ≤ di + dj. The left hand side
isHd(Ti,Tj) which we know is less or equal to di +dj .

c) Wewant�3
i=1ni+n4−di ≤ n4. This can be rewritten

as n1 + n2 + n3 + 2n4 ≤ d1 + d2 + d3. The left hand
side is Cd(T) which we know is less than d1+d2+d3 .

One of our reviewers kindly pointed out that the above
proof is similar to an algorithm in [11].

Results and discussion
PMS8 is implemented in C++ and uses OpenMPI for
communication between processors. PMS8 was evaluated
on the Hornet cluster in the Booth Engineering Center
for Advanced Technology (BECAT) at University of Con-
necticut. The Hornet cluster consists of 64 nodes, each
equipped with 12 Intel Xeon X5650 Westmere cores and
48 GB of RAM. The nodes use Infiniband networking for
MPI. In our experiments we employed at most 48 cores on
at most 4 nodes.
We generated random (l, d) instances according to [1]

and as described in the introduction. For every (l, d)

combination we report the average runtime over 5 ran-
dom instances. For several challenging instances, in
Figure 3 we present the speedup obtained by the paral-
lel version over the single core version. For p = 48 cores
the speedup is close to S = 45 and thus the efficiency is
E = S/p = 94%.

Table 1 Comparison betweenqPMS7 and PMS8

Instance qPMS7 PMS81 PMS816 PMS832 PMS848

(13,4) 29s 7s 3s 2s 2s

(15,5) 2.1m 48s 5s 4s 3s

(17,6) 10.3m 5.2m 22s 12s 9s

(19,7) 54.6m 26.6m 1.7m 52s 37s

(21,8) 4.87h 1.64h 6.5m 3.3m 2.2m

(23,9) 27.09h 5.48h 21.1m 10.7m 7.4m

(25,10) - 15.45h 1.01h 30.4m 20.7m

(26,11) - - - - 46.9h

Comparison between qPMS7 and PMS8 on challenging instances. PMS8P means
PMS8 used P CPU cores. Both programs have been executed on the same
hardware and the same datasets. The times are average runtimes over 5
instances for each dataset.

Nicolae and Rajasekaran BMC Bioinformatics 2014, 15:34 Page 7 of 10
http://www.biomedcentral.com/1471-2105/15/34

Figure 6 Speedup of PMS8 single core over qPMS7. Ratio of
runtimes between qPMS7 and PMS8 running on a single core. Both
programs have been executed on the same hardware and the same
datasets. The times are average runtimes over 5 instances for each
dataset.

In Figure 4 we show the effect of the first speedup tech-
nique (sorthing rows by size) on the runtime. Note that
all other speedups are enabled, only sorting rows by size
is varied. The figure shows that sorting the rows by size
improves the speed of PMS8 by 25% to 50%.
The runtime of PMS8 on instances with l up to 50 and

d up to 21 is shown in Figure 5. Instances which are
expected to have more than 500 motifs simply by ran-
dom chance (spurious motifs) are excluded. The expected
number of spurious motifs was computed as described
in Appendix 3. Instances where d is small relative to l

are solved efficiently using a single CPU core. For more
challenging instances we report the time taken using 48
cores.
A comparison between PMS8 and qPMS7 [5] on chal-

lenging instances is shown in Table 1. Both programs
have been executed on the Hornet cluster. qPMS7 is a
sequential algorithm. PMS8 was evaluated using up to 48
cores. The speedup of PMS8 single core over qPMS7 is
shown in Figure 6. The speedup is high for small instances
because qPMS7 has to load an ILP table. For larger
instances the speedup of PMS8 sharply increases. This
is expected because qPMS7 always generates neighbor-
hoods for tuples of 3 l-mers, which become very large as l
and d grow. On the other hand, PMS8 increases the num-
ber of l-mers in the tuple with the instance size. With each
l-mer added to the tuple, the size of the neighborhood
reduces exponentially, whereas the number of neighbor-
hoods generated increases by a linear factor. The ILP table
precomputation requires solving many ILP formulations.
The table then makes qPMS7 less memory efficient than
PMS8. The peakmemory used by qPMS7 for the challeng-
ing instances in Table 1 was 607 MB whereas for PMS8
it was 122 MB. Furthermore, due to the size of the ILP
table, qPMS7 is not able to solve any instances where
l > 23. PMS8 is the first algorithm to solve the challenging
instances (25,10) and (26,11).
Some recent results in the literature have also focused

on instances other than the challenging ones presented
above. A summary of these results and a comparison
with PMS8 is presented in Table 2, starting with the
most recent results. These results have been obtained on

Table 2 Comparison between PMS8 and recent results in the literature

Previous algorithm Instance Time Cores PMS8 time PMS8 cores

Abbas et al. 2012 [12], PHEP_PMSprune (21,8) 20.42h 8 6.5m 1

Yu et al. 2012 [3], PairMotif (27, 9) 10h 1 4s 1

Desaraju and Mukkamala 2011 [7]
(24,6) 347s 1 1s 1

(48,12) 188s 1 1s 1

Dasari et al. 2011 [13], mSPELLER / gSPELLER
(21,8) 3.7h 16 6.5m 16

(21,8) 2.2h
4 GPUs x 240 cores

6.5m 16

Dasari et al. 2010 [14], BitBased (21,8) 1.1h 6.5m 16

Dasari and Desh 2010 [15], BitBased (21,8) 6.9h 16 6.5m 16

Sahoo et al. 2011 [16] (16,4) 106s 4 1s 1

Sun et al. 2011 [17], TreeMotif (40,14) 6h 1 6s 1

He et al. 2010 [18], ListMotif (40,14) 28,087s 1 6s 1

Faheem 2010 [19], skip-Brute Force (15,4) 2934s 96 nodes 1s 1

Ho et al. 2009 [6], iTriplet

(24,8) 4h 1 5s 1

(38,12) 1h 1 1s 1

(40,12) 5m 1 1s 1

Side by side comparison between PMS8 and recent results in the literature. Time is reported in seconds (s), minutes (m) or hours (h). Note that the hardware is
different, though we tried to match the number of processors when possible. Also, the instances are randomly generated using the same algorithm, however the
actual instances used by the various papers are most likely different. For PMS8, the times are averages over 5 randomly generated instances.

Nicolae and Rajasekaran BMCBioinformatics 2014, 15:34 Page 8 of 10
http://www.biomedcentral.com/1471-2105/15/34

Table 3 Runtime comparison between PMS8 and qPMS7 on real datasets from [20]

Dataset n Total no. bases l d PMS8 time qPMS7 time

dm01r 4 6000 21 4 1 55

dm01r 4 6000 23 5 1 6

dm04r 4 8000 21 4 1 5

dm04r 4 8000 23 5 1 5

hm01r 18 36000 21 6 10 14

hm01r 18 36000 23 7 25 40

hm02r 9 9000 21 6 1 11

hm02r 9 9000 23 7 4 35

hm03r 10 15000 21 6 3 24

hm03r 10 15000 23 7 14 146

hm04r 13 26000 21 6 6 44

hm04r 13 26000 23 7 15 39

hm05r 3 3000 21 4 1 6

hm05r 3 3000 23 5 1 46

hm08r 15 7500 17 5 1 7

hm08r 15 7500 17 6 46 251

hm19r 5 2500 23 5 1 5

hm19r 5 2500 23 6 1 5

hm20r 35 70000 21 6 27 32

hm20r 35 70000 23 7 56 136

hm26r 9 9000 23 6 1 5

hm26r 9 9000 23 7 5 46

mus02r 9 9000 21 6 1 11

mus02r 9 9000 23 7 2 45

mus04r 7 7000 21 6 1 15

mus04r 7 7000 23 7 2 22

mus05r 4 2000 21 5 1 79

mus05r 4 2000 23 6 1 5

mus07r 4 6000 21 5 1 79

mus07r 4 6000 23 5 1 6

mus10r 13 13000 21 6 2 56

mus10r 13 13000 23 7 2 70

mus11r 12 6000 21 7 8 150

mus11r 12 6000 23 8 23 938

yst01r 9 9000 21 6 2 14

yst01r 9 9000 23 7 8 63

yst02r 4 2000 21 5 1 5

yst02r 4 2000 23 6 1 6

yst03r 8 4000 21 6 1 8

yst03r 8 4000 23 7 1 19

yst04r 6 6000 21 4 1 5

yst04r 6 6000 23 5 1 5

yst05r 3 1500 21 4 1 5

yst05r 3 1500 23 5 1 5

Nicolae and Rajasekaran BMC Bioinformatics 2014, 15:34 Page 9 of 10
http://www.biomedcentral.com/1471-2105/15/34

Table 3 Runtime comparison between PMS8 and qPMS7 on real datasets from [20] (Continued)

yst06r 7 3500 21 6 1 6

yst06r 7 3500 23 7 2 12

yst08r 11 11000 21 5 1 6

yst08r 11 11000 23 6 1 6

yst09r 16 16000 21 6 2 17

yst09r 16 16000 23 7 6 68

For each dataset we tested two combinations of l and d. For qPMS7 we set q = n. Both algorithms were executed on a single CPU core. Time is reported in seconds,
rounded up to the next second.

various types of hardware: single core, multi-core, GPU,
grid. In the comparison, we try to match the number
of processors whenever possible. The speed difference
is of several orders of magnitude in some cases which
indicates that the pruning conditions employed by PMS8
exponentially reduce the search space compared to other
algorithms.
We also compared PMS8 with qPMS7 on the real

datasets discussed in [20]. We excluded datasets with less
than 4 input sequences because these are not very chal-
lenging. For each dataset we chose two combinations of
l and d. These combinations were chosen on a dataset
basis because for large values of d the number of reported
motifs is excessive and for small values of d the instance is
not very challenging. To make qPMS7 behave like PMS8
we set the quorum percent to 100% (q = n). In Table 3 we
report the dataset name, the total number of sequences,
the total number of bases in each dataset, the l and d com-
bination and the runtimes of the two algorithms.Note that
both algorithms are exact algorithms and therefore the
sensitivity and specificity are the same. Similar to the com-
parison on synthetic data, the comparison on real data
reveals that PMS8 outperforms qPMS7.

Conclusions
We have presented PMS8, an efficient algorithm for the
PMS problem. PMS8 is able to efficiently generate neigh-
borhoods for t l-mers at a time, by using the pruning
conditions presented in this paper. Previous algorithms
generate neighborhoods for only up to three l-mers at
a time whereas in PMS8 the value of t is increased as
the instances become more challenging and therefore the
exponential explosion is postponed. The second reason
for the efficiency of PMS8 comes from the careful imple-
mentation which employs several speedup techniques and
emphasizes cache locality.

Appendix
Appendix 1 Generating neighborhoods

Algorithm 1. GenerateNeighborhood(T , d)
for (i = 1..|T|) do ri := d;
GenerateNeighborhood(T , r, 1)

GenerateNeighborhood(T , r, p)
if (p ≤ l) then

if (not prune(T , r)) then
for α ∈ � do

xp := α

for (i = 1..|T|) do
T ′
i := Ti[2..|Si|]

r′i := ri;
if (Ti[0] �= α) then r′i := r′i − 1;

end for
GenerateNeighborhood(T ′, r′, p + 1)

end for
end if

else
report l-mer x

end if

Appendix 2 PMS8 pseudocode
Algorithm 2. PMS8(T , d)

for (i = 1..n) do Ri = {u|u ∈ Si}
stack = {}
GenerateMotifs(1, stack,R)

GenerateMotifs(p, stack,R)
for (u ∈ Rp) do

stack.push(u)
R′ :=filter(R, stack)
if (R′.size > 0) then

if (ThresholdCondition) then
N :=GenerateNeighborhood(stack,d)
for (m ∈ N) do

if (isMotif(m,R′)) then outputm;
else

GenerateMotifs(p+ 1,R′)
stack.pop()

end for

Appendix 3 Challenging instances
For a fixed l, as d increases, the instance becomes more
challenging. However, as d increases, the number of false
positives also increases, because many motifs will appear
simply by random chance. The expected number of

Nicolae and Rajasekaran BMCBioinformatics 2014, 15:34 Page 10 of 10
http://www.biomedcentral.com/1471-2105/15/34

spurious motifs in a random instance can be estimated as
follows (see e.g., [4]). The number of l-mers in the neigh-
borhood of a given l-merM is N(�, l, d) = �d

i=0(
l
d)(|�| −

1)d. The probability that M is a d-neighbor of a random
l-mer is p(�, l, d) = N(�, l, d)/|�|l . The probability that
M has at least one d-neighbor among the l-mers of a string
of lengthm is thus q(m,�, l, d) = 1−(1−p(�, l, d))m−l+1.
The probability thatM has at least one d-neighbor in each
of n random strings of length m is q(m,�, l, d)n. Finally,
the expected number of spurious motifs in an instance
with n strings of length m each is: |�|lq(m,�, l, d)n.
In this paper we consider all combinations of l and d
where l is at most 50 and the number of spurious motifs
(expected by random chance) does not exceed 500. Note
that for a fixed d, if we can solve instance (l, d) we
can also solve all instances (l′, d) where l′ > l, because
they are less challenging than (l, d).

Appendix 4 Heuristics for t and n
In the methods section we mentioned that we heuristi-
cally estimate the threshold t at which we switch from the
pattern driven to the sample driven part. The exact for-
mula used by the algorithm to compute t was t = max
(2, �√2(d + 1) log� − logm
). This follows the intuition
that t should increase with � to avoid large neighbor-
hoods and decrease with m to avoid spending too much
time on filtering.
In the Speedup techniques section we mentioned a

speedup where we compute motifs for a subset of n′ < n
strings. By default, the algorithm heuristically computes
n′ as n′ = min(n, t + n/4 − logt). These simple heuristics
workedwell enough on all our test cases, however the user
can easily override them.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MN and SR designed and analyzed the algorithms. MN implemented the
algorithms and carried out the empirical experiments. MN and SR analyzed the
empirical results and drafted the manuscript. All authors read and approved
the final manuscript.

Acknowledgements
The authors would like to thank Prof. Chun-Hsi (Vincent) Huang, Dr. Hieu Dinh,
Tian Mi and Gabriel Sebastian Ilie for helpful discussions. This work has been
supported in part by the following grants: NSF 0829916 and NIH
R01-LM010101.

Received: 15 March 2013 Accepted: 27 January 2014
Published: 31 January 2014

References
1. Pevzner P, Sze S, et al.: Combinatorial approaches to finding subtle

signals in DNA sequences. In Proceedings of the Eighth International
Conference on Intelligent Systems for Molecular Biology, August 19-23, 2000,
La Jolla / San Diego, CA , USA , Volume 8, AAAI 2000:269–278.

2. Lanctot J, Li M, Ma B, Wang S, Zhang L: Distinguishing string selection
problems. In Proceedings of the Tenth Annual ACM-SIAM Symposium on

Discrete Algorithms, 17-19 January 1999, Baltimore, Maryland, ACM/SIAM
1999:633–642.

3. Yu Q, Huo H, Zhang Y, Guo H: PairMotif: a new pattern-driven
algorithm for planted (l, d)DNAmotif search. PLoS ONE 2012,
7(10):e48442.

4. Davila J, Balla S, Rajasekaran S: Fast and practical algorithms for
planted (l, d)motif search. IEEE/ACMTrans Comput Biol and
Bioinformatics 2007, 4(4):544–552.

5. Dinh H, Rajasekaran S, Davila J: qPMS7: A Fast Algorithm for Finding
(l,d)-Motifs in DNA and Protein Sequences. PLoS ONE 2012,
7(7):e41425.

6. Ho E, Jakubowski C, Gunderson S, et al.: iTriplet, a rule-based nucleic
acid sequence motif finder. AlgoMol Biol 2009, 4:14.

7. Desaraju S, Mukkamala R:Multiprocessor implementation of
modeling method for PlantedMotif Problem. In 2011World Congress
on Information and Communication Technologies (WICT), Dec 11-14, 2011,
Mumbai, India, IEEE 2011:524–529.

8. Dinh H, Rajasekaran S, Kundeti V: PMS5: an efficient exact algorithm for
the (l, d)-motif finding problem. BMC Bioinformatics 2011, 12:410.

9. Bandyopadhyay S, Sahni S, Rajasekaran S: PMS6: A fast algorithm for
motif discovery. In IEEE 2nd International Conference on Computational
Advances in Bio andMedical Sciences, ICCABS 2012, Las Vegas, NV , USA ,
February 23-25, 2012, IEEE 2012:1–6.

10. Rajasekaran S, Dinh H: A speedup technique for (l, d)-motif finding
algorithms. BMC Res Notes 2011, 4:54. [http://www.biomedcentral.com/
1756-0500/4/54]

11. Gramm J, Niedermeier R, Rossmanith P: Exact solutions for closest
string and related problems. In Algorithms and Computation, Volume
2223 of Lecture Notes in Computer Science. Edited by Eades P, Takaoka T.
Berlin Heidelberg: Springer; 2001:441–453.

12. Abbas M, Abouelhoda M, Bahig H: A hybrid method for the exact
planted (l, d) motif finding problem and its parallelization. BMC
Bioinformatics 2012, 13(Suppl 17):S10. [http://www.biomedcentral.com/
1471-2105/13/S17/S10]

13. Dasari N, Ranjan D, Zubair M: High performance implementation of
plantedmotif problem using suffix trees. In 2011 International
Conference on High Performance Computing & Simulation, HPCS 2012,
Istanbul, Turkey, July 4-8, 2011, IEEE 2011:200–206.

14. Dasari N, Desh R, Zubair M: Solving plantedmotif problem on GPU. In
International Workshop on GPUs and Scientific Applications, GPUScA 2010,
Vienna, Austria, September 11, 2010, Department of Scientific Computing,
University of Vienna, TR-10-3 2010.

15. Dasari NS, Desh R, Zubair M: An efficient multicore implementation of
plantedmotif problem. In Proceedings of the 2010 International
Conference on High Performance Computing & Simulation, HPCS 2010, June
28 - July 2, 2010, Caen, France. IEEE 2010:9 –15.

16. Sahoo B, Sourav R, Ranjan R, Padhy S: Parallel implementation of exact
algorithm for plantedmotif search problem using SMP cluster.
European J Scientific Res 2011, 64(4):484–496.

17. Sun H, Low M, Hsu W, Tan C, Rajapakse J: Tree-structured algorithm for
long weak motif discovery. Bioinformatics 2011, 27(19):2641–2647.

18. Sun HQ, Low M, Hsu WJ, Rajapakse J: ListMotif: A time andmemory
efficient algorithm for weakmotif discovery. In 2010 International
Conference on Intelligent Systems and Knowledge Engineering (ISKE), 15-16
November 2010, Hangzhou, China. IEEE 2010:254 –260.

19. Faheem HM: Accelerating motif finding problem using grid
computingwith enhanced brute force. In Proceedings of the 12th
international conference on Advanced communication technology,
ICACT’10, Piscataway, NJ, USA: IEEE Press 2010:197–202.

20. Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV,
Frith MC, Fu Y, Kent WJ, et al.: Assessing computational tools for the
discovery of transcription factor binding sites. Nature Biotechnol 2005,
23:137–144.

doi:10.1186/1471-2105-15-34
Cite this article as:Nicolae and Rajasekaran:Efficient sequential and parallel
algorithms for planted motif search. BMC Bioinformatics 2014 15:34.

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Speedup techniques
	Sort rows by size
	Compress l-mers
	Preprocess distances for pairs of l-mers
	Cache locality
	Find motifs for a subset of the strings

	Memory and Runtime
	Parallel implementation
	Pruning conditions

	Results and discussion
	Conclusions
	Appendix
	Appendix 1 Generating neighborhoods
	2
	3
	4

	Competing interests
	Authors' contributions
	Acknowledgements
	References

