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Abstract

Background: Identification of the recombination hot/cold spots is critical for understanding the mechanism of
recombination as well as the genome evolution process. However, experimental identification of recombination
spots is both time-consuming and costly. Developing an accurate and automated method for reliably and quickly
identifying recombination spots is thus urgently needed.

Results: Here we proposed a novel approach by fusing features from pseudo nucleic acid composition (PseNAC),
including NAC, n-tier NAC and pseudo dinucleotide composition (PseDNC). A recursive feature extraction by linear
kernel support vector machine (SVM) was then used to rank the integrated feature vectors and extract optimal features.
SVM was adopted for identifying recombination spots based on these optimal features. To evaluate the performance
of the proposed method, jackknife cross-validation test was employed on a benchmark dataset. The overall accuracy of
this approach was 84.09%, which was higher (from 0.37% to 3.79%) than those of state-of-the-art tools.

Conclusions: Comparison results suggested that linear kernel SVM is a useful vehicle for identifying recombination
hot/cold spots.
Background
Meiotic recombination is a vital biological process in
diploid organisms, which could be described by two pro-
cesses: meiosis and recombination. During the former
one, the genome is divided into two gametes for sexual
reproduction, while diverse gametes combined together
to form new genetic variations during the latter. Initiated
by double-strand breaks (DSB), recombination provides
chances for the natural exchanges of genetic material [1].
By segregating advantageous and deleterious genes, it
optimizes genotypes as well as accelerates the evolution of
sexual reproductive organisms.
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Identification of recombination spots is pivotal in
understanding the mechanism of the main driving force
in the genome evolution process. Recombination usually
occurs in some regions of 1 ~ 2.5 kilobase. In order to
find whether they share DNA sequences and structural
features, plenty of global mapping studies have been
performed to map DSB sites on chromosomes [2,3]. The
genomic regions with relatively high frequencies were
known as hotspots, while others with relatively low fre-
quencies were coldspots. Studies showed that most posi-
tions of hotspots were intergenic. Meanwhile, positions
of hotspots were associated with special chromatin
structures, such as GC-rich regions, repeats and consen-
sus DNA motifs and dinucleotides bias. Identifying the
recombination hot/cold spots is crucial for understanding
the mechanism of recombination as well as the genome
evolution process. Since experimental methods are time-
consuming and laborious, they may fail to deal with large
numbers of genomic sequences. Thus, developing efficient
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and accurate computational approaches to identify recom-
bination hot/cold spots is required.
The computational approaches for identifying recom-

bination hot/cold-spots consist of the following three
components: i) feature extraction for sample representa-
tion; ii) optimal feature selection; iii) algorithm selection
for classification. Finding proper features to represent the
sequences is the first step towards building a novel model.
In the past, some features have been used to identify the
hotspots. For example, K-mer frequencies of nucleotide
sequence contents were used as the features to predict
hotspots in IDQD model [2]. However, one of the most
important problems in this model, as well as in computa-
tional proteomics, is the neglect of global sequence-order
effect. In order to keep considerable sequence order in-
formation of samples in a discrete model, Chou et al.
proposed the concept of pseudo amino acid composition
(PseAAC) [4-6], which has been applied to many pre-
diction tasks in computational proteomics [7-10], such as
prediction of protein S-nitrosylation sites, protein qua-
ternary structural attributes, protein subcellular locations,
membrane protein types, etc. To identify the recombin-
ation spots, Chen et al. [1] further proposed the concept of
pseudo dinucleotide composition (PseDNC) to represent
DNA sequences. Inspired by their model, here we pro-
posed the concept of pseudo nucleic acid composition
(PseNAC) of DNA sequence to represent DNA sequences.
Feature selection is another critical step in classifica-

tion. By decreasing the model’s complexity, the selection
of the optimal features can reduce the risk of overfitting
and enhance the efficiency. Commonly used feature se-
lection techniques can be attributed into three categor-
ies: filter, wrapper and embedded methods [11,12]. The
filter methods, such as Euclidean distance, T-test and X2-
statistics, eliminate poorly informative features according
to their feature relevance score before inputting any classi-
fication algorithm. Wrapper and Embedded methods often
provide better results than filter methods because they
rank the feature values as subsets as well as interact
with the respective classification algorithm. Unlike wrapper
methods, which depend on a given but separate classifica-
tion algorithm, embedded methods perform both tasks,
feature selection as well as classifier construction. Thus
embedded methods, such as SVM-RFE [13], are computa-
tionally less intensive than wrapper methods.
Many different prediction algorithms in computational

biology, such as support vector machine (SVM), discrim-
inant algorithm, neural network algorithm, k-nearest
neighbor algorithm (k-NN), naive bayes, random forest
classifier and increment of diversity (ID), have been
developed [14-19]. Among them, SVM was proven to be
very powerful in many classification tasks due to its
efficiency in analyzing large amounts of samples as well
as adaptable to new data [20-22].
In the current work, an SVM-based model was devel-
oped to further improve the prediction of recombination
spots from pseudo nucleic acid composition (PseNAC) of
DNA sequence, including NAC, n-tier NAC and PseDNC.
Before inputting to an SVM classifier, crucial features were
selected by a powerful feature selecting tool, SVM-RFE,
for reliable and accurate identification of recombination
spots. Employing Jackknife test, our method showed im-
proved prediction performance compared to existing
methods.

Results and discussion
Parameter selection
Before optimizing the regularization parameter C in
LIBSVM, we should notice that the dimension of initial
feature vector would increase exponentially as the num-
ber of the most contiguous residue components in-
creased. For example, the dimension of feature vectors
was 42 = 16 for the most two contiguous residue compo-
nents; while it was 410 = 1,048,576 for the ten most con-
tiguous residue components. However, the higher the
number of most contiguous residue components was,
the higher rate of redundant information was included
in feature vector. Due to the high rate of redundant
information and limits in computing power, we finally
fixed the maximum number as five for the most contigu-
ous residue components.
The regularization parameter C in LIBSVM was deter-

mined to compute the prediction accuracy. In this work,
we ultilized a grid search approach to select it via com-
puting the best dimension Dim of DNA top feature vec-
tor. Firstly, we built up an initial feature vector, which
was integrated by NAC, n-tier NAC and PseDNC of
each DNA sequence. Secondly, according to their impact
on the SVM model predictions, a ranking list of all the
features was returned based on SVM-RFE. According to
the ranking list, we computed the prediction accuracies
for top N features, where N = 1,2,3,…200. We found that
the accuracy at top106 was the highest for this dataset
(Figure 1). Finally, top106 features and the correspond-
ing parameters (C = 32 and Dim = 106) were chosen as
the optimal parameter group to compute the accuracies
of our method.
As shown in Figure 2, 1st ~ 5th tier NACs made up 64

of the top106 features, while PseDNA constitutes the
rest. Among the 64 selected NAC features, nearly half of
them were 3rd tier NACs, which indicates that the
recombination spot identification could be characterized
by 1st ~ 5th tier NACs and PseDNA. Of note, top
features selected by different datasets could be different,
but they had significant overlap. As shown in Figure 3,
we randomly divided the benchmark dataset into two
parts, i.e., S1 and S2. Then recursive feature extraction
method was used for selecting top features based on the



Figure 1 Comparison of prediction results of different
top features.

Figure 2 Top106 features in the benchmark dataset.
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two datasets, respectively. After feature selection by
SVM-RFE, 26 common NAC features and 20 common
PseDNA features were selected in top106 features for S1,
S2 and the benchmark dataset.

Comparison with other methods
To assess the prediction performance, we compared our
predictor with several previous methods on the same
dataset under jackknife test. Our method attained the
overall accuracy of 84.09%, which was higher than that
with methods [1,2,23] listed in Table 1 (from 0.37% to
3.79%). In term of specificity and MCC, our method was
also higher than those by other methods. Moreover, we no-
ticed that two other top predictors, iRSpot-TNCPseAAC
and iRSpot-PseDNC, also used combined features based
on pseudo nucleic acid composition and SVM algorithm,
suggesting that the merged features and SVM algorithm
were powerful and effective in inferring the recombination
hotspots and coldspots. The features in iRSpot-PseDNC
only included 16 dinucleotide components and 1 ~ 3 tier
correlation factor that reflected the sequence-order correl-
ation between all the most contiguous dinucleotide along a
DNA sequence. Obviously, much sequence-order informa-
tion, e.g., trinucleotide composition and higher tier correl-
ation factors was missed. In order to cover more features,
Qiu et al. [23] introduced trinucleotide composition into
their predictor, i.e., iRSpot-TNCPseAAC and achieved an
overall accuracy of 83.72%. However, integration of more
and more features could cause a variety of issues in statis-
tical learning, including the overfitting, dimension disaster,



Figure 3 The overlapped features.
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and feature redundancy. Thus an effective feature extrac-
tion approach was urgently needed. We compared recur-
sive feature extraction method with another commonly
used feature selection method, i.e., F-score. As shown in
Table 1, in terms of Sn, Sp, Acc and MCC, the former was
significantly higher than those by the latter. In this study,
recursive feature extraction method could get the key
features from high dimension feature vectors more effect-
ively. Accordingly, our predictor performed better than
other methods in Table 1 in identifying recombination
spots. In addition, to further illustrate the prediction
power of our method, a receiver operating characteristic
(ROC) curve on the benchmark dataset was implemented
(Figure 4). The area under curve (AUC) of our method
was 0.703 for the benchmark dataset, which was higher
Table 1 A comparison of the proposed method with the exist

Predictor Test method Sn (%

The proposed method Jackknife 76.12

F-score Jackknife 70.41

iRSpot-TNCPseAAC [35] Jackknife 87.14

iRSpot-PseDNC [1] Jackknife 73.06

IDQD [2] 5-fold cross 79.40
than those by 1–5 tier NACs and PseDNC (AUCs are
0.634 and 0.701, respectively).

Conclusions
In this study, an SVM-based model was constructed for
the identification of recombination hot/cold spots by
selecting the optimal features from pseudo nucleic acid
composition, i.e., NAC, 2nd ~ 5th tier NACs and PseDNC.
The overall accuracy was 84.09% for this benchmark data-
set, indicating that this approach was satisfying in identify-
ing recombination sports. It supported the assumption
that pseudo nucleic acid composition could better re-
flect the feature of a DNA sequence through a discrete
model, and improved the prediction results for recombin-
ation spots identification. Besides, the recursive feature
ing methods

) Sp (%) Acc (%) MCC

90.69 84.09 0.680

88.66 80.39 0.605

79.59 83.72 0.671

89.49 82.04 0.638

81.00 80.30 0.603



Figure 4 The ROC curve of the benchmark dataset.
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extraction method adopted here was very powerful and
effective in getting the optimal features from high di-
mension feature vectors. Thereore, it improved the final
prediction performance as well as accelerated the comput-
ing procedure. The good performance of our predictor for
identifying recombination spot suggests that our method
can be applied as a useful tool in such predicting task.
Since user-friendly and publicly accessible web-servers
represent the future direction for developing more useful
methods, models or predictors, we will make efforts in
our future work to provide a web-server for the method
presented in this study.
Avowedly, there are still some challenges remaining to

be solved in recombination spot identification. Despite
the fact that our method suffered from a little high com-
putational complexity for feature ranking, it could effect-
ively catch the key features to improve the identification
of recombination spots. In addition, we only focused on
the identification of recombination spots, an important
step in meiotic recombination. The future attention will
be paid in clarifying the relationship between the optimal
features selected by this approach and the mechanism
of meiotic recombination. As the good performance in
identifying recombination spots, we will apply our method
to other novel pattern recognition tasks, e.g., prediction of
facial features from DNA, DNA methylation level, sparse
protein-DNA binding landscapes and small RNA targets,
networks and interaction domains.

Methods
There is no human or animal experiment in this work.

Benchmark dataset
In this study, the dataset for identifying recombination
spots was taken from Liu et al. [2], which contains 490
recombination hotspots and 591 recombination cold-
spots. It was widely applied as a benchmark dataset for
identifying recombination spots [1].
Feature preparation
Denote Nuc as a DNA sequence with L nucleic acid
residues, i.e.

Nuc ¼ Rl½ � l ¼ 1; 2; 3;…; Lð Þ ð1Þ
where Rl was the lth nucleic acid residue in Nuc. Since
each nucleotide included a nitrogen-containing nucleo-
base - either adenine (A), cytosine (C), guanine (G) or thy-
mine (T), we could formulate each DNA sequence Nuc by
its nucleic acid composition (NAC), i.e.

F ¼ f Að Þ; f Cð Þ; f Gð Þ; f Tð Þ½ � ð2Þ
where F represented the feature vector of Nuc. f(A), f(C),
f(G), and f(T) were the normalized occurence frequen-
cies of four kinds of nucleobases, respectively. Eq. 2
represented the simpliest features of a DNA sequence.
Obviously, all the sequence-order information was lost if
only using NAC to represent a DNA sequence. To solve
this problem, we adopted dinucleotide composition
(DNC) and the feature vector was given by

F ¼ f AAð Þ; f ACð Þ; f AGð Þ; f ATð Þ;…; f TTð Þ½ � ð3Þ
where f (AA) was the normalized occurence frequency of
AA in the DNA sequence; f (AC) was that of AC; f (AG)
was that of AG and so as f (TT). In order to capture
more local sequence information, the most three, four,
five et al. contiguous residue components, i.e., the 3rd,
4th, 5th et al. tier NACs were also incorparated to the
PseNAC and similarly we had 43, 44, 45 … features for
each DNA sequence. Although the most contiguous
local sequence-order information of a DNA sequence
was considered, the global sequence-order information
was still not reflected. To address this issue, the pseudo
dinucleotide composition, i.e., PseDNC was introducted
here.
Following the similar procedures in capturizing the global

sequence-order information of a protein [24], we extracted
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global sequence-order information of a DNA sequence
formulated by

g1 ¼
1

L−2

XL−2
i¼1

Δ RiRiþ1;Riþ1Riþ2ð Þ

g2 ¼
1

L−3

XL−3
i¼1

Δ RiRiþ1;Riþ2Riþ3ð Þ

g3 ¼
1

L−4

XL−4
i¼1

Δ RiRiþ1;Riþ3Riþ4ð Þ
…

ω ¼ Lmin−2ð Þ

gω ¼ 1
L−ω−1

XL−ω−1
i¼1

Δ RiRiþ1;RiþωRiþωþ1ð Þ

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð4Þ
where Δ represents the coupling mode function as given
in Eq.5; g1 reflects the coupling mode between the most
contiguous dinucleotide along a DNA sequence; g2 is the
coupling mode between the second most contiguous
dinucleotide; g3 is the coupling mode between the third
most contiguous dinucleotide and so forth. ω was the
highest rank of the coupling mode along a DNA se-
quence, and Lmin was the length of Nuc with min length
in this benchmark dataset. The Δ function could be
formulated by

Δ RiRiþ1;RkRkþ1ð Þ ¼ 1
J

XJ

j¼1

V j RiRiþ1ð Þ−V j RkRkþ1ð Þ� �2

ð5Þ
where J = 6 was the number of local DNA structural
Table 2 The normalized values for the six DNA dinucleotide p

Dinucleotide

V1(RiRi+1) V2(RiRi+1) V3(R

AA 0.06 0.50 0.

AC 1.50 0.50 0.

AG 0.78 0.36 0.

AT 1.07 0.22 0.

CA −1.38 −1.36 −0

CC 0.06 1.08 0.

CG −1.66 −1.22 −0

CT 0.78 0.36 0.

GA −0.08 0.50 0.

GC −0.08 0.22 1.

GG 0.06 1.08 0.

GT 1.50 0.50 0.

TA −1.23 −2.37 −0

TC −0.08 0.50 0.

TG −1.38 −1.36 −0

TT 0.06 0.50 0.
properties as described in ref [25], and RiRi+1 was the
4 × 4 = 6 possible dinucleotides, i.e., AA, AC, AG, AT, …,
TT. Table 2 listed the normalized values V for the six
DNA dinucleotide physical structures, including twist V1

(RiRi+1), tilt V2 (RiRi+1), roll V3 (RiRi+1), shift V4 (RiRi+1),
slide V5 (RiRi+1), and rise V6 (RiRi+1). By combining
NAC, n-tier NAC and PseDNC together, the initial fea-
ture vector of a DNA sequence could be represented as

F ¼ ½f Að Þ;…; f Tð Þ; f AAð Þ;…; f TTð Þ
;…; f A…Að Þ;…; f T…Tð Þ; g1;…; gω�

ð6Þ

where f (A…A) represented the normalized occurrence
frequencies of (A…A), and the length of A…A was equal
to Lmin, the minimum length of sequence in the bench-
mark dataset.

Feature extraction by SVM-RFE
In previous step, NAC, n-tier NAC and PseDNC of each
DNA sequence were merged as a feature vector. Then, a
recursive feature selection approach, SVM-RFE was ap-
plied to select a group of important features for reliable
identification of recombination spots. Then, through
training a linear kernel SVM iteratively, the SVM-RFE
algorithm is adopted to get a ranking list of all features
by removing only one feature with the lowest influence
on the predictions of an SVM model each time [26,27].
The first item in the ranking list was the most relevant
feature in identification of recombination spots, and the
hysical structures

Physical structures

iRi+1) V4(RiRi+1) V5(RiRi+1) V6(RiRi+1)

27 1.59 0.11 −0.11

80 0.13 1.29 1.04

09 0.68 −0.24 −0.62

62 −1.02 2.51 1.17

.27 −0.86 −0.62 −1.25

09 0.56 −0.82 0.24

.44 −0.82 −0.29 −1.39

09 0.68 −0.24 −0.62

27 0.13 −0.39 0.71

33 −0.35 0.65 1.59

09 0.56 −0.82 0.24

80 0.13 1.29 1.04

.44 −2.24 −1.51 −1.39

27 0.13 −0.39 0.71

.27 −0.86 −0.62 −1.25

27 1.59 0.11 −0.11
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last item had the least relevant feature. Finally, the
ranking list of the top K features was selected to build
an SVM model.

The SVM classifier
SVM is a universal approximator. It is a supervised
learning model in analyzing data and recognizing pat-
terns. SVM is attractive to biological sequence analysis
due to its ability to handle large input spaces, large data-
set and noise. Thus it has been widely used in the bio-
informatics applications [28-32]. The basic idea behind
SVM is to represent a sample as a point in a high di-
mensional feature space and then predict it to a category
based on the optimal separating hyperplane [33]. In this
study, the SVM implementation was based on the pack-
age LIBSVM 3.17 [34,35]. Since the SVM-RFE algorithm
was based on a linear kernel SVM, the linear kernel func-
tion was applied to obtain the best classification hyper-
plane. Thus only one free parameter, i.e., the regularization
parameter C should be optimized. It was determined with
an optimal procedure using a grid search method. Finally,
Figure 5 The pipeline that goes from the query sequence to the final
the SVM module predicted recombination spots of a DNA
sequence using the top features and the optimal value of
parameter C.

Assessment of prediction performance
Jackknife test was adopted in this study to evaluate the
classification performance of our predictor. In order to
make it intuitive and easy for readers to understand, we
adopted the formulation proposed recently [5] based on
the Chou’s symbol and definition. The sensitivity (Sn),
specificity (Sp), overall accuracy (Acc) and Matthew's
Correlation Coefficient (MCC) were given by:

Sn ¼ 1−
Nþ

−

Nþ ð7Þ

Sp ¼ 1
N−

þ
N− ð8Þ

Acc ¼ 1
Nþ

−N
−
þ

Nþ þ N− ð9Þ
output and all intermediate steps.
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MCC ¼
1− Nþ

−þN−
þ

NþþN−

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N−

þ−N
þ
−

Nþ

� �
1þ Nþ

− −N
−
þ

N−

� �r ð10Þ

where, N+ and N- represented the numbers of the hot-
spot and coldspot samples, respectively; N þ

− the number
of the hotspot samples incorrectly predicted as cold-
spots while N −

þ the number of the coldspots samples
incorrectly predicted as hotspot. A flowchart was pro-
vided in Figure 5 to illustrate the prediction process
of this approach.
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