Tikole et al. BMC Bioinformatics 2014, 15:46
http://www.biomedcentral.com/1471-2105/15/46

BMC
Bioinformatics

METHODOLOGY ARTICLE Open Access

Peak picking NMR spectral data using
non-negative matrix factorization

Suhas Tikole', Victor Jaravine', Vladimir Rogov', Volker Détsch' and Peter Guntert'?”

Abstract

unambiguous resonance assignments‘

dimensions of other experiments.

Background: Simple peak-picking algorithms, such as those based on lineshape fitting, perform well when peaks
are completely resolved in multidimensional NMR spectra, but often produce wrong intensities and frequencies for
overlapping peak clusters. For example, NOESY-type spectra have considerable overlaps leading to significant
peak-picking intensity errors, which can result in erroneous structural restraints. Precise frequencies are critical for

Results: To alleviate this problem, a more sophisticated peaks decomposition algorithm, based on non-negative
matrix factorization (NMF), was developed. We produce peak shapes from Fourier-transformed NMR spectra. Apart
from its main goal of deriving components from spectra and producing peak lists automatically, the NMF approach
can also be applied if the positions of some peaks are known a priori, e.g. from consistently referenced spectral

Conclusions: Application of the NMF algorithm to a three-dimensional peak list of the 23 kDa bi-domain section of
the RcsD protein (RcsD-ABL-HPt, residues 688-890) as well as to synthetic HSQC data shows that peaks can be
picked accurately also in spectral regions with strong overlap.
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Background
The precise estimation of the frequencies of peaks in nu-
clear magnetic resonance (NMR) spectra is often com-
plicated by poor signal-to-noise ratio and peak overlap.
This results in only partially complete and correct peak
picking. The problem aggravates especially when the
peaks are highly overlapped. This is compounded by
combinatorial ambiguity problems for resonance assign-
ments and increases errors in NOE distance restraints
[1]. To alleviate this problem, a more sophisticated peak
decomposition algorithm, based on non-negative matrix
factorization (NMF), has been developed and applied to
three-dimensional (3D) NMR spectra.

Non-negative Matrix Factorization was first intro-
duced by Paatero and Tapper as the concept of positive
matrix factorization [2,3] for estimating errors in widely
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varying environmental data. Their work revealed the non-
negativity features of the underlying data models. Lee and
Seung [4,5] showed using an effective multiplicative algo-
rithm parts-based representation of an object using NMF
approach. A recent in-depth review on NMF algorithms
discusses many forms of factorizations [6]. Because of the
non-negativity and the sparseness constraints [7], NMF
has wide applications in multidimensional data analysis
[8-15]. The idea originated from the fact that in certain
applications, by the rules of physics, the data quantities
cannot be negative. The NMF approach was reported in
application to complex metabolomic mixture analysis in
two-dimensional NMR spectra [16]. Higher dimensional
NMR spectral data matrices can be decomposed using
NMEF algorithms. The important property of NMF is the
non-negative nature of the decomposed factors. There-
fore, NMF processing of higher dimensional NMR spec-
tral data can have important consequences in automated
data processing.

In the automated peak picking approach peak identifi-
cation is followed by the estimation of peak intensities
and frequencies. Several algorithms have already been
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developed to perform peak picking in NMR spectra.
Most of these algorithms are based on finding local
maxima that fulfill certain criteria, and/or use Gaussian
or Lorentzian lineshapes for lineshape fitting [17-21] by
minimizing the residual squared error between the ob-
served peak shape and the assumed lineshape. Apart
from the lineshape fitting methods, PICKY [22] is an-
other program that uses a singular value decomposition
of peak components for peak picking. In general, highly
overlapped peaks cause the most commonly observed
problems of existing peak picking algorithms. We used
the basic two-dimensional (2D) NMF model, extended
sequentially to ND usage to decompose a 3D data (sig-
nal) tensor. A Euclidean distance cost function was used
as a measure of factorization convergence. The approach
allows applying constraints if some information is
known a priori, e.g. the total number of peaks or posi-
tions in common dimensions of hyper-dimensional (HD)
shapes [23]. We discuss the NMF algorithm, the condi-
tions for unique solutions of NMF models, and its appli-
cations to decompose 3D NMR signal tensors.

Methods

NMF decomposition algorithm

The basic idea of spectral factorization is to represent
the multidimensional NMR spectrum as well as possible
by a sum of direct products of one-dimensional shapes.
The latter are expected to represent the lineshapes of res-
onances. In this way, ie. if each one-dimensional shape
represents a resonance line, possible overlap is deconvo-
luted and the factorization of the spectrum is equivalent
to peak picking. The exact peak positions can simply be
obtained by determining the (interpolated) maxima within
the one-dimensional shapes. If it is known that the real
signals in a spectrum are non-negative, a better result can
be expected by introducing this condition into the
factorization algorithm.

The non-negative factorization (NMF) problem may
be described as follows. Given the observed data matrix
Y=[y(1),5(2), ....y(T)] € R™" with Y>0. The solution is
to find two matrices with only non-negative elements,
the basis or mixing matrix A€R"*" and the source
matrix X = [x(1), %(2), ..., x(T)] € R"* 7, where r represents
the number of true components [24]. The source matrix
is expected to produce the unknown latent components
of the original data matrix Y. The problem is to factorize
the given data matrix such that it minimizes the squared
Euclidean distance between the observed data matrix
and the product of two non-negative data matrices i.e.

Y = AX + N,

with A >0 and X >0, where Ne R™7 is a noise or error
matrix that is to be minimized.
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The divergence cost function is expressed in terms of
the squared Euclidean distance given as

Dr(A,X) = ||Y-AX|?

The objective is to minimize the divergence of this func-
tion using a standard gradient descent technique. The di-
vergence is calculated by component-wise calculation of
the distance between matrixes Y and AX. The minimization
is achieved using multiplicative update rules that update
the matrices A and X iteratively until a minimum squared
Euclidean distance is reached. The updates may be per-
formed until as much minimum possible distance lead-
ing to a nonnegative solution is achieved. Any increase
in the squared Euclidean distance may lead to an incor-
rect solution.

In matrix notation, the multiplicative update rules
become

A—AYXToAaxxT
X—XoATYyoATAX

where ® and @ represent component-wise multiplica-
tion and division, respectively [25]. The proposed multi-
plicative update rules were originally introduced in the
image space reconstruction algorithm (ISRA) [26]. The
algorithm performs minimization of the squared Euclid-
ean distance cost function using a gradient descent tech-
nique. The technique uses alternate switching between
sets of parameters to generate updates on the matrices A
and X until convergence is reached. The original ISRA
algorithm used multiplicative updates rules by updating
only the matrix X iteratively and assuming the matrix A
to be known [25,26]. The convergence to a nonnegative
solution is obtained for any positive starting point given
that the original input matrices contain hidden source
components [27].

Extension to 3D non-negative tensor factorization

The 3D non-negative tensor factorization (NTF) model
may be defined as an extension of the basic 2D models.
Some 3D NTF models can be solved using the basic 2D
NMF models referred to as the NTF2 model [24]. The
model is illustrated in Figure 1 and is described as
follows.

Y, =ADgX, + Ny =AX;+ Ny, (q=1,..,Q)

where Yg = [y,] e R™" is a g-th frontal slice (matrix) of
the observed 3D data (signal) tensor Y€ R”*™*?, The com-
ponent matrices A = [a;] = [a1,a5, ..., a]] e R™ is a mixing
or basis matrix and X, ' = [Xj,] € R”'gives unknown nor-
malized hidden components in g-th slice. The matrix
X,=D X, =X, € R™T represents re-normalized source
components and N = [#1;,] € R™T represents the g-th
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(IxTxQ)
Figure 1 lllustration of the NTF2 model for peak picking a 3D NMR spectrum. The matrix ¥ is a 3D input NMR spectral data matrix. A; and

X5 are 2D matrices factorized from g™ data plane of matrix Y representing the basis matrix and the source component matrix, respectively. N is
the 3D matrix representing the residual error of the non-negative matrix factorization.

(IxJ)

(IUxTxQ)

(IxTxQ)

frontal slice of the tensor NeR'*T*% representing
noise in the input matrix Y.

Determining the true number of components

For the NMF/NTF models the true number of compo-
nents r plays an important role in reaching convergence
because an approximate valid model is instrumental in
capturing the true underlying structure in the data. The
true number of components may be obtained using sev-
eral approximate and heuristic techniques [28-32]. Dif-
ferent numbers of components may result in different
residual minima. In the present work, we applied the fol-
lowing procedure for calculating the true number of
components. We observed the decay of residual values
for different number of components r = 2, 3, 4, 5, 6, and
7. The NMF iterations were stopped when the residual
showed no improvement over 10 or more consecutive it-
erations. The true number of components was obtained
as the one that showed the minimum residual value. It
was also observed that using a higher number of compo-
nents than the true number did not yield better mini-
mum residual values.

Uniqueness conditions for the 2D NMF ambiguity
problem

The quadratic cost function with respect to matrices A
and X may have many local minima, which leads to rota-
tional ambiguity of the factorized matrices [33]. Therefore
the alternating minimization of the squared Euclidean cost
function may not result in a unique NMF solution. How-
ever, applying some preprocessing or filtering of the input
matrix is sufficient to solve the NMF problem uniquely.
The preprocessing involves normalization of the input
matrix or normalizing the columns of the factorized
matrix A and/or the rows of matrix X. We normalized
each column of the matrix A to unit /;-norm. In addition,
we normalized the input matrix Y to unit length at the

beginning of the factorization and later used the corre-
sponding scaling factor to obtain the original intensity
values of the component peaks.

Peak picking of 3D NMR spectral data

The 3D NMF decomposition is performed as an ex-
tended 2D NMF decomposition as described above.
Each slice of 2D data, taken from a 3D spectral data
matrix ¥, occupies data in the matrix Y, representing the
g™ point in the third dimension. The model factorizes
peak components in one-dimensional (1D) peak shapes
in the source matrix X,. Peak positions are obtained by
fitting an ideal Gaussian shape of average linewidth
to the observed component by minimizing the scalar
product between the Gaussian shape and the observed
component. Next, the linewidth of the peak is adapted
to obtain an optimal agreement. The final peak positions
are obtained by performing a three-point parabolic
interpolation. The final peak lists are obtained by apply-
ing a user-defined intensity threshold.

Spectral data sets
The NTF2 model was applied using the 2D NMF algo-
rithm to the previously measured 3D HNCO spectrum for
the 23 kDa RcsD-ABL-HPt protein construct (residues
688-890) [34]. The spectrum was measured on a Bruker
AVANCE spectrometer operating at 'H Larmor frequency
of 950 MHz. The numbers of time-domain complex data
points were 128 and 90 in *C and "N indirect dimen-
sions respectively. Non-uniform sampling schedule was
employed in both the indirect dimensions at a level of
sparseness of 10 per cent, which acquired 1152 FIDs. The
203 amino acid protein gave rise to 195 expected peaks in
the 3D HNCO experiment [35].

Additionally, the method was applied to a group of
four synthetic signals with known positions. The syn-
thetic signals were of different intensities and were used
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to construct a 2D HSQC spectrum. The efficiency of the
algorithm for peak picking was assessed with different
levels of noise in the spectrum. The noise was added in-
crementally in steps of 10 percent each. The separation
of peak positions was varied from 10 to 1 points in steps
of one data point each.

Results and discussion

Figure 2 shows peaks picked from the 3D HNCO
spectrum of the RcsD-ABL-HPt protein on a 'H-'>C
projection. The model was able to pick 201 backbone
and side-chain cross peaks from the HNCO spectrum.
The peak list of 201 peaks is given in Additional file 1:
Table S1. The NTF2 decomposition of a small region of
about eight overlapped peaks of the 3D HNCO experi-
ment is shown in Figure 3. The peak shapes determined
for each dimension are plotted below each 2D projec-
tion. Peak shapes appearing in the same color in each
2D projection define one peak in the 3D spectrum.
Table 1 lists the eight peaks picked in this overlap region
with their assignments.

It can be seen that the overlapped peaks were well
decomposed in all three dimensions of the HNCO experi-
ment. Among the 201 peaks picked from the HNCO
spectrum there were about 23 peaks that were overlapped
in one or more dimensions. The NTF2 model was able to
decompose all the overlapped peaks. Table 1 shows two
peaks assigned to Cysteine 860 and to Leucine 859 which
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are overlapped in all three dimensions. The peaks for
these two residues were well decomposed in all three di-
mensions as shown in Figure 3. This shows that correct
peak picking of 3D NMR spectral data especially in
overlapped regions is possible using the NTF2 model.

The HSQC spectrum built using four synthetic signals
is shown in Figure 4A. The results of peak picking show
that the algorithm could tolerate up to 60% noise in the
spectrum when the peaks were separated by at least 7
points from each other. As the peaks were moved closer
to each other by one point at each step, the noise toler-
ance started to drop. The result is shown in Figure 4B.
When peaks were closer than two points, even 10% noise
in the spectrum generated incorrect peak intensities.

The change in peak position of the peak with the highest
intensity with varying levels of noise in the spectrum is
plotted in Figure 4C. The result shows that the algorithm
could tolerate up to 70% noise in the spectrum for factor-
izing the peak shape at its true position. It may be noted
that the known peak position is being observed for its
change with increasing noise in the spectrum. Therefore,
with higher than 70% of noise in the spectrum, the peak
appeared at its true position albeit with incorrect line-
width and intensity. Many other peaks resembled the true
peak in the factorized 1D components (Matrix X,). There-
fore, it may be concluded that the algorithm could not re-
liably determine the true peak when more than 70% noise
were present in the spectrum. Blue points indicate that
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Figure 3 Non-negative matrix factorization of overlapped peaks of a small region ('H: 8.095-8.298ppm, '°N: 118.813-123.806ppm,
13C: 175.910-176.791ppm) of the 3D HNCO spectrum of the RcsD-ABL-HPt (DAH) protein. A) 'H-">C projection. B) "H-">N projection.
C) "*C-"°N projection. The upper row shows the peaks in 2D projections. The lower row shows the peaks factorized in 1D shapes from the
corresponding projections. The peaks positions and intensities were obtained using a three-point parabolic interpolation.

the algorithm was able to distinguish the peak from noise.
Red points indicate that many other peaks resembled the
true peak because of higher noise in the spectrum. Be-
cause the original position of the peak was known, the dif-
ference in peak position could still be plotted in Figure 4C
at noise levels higher than 70%. However, the matrix
factorization residual and the number of peaks picked in
each component were at unacceptable levels.

Table 1 Peak list obtained by applying the NTF2 model
to the overlapped region of the 3D HNCO spectrum of
the RcsD-ABL-HPt construct shown in Figure 3

Peak position (ppm) Peak Peak
H 5N 3¢ intensity assignment

8275 122.868 176380 8013 x 10° €860
8.184 122.890 176380 1434 x 10" £861
8271 122.861 176420 2011 x 10° 1859
8.142 122732 176018 9.192 x 10° R824
8.241 121.000 176412 3430 x 10° R689
8.167 122246 176243 9482 x 10° Q858
8.245 119853 176.731 2509 x 10° R726
8219 119612 176.367 1157 x 10'° T840

Peak assignments are shown in the last column.

Similarly, the effect of noise on the change in peak in-
tensity was observed on the peak selected for Figure 4C.
Figure 4D shows the change in peak intensity with in-
creasing level of noise in the spectrum. The algorithm
could tolerate up to 70% noise in the spectrum for cor-
rect peak picking. The peak may be accepted or rejected
at a different intensity depending on the user intensity
tolerance threshold with higher noise levels in a
spectrum. With more than 70% noise in the spectrum,
incorrect intensities and linewidths were obtained after
factorization.

In general, the method works well on overlapped
peaks for two different reasons. First, the 3D peak pick-
ing data is reduced to a 2D peak picking data matrix.
The 2D factorization is performed at all points in the
third dimension. In case of overlapped peaks, for ex-
ample, if two peaks are separated by only one or two
points, the factorization can give two peaks separately in
each data plane from the points that separate the two
peaks. This becomes highly improbable in case of peak
picking based on lineshape fitting. Second, if the peak
position from one of the dimensions is known a priori
then the 2D data matrix comprising unknown peak pos-
ition can be factorized to get the peak position in the
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Figure 4 Noise and peak overlap tolerance of the NTF2 model for peak factorization of a synthetic HSQC spectrum. A) HSQC spectrum
constructed using four synthetic signals. B) Effects of noise and peak overlap on peak picking. The amount of noise in the spectrum is shown on
the x-axis. The y-axis shows the peak separation in number of points. Red circles indicate that peaks were incorrectly picked. Blue circles show
that the peaks were correctly picked upon factorization. C) Effects of the amount of noise on the peak position determination. Differences in the
peak position in number of points are shown on the y-axis. The x-axis shows the amount of noise in the spectrum. Blue points indicate that the
peak was correctly picked. Red points indicate that the peak was obtained with incorrect parameters because of higher noise in the spectrum.
D) Effects of the amount of noise on the peak intensity: The x-axis shows the amount of noise present in the spectrum. Differences in the peak
intensity of the peak are shown on the y-axis. Blue points show that the peak was distinguishable from the noise. Red points show that the peak
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other dimension(s). The method has useful consequences
when peaks are to be picked from hyper-dimensional data
matrices as discussed below.

The usefulness of the NTF2 model becomes apparent
when multi-dimensional NMR spectra have commonly
referenced dimensions. Thus, if the peak positions from
an already measured more sensitive NMR experiment
such as 3D HNCO are known, then the same peak posi-
tions can be used to pick peaks in other spectra that
have dimensions in common with HNCO, for example,
'H and/or "N. Peak picking overlapped regions becomes
easier with the NTF2 model if each common dimension
has consistent spectral referencing such as the spectral
width, the carrier frequency positions and the number of
sampled points. Theory suggests that the components in
matrix A are assumed known and the matrix X gives the

hidden source components of the input matrix Y [25].
The advantage that the NTF2 model offers in decompos-
ing a 3D NMR spectral data tensor is that peak positions
from any two dimensions can be assumed known. There-
fore, the reduced NTF2 model can offer accurate peak
position solutions especially when the peaks are over-
lapped. This notion can be extended naturally to hyper-
dimensional NMR spectral data tensors [23]. If peak
positions from one or more dimensions are known, the
peaks can be picked in the remaining dimensions by ap-
propriately selecting the corresponding 2D data planes
containing the picked peaks from the 3D data tensors.

Conclusion
We have developed a method based on non-negative
matrix factorization that can be used for peak picking
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3D NMR spectral data tensors. Our results demonstrate
that the method is particularly useful for picking over-
lapped peaks. Additionally the method can be easily ex-
tended for peak picking three- or higher-dimensional
NMR spectral data tensors that have commonly refer-
enced dimensions.

Additional file

Additional file 1: Table S1. Peak list obtained by applying the NTF2
model to the entire 3D HNCO spectrum of the RcsD-ABL-HPt construct
shown in Figure 2.
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