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Abstract

Background: Coalescent simulation is pivotal for understanding population evolutionary models and demographic
histories, as well as for developing novel analytical methods for genetic association studies for DNA sequence data.
A plethora of coalescent simulators are developed, but selecting the most appropriate program remains
challenging.

Results: We extensively compared performances of five widely used coalescent simulators – Hudson’s ms, msHOT,
MaCS, Simcoal2, and fastsimcoal, to provide a practical guide considering three crucial factors, 1) speed, 2)
scalability and 3) recombination hotspot position and intensity accuracy. Although ms represents a popular
standard coalescent simulator, it lacks the ability to simulate sequences with recombination hotspots. An extended
program msHOT has compensated for the deficiency of ms by incorporating recombination hotspots and gene
conversion events at arbitrarily chosen locations and intensities, but remains limited in simulating long stretches of
DNA sequences. Simcoal2, based on a discrete generation-by-generation approach, could simulate more complex
demographic scenarios, but runs comparatively slow. MaCS and fastsimcoal, both built on fast, modified sequential
Markov coalescent algorithms to approximate standard coalescent, are much more efficient whilst keeping salient
features of msHOT and Simcoal2, respectively. Our simulations demonstrate that they are more advantageous over
other programs for a spectrum of evolutionary models. To validate recombination hotspots, LDhat 2.2 rhomap
package, sequenceLDhot and Haploview were compared for hotspot detection, and sequenceLDhot exhibited the
best performance based on both real and simulated data.

Conclusions: While ms remains an excellent choice for general coalescent simulations of DNA sequences, MaCS
and fastsimcoal are much more scalable and flexible in simulating a variety of demographic events under different
recombination hotspot models. Furthermore, sequenceLDhot appears to give the most optimal performance in
detecting and validating cross-over hotspots.

Keywords: Coalescent, Population genetics, Linkage disequilibrium, Recombination, Single nucleotide
polymorphism
Background
Coalescent simulation is a very useful tool in population
genetics with a rich variety of applications, particularly
to evaluate and compare performances of various statis-
tical methods in rare variant analysis [1-3], to estimate
parameters for different population histories [4,5] and to
infer phylogenetic trees [6]. In simulating DNA sequence
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data for studying human complex diseases, recombin-
ation hotspots, defined as genomic intervals with local
recombination rates increased relative to that of the sur-
rounding DNA region, need to be taken into account
given their ubiquity in the human genome [7]. Further,
population geneticists are interested in examining haplo-
type block patterns delineated by recombination hot-
spots along chromosomes in fine-mapping locations of
disease loci. Over the past decade, a plethora of coales-
cent simulators have been developed, e.g. SelSim [8],
CoaSim [9], FastCoal [10], Mlcoalsim [11], and RECOAL
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[12], to name a few. Of them, five most representative and
widely used coalescent simulators, Hudson’s ms [13],
msHOT [14], Markovian Coalescent Simulator (MaCS)
[15], Simcoal2 [16], and fastsimcoal [17].
Coalescent process, based on the neutral Wright-

Fisher Model, was first introduced by Kingman [18,19]
(Figure 1). Simulating the entire ancestral recombination
graph (ARG) [13,20] encompassing all coalescent and
recombination events in the past for a sample of DNA
sequences imposes a considerable computational bur-
den. In 2002, Hudson [13] developed ms, a Monte Carlo
program based on standard coalescent that assumes an
infinite-sites model for mutational events, which allows
for recombination and gene conversion events, as well
as symmetric migrations of subpopulations. While the
standard coalescent starts at the present time and simu-
lates backward in time, Wiuf and Hein (1999) are the
first to introduce a sequential interpretation of the co-
alescent with recombination [21], such that genealogies
could be simulated by moving along a DNA sequence.
Based on the Wiuf and Hein algorithm, McVean and
Cardin in 2005 developed a sequential Markov coales-
cent (SMC) method [22]. The SMC starts with a coales-
cent tree at the left-hand end of the sequence and
progressively modifies the tree with recombination
events as it moves to the right, and has been shown to
produce patterns of polymorphisms and linkage disequi-
librium (LD) extremely similar to those generated under
a classical ARG model [10,15,23]. SMC’, an improved al-
gorithm based on the SMC method, was developed by
Marjoram and Wall in 2006 [10], such that a lineage
Figure 1 Kingman’s coalescent process. It starts from the current gen
common ancestral (MRCA, orange solid circle). Two individuals (green s
distributions of allele frequencies in successive generations follow a Wright
separated by a recombination event is allowed to also at-
tach to its old path (Figure 2). While retaining the speed
and memory efficiency of SMC, SMC’ appears signifi-
cantly more accurate when benchmarked by the exact
coalescent process. MaCS, also a variant of the Wiuf and
Hein algorithm, generates simulated data that are virtually
identical to data simulated under the standard coalescent,
but in much less time and using much less memory.
MaCS is considered as a “generalized” SMC, which could
provide a better approximation to results of standard co-
alescent than SMC, by tuning a user-specified “history”
parameter h denoting a sequence length [15]. Taken to-
gether, both SMC’ and MaCS give closer approximations
to standard coalescent than SMC.
Although a set of DNA sequences with a pre-determined

number of recombination hotspots at user-defined posi-
tions could be generated by msHOT, MaCS, Simcoal2,
and fastsimcoal, there appears to be a lack of rigorous val-
idation of hotspot detection software tools in the current
literature. Popular computer programs for discovering re-
combination hotspots include LDMAP [24], LDhot [7,25],
LDhat 2.2 rhomap package [26], Hotspotter [27], and
sequenceLDhot [28]. The widely used Haploview program
[29,30] is also an appealing tool to visually localize recom-
bination hotspots given the delineated LD block structure.
Based on popularity, LDhat 2.2 rhomap, sequenceLDhot,
and Haploview programs were chosen for detecting re-
combination hotspots in both real data and simulated data
generated by the coalescent process. Because sequenceLD-
hot gave the best performance in inferring locations of
cross-over hotspots, recombination hotspots simulated by
eration (bottom) tracing backward in time to the most recent
olid circles) coalesced at the sixth generation backward time. The
-Fisher model.



Figure 2 A simple ancestral recombination graph for illustrative purpose. The ancestral sequence is “ACGT” (top). After four mutations
(denoted by m1, m2, m3, and m4, respectively) and two recombination events [denoted by (2, 3) and (3, 4), respectively], it has evolved into five
(four distinct) present-day sequences, i.e., “TGGT”, “TGGT” (i.e., same as the sequence to the left), “TCCT”, “ACGT”, and “ACGA”. Notation m1 indicates
an A→T mutation on locus 1. Notation (2, 3) denotes a recombination between alleles at loci 2 and 3.
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msHOT, MaCS, and fastsimcoal were subject to validation
by sequenceLDhot.
Methods
Coalescent process
Coalescent process was initially derived as an approxi-
mation of the neutral Wright-Fisher model. This ap-
proximation works well when sample sizes are small
relative to the population size. Mutations are assumed
to be Poisson distributed along each branch given the
mutation rate and branch length. Normally, an infinite-
sites model [31] is assumed, which means no recurrent
mutations occur. Each recombination event breaks the
sequence into several segments, and each segment is
modeled by a genealogy tree. Simulation of recombin-
ation hotspots is realized by changing the rates where
these recombination events occur. The process that in-
cludes both mutation and recombination events is illus-
trated by ARGs (Figure 2). The SMC is an approximating
algorithm for simulating a series of trees that differ
from each other by a single recombination event, starting
from the left end and moving to the right end of the DNA
sequence.
Wright-Fisher model
Consider a population of constant size consisting of N dip-
loid individuals, which means there are 2N copies for a given
gene. Generations are assumed to be non-overlapping and
denoted by T = 1, 2, . . .. Each individual in the next gener-
ation receives two copies of the gene (one from each parent)
and for each respective parental copy, the gene is selected
randomly and with replacement from the two copies of the
gene present among the parents. At time T = 1, with-
out loss of generality, assume i (e.g., i =2) of these gene
copies are of type A. Let YT denote the random vari-
able for the number of type A gene at the time of T,
then YT|YT-1 = yT-1 ~ Bin (2N, yT-1/2N), such that

P YT ¼ yT jYT−1 ¼ yT−1ð Þ ¼ 2N
yT

� �
yT−1
2N

� �yT 1− yT−1
2N

� �2N−yT ;

where yT denotes the realized value of the random
variable YT.
Based on this model, the trajectory of the coalescent

process (Figure 1) tracing from the current generation
backwards in time to the generation where A is coa-
lesced could be modeled. The current generation could
then be simulated through this trajectory given a ran-
dom seed.
ARG
Figure 2 illustrates a simplest ARG [32]. Take the third
4-letter sequence “TCCT” as an example. The common
ancestral sequence evolves into two branches. For each
branch, mutations have taken place on alleles at loci 1
and 3, respectively, giving rise to “TCGT” and “ACCT”.
Next, a recombination event arises between these two
sequences on (2, 3), and “TCCT” is produced. In the
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standard coalescent, a full ARG delineating all past
coalescent and recombination events is constructed,
with simulated samples corresponding to the edges of
the graph.

SMC approach and its two variants (SMC’ and MaCS)
In contrast to standard coalescent which starts at the
present time and is simulated backwards in time, the
SMC approach [22] builds a coalescent tree by moving
along the DNA sequence starting from the left end,
and progressively updates the tree by incorporating
recombination event(s) until the right end of the tree
is reached. The region flanked by two neighboring re-
combination events is modeled by a local tree. Recombin-
ation is assumed to follow an exponential distribution
along the sequence. A recombination event occurs ran-
domly along the current tree, and the detached recombin-
ing lineage is free to coalesce with the other remaining
lineages, leading to a new tree with a potentially different
topology and most recent common ancestor (MRCA)
(Figure 3A). SMC’ [10], a variant of SMC, allows the de-
tached lineage cut by recombination event to coalesce
with the exact same branch where it is detached from
(Figure 3B), and results in a closer approximation to exact
standard coalescent. MaCS algorithm [15], also a modified
SMC algorithm, further allows for coalescence with trees
one recombination away on the left hand side, thus
achieving a higher accuracy than SMC in approximating
the standard coalescent. Fastsimcoal [17], a completely re-
written continuous-time implementation of Simcoal2 [16],
implements a fast SMC’ that allows for multiple recom-
bination events between markers at fixed recombination
distances on the sequence.
Figure 3 Illustrations of Sequential Markov Coalescent (SMC) and the
that a cut lineage was re-attached to the remaining tree. (B) Re-attachmen
the old path was allowed.
Detection of recombination hotspots
The LDhat 2.2 rhomap package [26], sequenceLDhot [28],
and Haploview program [29,30] were applied respectively
to detect recombination hotspots in the simulated se-
quences. LDhat is a popular software for estimation of re-
combination rates, which was developed based on Bayesian
reversible-jump Markov Chain Monte Carlo (MCMC) al-
gorithm, and rhomap is a new method incorporated into
LDhat 2.2 that specializes in fitting cross-over hotspot
model. Another widely used computer program in detect-
ing recombination hotspots— sequenceLDhot, uses an ap-
proximate marginal likelihood method of [33] to estimate
a likelihood ratio (LR) statistic to unveil a cross-over hot-
spot. Further, Haploview was implemented to obtain a
visualization of the LD block structure that could reflect
varying recombination rates along a contiguous DNA
sequence.

Real data set
The 216-kb human leukocyte antigen (HLA) class II
region is a well-studied region where recombination hot-
spots have been identified with sperm typing technology
[34-36]. The original data set analyzed in the current study
(http://www.le.ac.uk/ge/ajj/HLA/Genotype.html) contains
genotype data for 50 unrelated UK Caucasians for 296
markers [i.e., 264 single nucleotide polymorphisms (SNPs)
and 22 1–11-bp insertion/deletion polymorphisms] [35].
A subset of 263 SNPs without missing data were se-
lected for recombination hotspot detection. Multi-
locus haplotypes are required as an input for hotspot
detection programs such as sequenceLDhot, and they
provide crucial phase information that is important
for understanding haplotype structure [37,38]. Therefore,
variant SMC’ algorithms. (A) Re-attachment process of SMC, such
t process of a variant of SMC named SMC’ , such that a re-attaching to
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haplotypes across the 263 SNPs were reconstructed by
PHASE v2.1 program, a haplotype inference method
based on the (i) coalescent theory using a variant of
canonical Gibbs sampling [33,39], (ii) an LD decay model
[40], and (iii) the partition-ligation algorithm [41]. In total,
100 haplotypes for the 216-kb region were statistically
inferred.

Simulation data sets
In order to assess the running efficiency with or without
recombination hotspots, we simulated a set of DNA
sequences (i.e., haplotypes) according to 0-, 2-, and 5-
hotspot models using these five simulators respectively.
All three hotspot models were simulated based on se-
quences with lengths 1- and 5-Mb, respectively. For each
hotspot model and each sequence length, we simulated
sample sizes (i.e., number of sequences) of 100, 500, 1,000,
and 10,000, respectively. We implemented a symmetric
two-island model with a total effective population size of
10,000. The recombination rate and mutation rate were
both assumed to be 1.0 × 10-8 per site. Fifty replicates
were done and the running times were recorded. All simu-
lations were run on the platform — Linux OS, 2.0-GHz
CPU, 1TB-RAM.
To validate the recombination hotspot position and in-

tensity accuracy, we simulated the data sets according to
2- and 5-hotspot models along a 200-kb long DNA se-
quence. The recombination hotspots’ intensities were set
to be 100 times higher compared to the background re-
combination rates.
Table 1 Feature comparisons of five widely used coalescent s

Category ms msHOT

Hotspot No Yes

Gene Conversion Yes Yes

Ascertainment No No

Algorithm SC† SC

Admixture Yes Yes

Multiple event/Gen No No

Migration Yes Yes

Population structure Symmetric Symmet

Different data types No No

Arbitrary pattern of recombination No Yes

Computation speed Moderate Modera

Sampling simulation parameters No No

Publication Year 2002 2007

# of Citations** 1,300 52
†Standard coalescent.
#Modified version of Sequential Markov Coalescent.
*Discrete time generation-by-generation simulation.
**Google Scholar (as of December 23, 2013).
Results
Features comparison
The features of the five simulators (i.e., ms, msHOT,
MaCS, Simcoal2, and fastsimcoal) are shown in Table 1.
Except for ms, all the other four simulators are able to
simulate recombination hotspots with arbitrarily chosen
recombination rates. Simcoal2 and fastsimcoal cannot
simulate gene conversion events, whereas ms, msHOT,
and MaCS could. MaCS, Simcoal2 and fastsimcoal allow
stochastic uncertainty in sampling of segregating sites to
be incorporated as a factor. For simulating rare mutation
events, the desired allele frequencies could be preset for
MaCS, Simcoal2 and fastsimcoal, but not for ms and
msHOT. One of the advantageous features is that these
coalescent simulators are able to simulate according to
presumed migration patterns (e.g., between subpopula-
tions residing in islands A and B), although the popula-
tion structures vary to some degree — ms, msHOT and
MaCS require these subpopulations to be symmetric
across all islands (i.e., islands A and B must have equal
sample sizes, but A→B and B→A migration rates could
differ), while both Simcoal2 and fastsimcoal allow for ar-
bitrarily chosen population structures (i.e., these pro-
grams allow for asymmetry). This feature makes the
coalescent simulation a good choice for simulating ad-
mixture populations. Both Simcoal2 and fastsimcoal
could simulate a mixture of different data types includ-
ing DNA sequences, SNPs, microsatellites, which make
them good tools for studying a variety of chromosome
structures. In particular, the coalescent simulation strategy
imulators

MaCS Simcoal2 Fastsimcoal

Yes Yes Yes

Yes No No

Yes Yes Yes

SMC’# Gen-By-Gen* SMC’

Yes Yes Yes

No Yes No

Yes Yes Yes

ric Symmetric Arbitrary Arbitrary

No Yes Yes

Yes Yes Yes

te Fast Slow Fast

No No Yes

2009 2004 2011

82 185 16
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of fastsimcoal2 adopts a so-called “Approximate Bayesian
Computation (ABC)” [42] to estimate the demographic
parameters and the mutation and recombination rates,
which has a unique feature that allows for sampling
simulation parameters from predefined prior distribu-
tions, thus facilitating simulations for estimating the
parameters. Because Simcoal2 implements a discrete
time generation-by-generation simulation, it allows for
multiple coalescent events per generation. However, the
generation-by-generation simulation is very time-consuming,
which significantly lowers its computational speed (see
below).

Running efficiency
For each design of simulation, we generated 50 replicates
according to our simulation settings (see simulation data
sets in Methods section) and the average execution
times are presented in Tables 2 and 3. For simulations of
a 1-Mb sequence (Table 2), all the simulations could be
performed within 6 minutes. When sample size was in-
creased to 10,000, both ms and msHOT gave a segmen-
tation fault error on our platform (Linux OS, 2.0-GHz
CPU, 1TB-RAM) when 0-hotspot model was simulated.
For simulations of a 5-Mb sequence (Table 3), both ms
and msHOT gave segmentation fault errors when the
sample sizes exceeded 500. This indicates the limitations
of ms and msHOT in simulating long sequences and
for large sample sizes. It is interesting that when re-
combination hotspots are simulated, msHOT is able
to simulate long DNA sequences for large sample
sizes. This is because msHOT is exactly the same as
ms when simulating a 0-hotspot model. When simu-
lating 2- and 5-hotspot models, msHOT and Simcoal2
performed much slower than MaCS and fastsimcoal
Table 2 Average (50 replicates) execution time (standard dev
pre-specified number of recombination hotspots (mm:ss)*

Number of hotspots N ms msH

0 100 0:01 (2×10-3) 0:02

500 0:01 (2×10-3) 0:04

1,000 0:02 (5×10-3) 0:06

10,000 — —

2 100 — 1:28

500 — 1:43

1,000 — 1:51

10,000 — 2:39

5 100 — 2:48

500 — 3:14

1,000 — 3:33

10,000 — 4:27

* “N” denotes sample size (i.e., the number of DNA sequences) for each replicate. “—
with recombination hotspots).
because of algorithmic differences. Further, when the
number of hotspots got larger, msHOT performed slower
than Simcoal2. To simulate 1,000 DNA sequences
(i.e., haplotypes), it could take three and a half hours for
msHOT, and one and a half hours for Simcoal2, re-
spectively. In contrast, MaCS and fastsimcoal were
much faster – simulating 1,000 of 5-Mb sequences
under the 5-hotspot model took only 90 seconds for
MaCS and 40 seconds for fastsimcoal, respectively. For all
simulation settings, fastsimcoal always performed a little
faster than MaCS (Tables 2 and 3). It is worthy to
mention that increasing the number of hotspots did
not affect the execution times for MaCS, Simcoal2,
and fastsimcoal, but did so for msHOT.

Validation of recombination hotspots
For real data based on the HLA class II region, LDhat
2.2 rhomap, sequenceLDhot and Haploview were applied
to detect the six recombination hotspots (i.e., DNA1,
DNA2, DNA3, DMB1, DMB2, and TAP2) identified by
sperm typing [43]. This 216-kb region has a comparable
length to that of our simulated data (200-kb). Results of
these three hotspot detection programs are shown in
Figure 4. The Haploview plot displayed a rugged “block-
like” pattern of haplotype structure (top panel), which
did not reveal precise locations of these recombination
hotspots. Since LDhat 2.2 rhomap adopted the MCMC
approach, the estimation of recombination rates along
the DNA sequence was performed in five runs in order
to determine the consistency across different runs. For
each time, we ran rhomap for a total of 10,000,000 itera-
tions including a burn-in of 1,000,000 iterations and tak-
ing a sample every 5,000 iterations, As suggested by the
LDhat 2.2 user manual, both block penalty and hotspot
iation) of simulating 1-Mb sequence data with a

OT MaCS Simcoal2* Fastsimcoal

(0:01) 0:01 (0:00) 1:51 (0:03) <0:01 (4×10-4)

(0:01) 0:06 (0:01) 2:19 (0:04) 0:03 (3×10-3)

(0:01) 0:23 (0:02) 2:34 (0:08) 0:08 (0:01)

5:42 (0:13) 3:51 (0:07) 2:18 (0:03)

(0:02) 0:03 (0:01) 1:51 (0:06) <0:01 (3×10-4)

(0:05) 0:10 (0:01) 2:45 (0:08) 0:03 (0:01)

(0:05) 0:25 (0:03) 2:50 (0:09) 0:08 (0:01)

(0:07) 5:43 (0:10) 4:27 (0:11) 2:22 (0:03)

(0:05) 0:02 (0:01) 2:30 (0:06) <0:01 (9×10-4)

(0:07) 0:10 (0:02) 2:41 (0:05) 0:03 (5×10-3)

(0:06) 0:23 (0:02) 3:24 (0:07) 0:09 (0:02)

(0:11) 5:36 (0:15) 4:10 (0:09) 2:32 (0:05)

” denotes a segmentation fault (e.g., ms could not simulate sequence data



Table 3 Average (50 replicates) execution time (standard deviation) of simulating 5-Mb sequence with recombination
hotspots (hh:mm:ss)*

Number of hotspots N ms msHOT MacsCS Simcoal2* Fastsimcoal

0 100 1:48 (0:03) 1:49 (0:03) 0:17 (0:02) 1:08:23 (4:22) 0:03 (4×10-3)

500 — — 0:48 (0:03) 1:17:02 (4:41) 0:16 (0:02)

1,000 — — 1:39 (0:07) 1:20:57 (7:23) 0:40 (0:02)

10,000 — — 29:45 (1:22) 1:55:01 (8:21) 12:36 (0:14)

2 100 — 1:36:18 (8:41) 0:17 (0:03) 1:16:16 (4:30) 0:03 (4×10-3)

500 — 1:54:09 (6:20) 0:51 (0:08) 1:17:29 (6:23) 0:17 (0:03)

1,000 — 1:59:32 (7:30) 1:32 (0:10) 1:25:50 (7:31) 0:40 (0:03)

10,000 — 2:02:28 (10:52) 30:02 (3:04) 2:08:31 (7:24) 13:01 (0:10)

5 100 — 3:08:45 (13:11) 0:19 (0:3) 1:09:38 (7:10) 0:04 (0:01)

500 — 3:23:29 (16:08) 0:49 (0:07) 1:10:59 (10:03) 0:17 (0:02)

1,000 — 3:31:39 (17:14) 1:34 (0:12) 1:24:10 (9:37) 0:41 (0:05)

10,000 — 4:12:07 (20:06) 36:50 (5:47) 1:57:03 (14:20) 13:17 (0:12)

* “N” denotes sample size (i.e., the number of DNA sequences) for each replicate. “—” denotes a segmentation fault (e.g., ms could not simulate sequence data
with recombination hotspots).
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penalty were set to be 0’s. As shown in Figure 4 (middle
panel), moderate variations across these five runs were
observed (results shown by different colors), and the
positions of the six recombination hotspots were not in-
dubitably discernable. The LR graph for the estimation
results by sequenceLDhot provided the most accurate
results, correctly identifying five of the six recombin-
ation hotspots, but not the leftmost hotspot (i.e., DNA1)
which is the weakest hotspot spaced very close to the
adjacent DNA2 hotspot (Figure 4; bottom panel). For
simulated data, we first simulated a total of 100 DNA se-
quences (200-kb in length) for 368 SNPs based on a 1-
hotspot model by MaCS. LDhat 2.2 rhomap was run five
times (results shown by different colors) to detect this
recombination hotspot for a single simulation data set.
Then, sequenceLDhot was run to detect the recombin-
ation hotspot. Among the five runs of LDhat 2.2 rho-
map, only one run appeared to identify the correct
hotspot peak (100-kb position), and the results across
these five runs were not consistent (Figure 5; top panel).
By contrast, sequenceLDhot precisely detected the re-
combination hotspot at the correct position (Figure 5;
bottom panel). We also simulated a total of 100 DNA
sequences (200-kb in length) for 459 SNPs based on a 2-
hotspot model by fastsimcoal. Haploview results gave
rise to a rumpled LD pattern that could be barely per-
ceived as three “fuzzy” LD blocks (i.e., left, middle and
right), but the precise locations of the two recombin-
ation hotspots were far from clear (Figure 6; top panel).
However, sequenceLDhot correctly detected the two
simulated recombination hotspots at expected 70- and
140-kb positions (Figure 6; bottom panel) unambigu-
ously. Taken together, our results based on both real and
simulated data indicate that for hotspot detection, LDhat
2.2 rhomap performed much less accurate than sequen-
ceLDhot, and the visual discernment of recombination
hotspots based on the Haploview plot was much less
obvious as compared with results of sequenceLDhot.
Therefore, sequenceLDhot was chosen as the software
tool to validate the recombination hotspots from sim-
ulated data by various coalescent simulators, which
was shown to be much more robust and accurate in
detecting recombination hotspots than the other two
computer programs. Twenty replicates for each simu-
lation setting (see Simulation data sets subsection in
Methods section) were simulated for each coalescent
simulator. Two types of metrics were applied in assessing
the accuracy of the simulated recombination hotspots. The
first metric is the proportion of simulated hotspots that
could not be detected by sequenceLDhot based on a hot-
spot intensity threshold. The other metric is the extent of
shifting of the detected hotspot position from the expected
position. We define a recombination hotspot shifting > 1-
kb (to either left or right) as a significant shifting. For each
recombination, hotspot, sequenceLDhot provided an esti-
mated value of the LR statistic. If the LR exceeded a prede-
fined threshold (denoted as c), the hotspot would be
treated as a significant one. The higher the LR, the more
certain the corresponding hotspot. We chose the default
parameter settings such that the width (w) of the hotspot
was 2,000-bp, and the spacing (l) was 1,000-bp. The value
of c of LR for claiming a significant hotspot was set to be
10. Of the five programs, only msHOT, MaCS, and fas-
tsimcoal were selected for comparisons because ms could
not handle a user-specified hotspot model (Tables 1, 2, 3)
and Simcoal2 was not so scalable (Table 4).
When sequence data were simulated according to the

2-hotspot model, sequenceLDhot detected 39 of the



Figure 4 The linkage disequilibrium block structure generated by Haploview for the 216-kb human HLA class II region (total 263 SNPs)
based on 100 haplotypes reconstructed by PHASE v2.1 (top panel), LDhat 2.2 rhomap estimation results of five runs for detecting re-
combination hotspots (middle panel; five different colors denote these different runs), and cross-over hotspot peaks revealed by the
likelihood ratio graph generated by sequenceLDhot (bottom panel).
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total 40 hotspots from data simulated by msHOT, and of
the detected ones, two shifted significantly away from
their expected positions. The mean shifting of all de-
tected hotspots was 26-kb to the left. It had the highest
mean LR (45.83) and the lowest standard deviation
(18.35) (Table 4). Data simulated by MaCS had the low-
est mean LR (28.73) and the highest standard deviation
(23.36), with 38 of the total 40 hotspots detected and 4
of the detected ones significantly shifted. The mean
shifting of recombination hotspots simulated by MaCS
was 86.65-kb. Hotspots simulated by fastsimcoal had the
smallest shifting — a mean of 10.8-kb, but had the least
number of significant ones found by sequenceLDhot —
36 of 40. Two of the detected ones were found signifi-
cantly shifted. Thus, our simulation results based on 2-
hotspot model showed that, MaCS had the poorest per-
formance, with the largest mean shifting and number of
significant shiftings, whereas msHOT and fastsimocal
had comparable performances. For simulations accord-
ing to the 5-hotspot model, fastsimcoal-simulated data
had the best performance, with 94 out of 100 hotspots
detected by sequenceLDhot, as compared to 91 out of
100 for msHOT-simulated data, and 93 out of 100 for
MaCS-simulated data. Besides, it had the highest mean
LR (48.78) and the lowest standard deviation (22.06). Its
mean shifting was also the lowest (i.e., 35-kb to the left),



Figure 5 LDhat 2.2 rhomap estimation results of recombination rates for simulation data of a 200-kb DNA sequence for five runs for
detecting recombination hotspots in a single simulation data set (top panel; five different colors denote these different runs) (368
SNPs; a total of 100 DNA sequences was simulated based on a 1-hotspot model by MaCS) versus cross-over hotspot peaks revealed by
the likelihood ratio graph generated by sequenceLDhot (bottom panel).
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while the number of significantly shifted hotspots was
comparable to that of MaCS and smaller than that of
msHOT. The mean shifting for msHOT was substan-
tially higher than those of MaCS and fastsimcoal, which
was 981.23-bp to the left. In our simulations based on
the 5-hotspot model, fastsimcoal had the most stable
performance and generated the most accurate recom-
bination hotspots whereas msHOT had comparatively
the worst performance of the three coalescent simula-
tors. Figure 7 showed positions of hotspot peaks de-
tected by sequenceLDhot from data simulated by msHOT
(Figure 7), MaCS (Figure 7B), and fastsimcoal (Figure 7C)
according to the 5-hotspot model. For each model, for the
sake of clarity, we randomly selected five of the 20 repli-
cates, and then superimposed them on the same graph.
Each color represents a replicate. All these five lines were
supposedly to be matched perfectly with 5 hotspot peaks
at positions 3-, 6-, 9-, 12-, and 15-kb, respectively, if all
the simulations were accurate. However, the positions of
hotspot peaks detected from data simulated by msHOT
were not consistent across the five replicates (Figure 7A).
A significant shifting was observed for one of the five rep-
licates (red line), and the LRs of the five hotspot peaks
across the five replicates exhibited dramatic variations
(Table 4 and Figure 7A). If an LR of 6 was applied as the
threshold to define hotspot peaks, 6 (16.13%) were “noisy”
(i.e., incorrect) peaks out of the 31 total detected peaks
(i.e., LR > 6) (Figure 7A) from data simulated by msHOT.
Hotspot peaks detected from MaCS-simulated data
appeared more consistent (Figure 7B) — No significant
shiftings were detected and 5 (16.67%) “noisy” peaks out of
30 total detected peaks were found. For fastsimcoal-
simulated data sets, no “noisy” peaks were found (i.e., all
25 detected peaks were correct) and the positions of these
hotspot peaks were the most consistent (Figure 7C). A
similar pattern was shown when the LR graph was gener-
ated for all 20 data sets simulated by each of msHOT,
MaCS, and fastsimcoal (data not shown). Therefore, al-
though msHOT could be applied to simulate recombin-
ation hotspot peaks, their positions appear to be less



Figure 6 The linkage disequilibrium block structure generated by Haploview for a 200-kb DNA sequence with 2 hotspots (total 459
SNPs) based on 100 DNA sequences simulated under a 2-hotspot model by fastsimcoal (top panel) versus cross-over hotspot peaks
revealed by the likelihood ratio graph generated by sequenceLDhot (bottom panel).
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precise compared to those of MaCS and fastsimcoal, at
least based on a 5-hotspot model.

Discussion
Advances in next-generation sequencing technologies
have resulted in a dramatic increase in generating whole
genome sequence data. There is an urgent need to de-
velop novel methods for analyzing such huge amounts
of data. Along with it, computer simulation of genome-
wide data is also crucial. Coalescent model has been the
most attractive model in population genetics, and is
Table 4 Validation results by sequenceLDhot for 2- and 5-hot
length = 0.2-Mb)

Number of
hotspots

Simulator # Detected peaks/Total #
simulated peaks

Me
de

2 msHOT 39/40 4

MaCS 38/40 2

fastsimcoal 36/40 4

5 msHOT 91/100 4

MaCS 93/100 4

fastsimcoal 94/100 4

*A negative number indicates a shifting to the left of the expected position.
†A significant shifting was defined as a shifting out of the range defined by ± 1-kb
widely recognized as the cornerstone in statistical ana-
lysis of DNA sequences [44]. The quintessential feature
of coalescent is to start with the current sample of DNA
sequences and then trace backward in time to identify
past events since their MRCA [44,45]. The standard
coalescent provides an accurate characterization of ge-
nealogies of haploid individuals of constant size, which
can incorporate recombination [13,45,46]. However, the
original standard coalescent does have several restrictive
features based on the neutral theory that limits its applica-
tion to real-world DNA sequences, and has been extended
spot models (20 replicates each) (genomic sequence

an (standard
viation) of LR

Mean shifting
(kb)*

# Significant shiftings†/#
Detected peaks

5.83 (18.35) −26 2/39

8.73 (23.36) 86.65 4/38

1.16 (20.75) 10.8 2/36

7.49 (28.87) −981.33 13/91

3.32 (25.48) −57 11/93

8.78 (22.06) −35 14/94

away from the expected peak position.



Figure 7 Validation results of positions and intensities for recombination hotspots (genomic sequence length = 0.2-Mb) simulated
under a 5-hotspot model by sequenceLDhot for five randomly selected replicates out of total 20 simulated data sets by (A) msHOT
(a red arrow indicates a shifted replicate), (B) MaCS, and (C) fastsimcoal. In each panel, five different colors denote five different replicates.
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to handle selection [47-49], gene conversion [14,50,51],
and migration [52-55]. As indicated by [53], the gener-
ating models based on coalescent theory should resemble
real data as much as possible. Therefore, even the exact
standard coalescent might not be the “best” model that
could generate simulated data “most” similar to present-
day DNA sequences. Nevertheless, the coalescent model
based on the Wright-Fisher model is a theoretically
convenient and reasonable approximation to real-world
scenarios. By incorporating prior information based on
coalescent theory, PHASE v2.1 [33,39,40] significantly
improved phasing accuracies for both real and simu-
lated data sets. Therefore, standard coalescent re-
mains a widely applied tool in modeling real-world
DNA sequences. However, standard coalescent imple-
mented based on full ARGs incurs a high computa-
tional cost for a relatively long DNA sequence (e.g., >
5-Mb), making it difficult to simulate DNA sequences
at the genome scale for a large sample size (e.g., >
500). To overcome this obstacle, SMC, an approxima-
tion to standard coalescent, has been developed which
scales linearly with the length of the DNA sequence
being simulated from the left to the right, and has
the remarkable advantage of being much faster and
more extensible than standard coalescent algorithm
[15]. Based on variants of SMC, both MaCS and fas-
tsimcoal could generate LD patterns of DNA sequences
very close to those generated under a classical ARG model
but much more swiftly [17].
After our extensive simulations based on five widely

used programs, for simulating up to a few hundred of
samples (sequences) with sequence lengths spanning
several Mbs, Hudson’s ms is a great choice for its flexi-
bility in handling historical events and robust modeling.
For simulating sequences up to tens of or a few hundred
of Mbs or a large number of samples, ms is no longer
adaptable. In our simulations, ms could not handle
10,000 samples for a 1-Mb sequence or 500 samples for
a 5-Mb sequence. The basic algorithm of msHOT [14] is
an extended version of ms (which generates ARGs for a
sample of chromosomes based on coalescent theory) by
adding both recombination hotspot and gene conversion
hotspot models to the implementation of standard co-
alescent by ms. In simulating the simplest scenario of 0-
hotspot model assuming also no gene conversions, the
implementation of msHOT appears to be the same as
that of ms (because there is no necessity to invoke com-
plex cross-over and gene conversion hotspot models).
However, when there is at least one recombination hot-
spot in the simulated DNA sequences, the implementa-
tion of msHOT algorithm must differ from that of ms to
account for the presence of recombination hotspot(s) in
coalescent simulation. As stated in [14], the modification
of msHOT allows the user to insert any pre-specified non-
overlapping cross-over hotspots and non-overlapping
gene conversion hotspots into the genetic region by speci-
fying the locations and intensities for each. Specifically,
incorporating R recombination hotspots requires the user
to specify a left endpoint (ah), right endpoint (bh), and
intensity (Ih) for each hotspot h, where h = 1, …, R.
Inside a given hotspot h, the probability of a recombin-
ation occurring between two adjacent base pairs in a sin-
gle transmission from parent to offspring is λhrbp. Outside
recombination hotspot(s), this probability is the re-
combination probability per base pair — rbp. That is the
reason when for simulating scenarios for 2- and 5-hotspot
models, msHOT performance appears to be much slower
(to account for the extra complexity introduced by the
user-defined recombination hotspots) than for the 0-
hotspot model. In addition, in the absence of a recombin-
ation hotspot, just like ms, msHOT could not handle a
sample size of 10,000 sequences for simulating 1-Mb
DNA sequence data (Table 2) or sample sizes of 500,
1,000, and 10,000 for simulating 5-Mb DNA sequence
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data (Table 2). However, in the presence of at least one re-
combination hotspot, by taking a very different imple-
mentation compared to ms by including a more complex
hotspot model, msHOT could handle such large sample
sizes. By contrast, MaCS, which is based on a modified
SMC algorithm, could achieve coalescent simulations for
many more samples with much longer length, while ac-
curately approximating the results simulated by standard
coalescent (i.e., ms) and maintaining its flexibility. Theor-
etical interpretations for empirical observations of Table 3
are as follows. When simulating 2- and 5-hotspot models
for relatively long DNA sequences (i.e., 5-Mb),
msHOT (built on an extended algorithm based on
ms) and Simcoal2 [built on a discrete generation-by-
generation approach (rather than a continuous time ap-
proximation)] are understandably much slower than MaCS
and fastsimcoal due to their critical algorithmic differences
— MaCS has taken a faster modified SMC approach and
fastsimcoal has also taken a computationally more efficient
SMC’ approach. As indicated in Background section, the
SMC method of [22], and the SMC’ method of [10] are
both approximations to the standard coalescent algorithm,
which have the advantage of being much faster. Specifically,
MaCS [15] is a generalized SMC which is equivalent to
SMC when the “history” parameter h = 1 bp, but becomes
a closer approximation to ms than SMC when h increases
(such that more information of adjacent genealogies are
stored). Generally speaking, MaCS produces simulated data
that are virtually identical to data simulated under the
standard coalescent, but in much less time and using much
less memory [15]. Similar to MaCS, fastsimcoal is based on
a continuous-time SMC’ by applying ABC, which is much
faster than msHOT or discrete generation coalescent ap-
proach of Simcoal2 that also gives excellent approximations
to standard coalescent with a much quicker speed [17].
Based on cross-over hotspot validation results (Table 4

and Figure 7), recombination hotspots simulated by MaCS
did not appear to be as accurate as those of msHOT and
fastsimcoal for a 2-hotspot model. For a 5-hotspot model,
MaCS outperformed msHOT, but fastsimcoal was the most
accurate simulator. When there is a demand for simulating
DNA sequences under a variety of population genetic
models [especially in the presence of cross-over hotspot(s)],
fastsimcoal appears to be the best choice. Different data
types [DNA, SNP, simple tandem repeat (STR)] and se-
quences of different structures could be simulated by fas-
tsimcoal, in addition to its advantages in terms of efficiency,
accuracy, and capability of generating any user-defined pat-
terns of recombination hotspots. From a practical stand-
point, when a set of recombination hotspots need to be
simulated, msHOT, MaCS, and fastsimcoal are all applic-
able, but msHOT performed much slower than MaCS and
fastsimcoal, and had the lowest accuracy based on valid-
ation results of sequenceLDhot.
Conclusions
While Hudson’s ms remains an excellent choice for
simulating relatively short DNA sequences (< several
Mbs) under general scenarios, MaCS and fastsimcoal are
much more scalable and flexible in simulating many dif-
ferent demographic histories and diverse DNA sequence
structures (e.g., SNPs and STRs). Based on both running
time and hotspot validation comparisons, fastsimcoal is
shown to be the fastest and most reliable and consistent
coalescent simulator, especially when the number of hot-
spots is large. MaCS is a runner-up with a lower speed
and a slightly less accuracy. Based on our extensive
simulation evaluation and comparison results, cautions
should be taken in applications of these widely used co-
alescent simulators, such that sequence data simulated
by a given software should be checked and validated —
e.g., the positions and intensities of recombination hot-
spots, to guard against any discrepancy between the
intended objective and the actual simulation results. Fur-
ther, for detecting and validating recombination hot-
spots, among the three widely used computer programs,
sequenceLDhot appears to be the best choice— fast, ro-
bust and accurate. In real-world DNA sequence data, a
variety of factors such as GC content, local LD block
structure, DNA elements that act as enhancers or inhibi-
tors of recombination [56-58], could affect the intensities
and locations of recombination hotspots along a given
chromosome. For example, recombination hotspots cor-
relate positively with GC content [59,60]. Further, cer-
tain DNA motifs are enriched in cross-over hotspots,
among which CCTCCCT and CCCCACCCC are the
most prominent [61]. Thereafter, in real-world scenarios,
these factors should be taken into consideration in iden-
tifying genuine cross-over hotspots.
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